Please use this identifier to cite or link to this item: http://hdl.handle.net/2067/51786
Title: Comparison of Machine Learning Algorithms Fed with Mobility-Related and Baropodometric Measurements to Identify Temporomandibular Disorders
Authors: Taborri, Juri 
Molinaro, Luca
Russo, Luca
Palmerini, Valerio
Larion, Alin
Rossi, Stefano 
Journal: SENSORS 
Issue Date: 2024
Abstract: 
Temporomandibular disorders (TMDs) refer to a group of conditions that affect the temporomandibular joint, causing pain and dysfunction in the jaw joint and related muscles. The diagnosis of TMDs typically involves clinical assessment through operator-based physical examination, a self-reported questionnaire and imaging studies. To objectivize the measurement of TMD, this study aims at investigating the feasibility of using machine-learning algorithms fed with data gathered from low-cost and portable instruments to identify the presence of TMD in adult subjects. Through this aim, the experimental protocol involved fifty participants, equally distributed between TMD and healthy subjects, acting as a control group. The diagnosis of TMD was performed by a skilled operator through the typical clinical scale. Participants underwent a baropodometric analysis by using a pressure matrix and the evaluation of the cervical mobility through inertial sensors. Nine machine-learning algorithms belonging to support vector machine, k-nearest neighbours and decision tree algorithms were compared. The k-nearest neighbours algorithm based on cosine distance was found to be the best performing, achieving performances of 0.94, 0.94 and 0.08 for the accuracy, F1-score and G-index, respectively. These findings open the possibility of using such methodology to support the diagnosis of TMDs in clinical environments.
URI: http://hdl.handle.net/2067/51786
ISSN: 1424-8220
DOI: 10.3390/s24113646
Rights: Attribution-NonCommercial-NoDerivatives 4.0 International
Appears in Collections:A1. Articolo in rivista

Files in This Item:
File Description SizeFormat Existing users please
sensors-24-03646-v2.pdf4.27 MBAdobe PDF    Request a copy
Show full item record

SCOPUSTM   
Citations

2
checked on Nov 1, 2024

Page view(s)

13
checked on Nov 2, 2024

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons