Please use this identifier to cite or link to this item: http://hdl.handle.net/2067/51558
DC FieldValueLanguage
dc.contributor.authorFanelli, Giuseppinait
dc.contributor.authorAlloisio, Giuliait
dc.contributor.authorLelli, Veronicait
dc.contributor.authorMarini, Stefanoit
dc.contributor.authorRinalducci Sarait
dc.contributor.authorGioia, Magdait
dc.date.accessioned2024-07-18T10:44:15Z-
dc.date.available2024-07-18T10:44:15Z-
dc.date.issued2024it
dc.identifier.issn2296-889Xit
dc.identifier.urihttp://hdl.handle.net/2067/51558-
dc.description.abstractThere has been an increasing focus on cancer mechanobiology, determining the underlying-induced changes to unlock new avenues in the modulation of cell malignancy. Our study used LC-MS untargeted metabolomic approaches and real-time polymerase chain reaction (PCR) to characterize the molecular changes induced by a specific moderate uniaxial stretch regimen (i.e., 24 h-1 Hz, cyclic stretch 0,5% elongation) on SAOS-2 osteosarcoma cells. Differential metabolic pathway analysis revealed that the mechanical stimulation induces a downregulation of both glycolysis and the tricarboxylic acid (TCA) cycle. At the same time, the amino acid metabolism was found to be dysregulated, with the mechanical stimulation enhancing glutaminolysis and reducing the methionine cycle. Our findings showed that cell metabolism and oxidative defense are tightly intertwined in mechanically stimulated cells. On the one hand, the mechano-induced disruption of the energy cell metabolism was found correlated with an antioxidant glutathione (GSH) depletion and an accumulation of reactive oxygen species (ROS). On the other hand, we showed that a moderate stretch regimen could disrupt the cytoprotective gene transcription by altering the expression levels of manganese superoxide dismutase (SOD1), Sirtuin 1 (SIRT1), and NF-E2-related factor 2 (Nrf2) genes. Interestingly, the cyclic applied strain could induce a cytotoxic sensitization (to the doxorubicin-induced cell death), suggesting that mechanical signals are integral regulators of cell cytoprotection. Hence, focusing on the mechanosensitive system as a therapeutic approach could potentially result in more effective treatments for osteosarcoma in the future.it
dc.format.mediumELETTRONICOit
dc.language.isoengit
dc.rightsAttribution 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.titleMechano-induced cell metabolism disrupts the oxidative stress homeostasis of SAOS-2 osteosarcoma cellsit
dc.typearticle*
dc.identifier.doi10.3389/fmolb.2023.1297826it
dc.identifier.pmid38726050it
dc.identifier.scopus2-s2.0-85197417952it
dc.identifier.isi001215870200001it
dc.identifier.urlhttps://dspace.unitus.it/handle/2067/51488it
dc.relation.journalFRONTIERS IN MOLECULAR BIOSCIENCESit
dc.relation.article1297826it
dc.relation.volume10it
dc.description.numberofauthors6it
dc.description.internationalnoit
dc.contributor.countryITAit
dc.type.refereeREF_1it
dc.type.miur262*
item.fulltextWith Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairetypearticle-
item.cerifentitytypePublications-
crisitem.journal.journalissn2296-889X-
crisitem.journal.anceE227634-
Appears in Collections:A1. Articolo in rivista
Files in This Item:
File Description SizeFormat Existing users please
Frontiers Mol Biosci-10-1297826_2024_SAOS-2.pdfpdf editoriale2.39 MBAdobe PDF    Request a copy
Show simple item record

Page view(s)

46
checked on Sep 11, 2024

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons