Please use this identifier to cite or link to this item: http://hdl.handle.net/2067/51302
DC FieldValueLanguage
dc.contributor.authorColucci, Simonait
dc.contributor.authorDonini, Francesco Mariait
dc.contributor.authorDi Sciascio, Eugenioit
dc.date.accessioned2024-05-08T16:40:02Z-
dc.date.available2024-05-08T16:40:02Z-
dc.date.issued2024it
dc.identifier.issn1942-4787it
dc.identifier.urihttp://hdl.handle.net/2067/51302-
dc.description.abstractPresented as a research challenge in 2001, the Semantic Web (SW) is now a mature technology, used in several cross-domain applications. One of its key benefits is a formal semantics of its RDF data format, which enables a system to validate data, infer implicit knowledge by automated reasoning, and explain it to a user; yet the analysis presented here of 71 RDF-based SW systems (out of which 17 reasoners) reveals that the exploitation of such semantics varies a lot among all SW applications. Since the simple enumeration of systems, each one with its characteristics, might result in a clueless listing, we borrow from Software Engineering the idea of maturity model, and organize our classification around it. Our model has three orthogonal dimensions: treatment of blank nodes, degree of deductive capabilities, and explanation of results. For each dimension, we define 3–4 levels of increasing exploitation of semantics, corresponding to an increasingly sophisticated output in that dimension. Each system is then classified in each dimension, based on its documentation and published articles. The distribution of systems along each dimension is depicted in the graphical abstract. We deliberately exclude resources consumption (time and space) since it is a dimension not peculiar to SW.it
dc.format.mediumSTAMPAit
dc.language.isoengit
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.titleA review of reasoning characteristics of RDF‐based Semantic Web systemsit
dc.typearticle*
dc.identifier.doi10.1002/widm.1537it
dc.identifier.scopus2-s2.0-85189517907it
dc.identifier.isiWOS:001192335700001it
dc.identifier.urlhttps://doi.org/10.1002/widm.1537it
dc.relation.journalWILEY INTERDISCIPLINARY REVIEWS. DATA MINING AND KNOWLEDGE DISCOVERYit
dc.relation.numberofpages43it
dc.subject.scientificsectorING-INF/05it
dc.subject.keywordsRDFit
dc.subject.keywordsSemantic Webit
dc.subject.keywordsReasoningit
dc.subject.keywordsExplanationsit
dc.subject.ercsectorPE6it
dc.description.numberofauthors3it
dc.description.internationalnoit
dc.contributor.countryITAit
dc.type.refereeREF_1it
dc.type.miur262*
item.cerifentitytypePublications-
item.openairetypearticle-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
crisitem.journal.journalissn1942-4787-
crisitem.journal.anceE206033-
Appears in Collections:A1. Articolo in rivista
Files in This Item:
File Description SizeFormat Existing users please
WIREs_selfArchiving.pdfSubmission for self-archiving1.99 MBAdobe PDF    Request a copy
Show simple item record

SCOPUSTM   
Citations

1
Last Week
1
Last month
0
checked on Dec 2, 2024

Page view(s)

37
checked on Dec 4, 2024

Download(s)

2
checked on Dec 4, 2024

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons