Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/2067/51020
Titolo: A Three-Step Neural Network Artificial Intelligence Modeling Approach for Time, Productivity and Costs Prediction
Autori: Proto, Andrea Rosario
Maesano, Mauro 
Zimbalatti, Giuseppe
Scarascia Mugnozza, Giuseppe 
Macrì, Giorgio
Antonucci, Francesca
Costa, Corrado
Sperandio, Giulio
Rivista: CROATIAN JOURNAL OF FOREST ENGINEERING 
Data pubblicazione: 2020
Abstract: 
The improvement of harvesting methodologies plays an important role in the optimization of
wood production in a context of sustainable forest management. Different harvesting methods
can be applied according to forest site-specific condition and the appropriate mechanization
level depends on a number of factors. Therefore, efficiency and functionality of wood harvesting
operations depend on several factors. The aim of this study is to analyze how the different
harvesting processes affect operational costs and labor productivity in typical small-scale
Italian harvesting companies. A multiple linear regression model (MLR) and artificial neural
network (ANN) have been carried out to predict gross time, productivity and costs estimation
in a series of qualitative and quantitative variables. The results have created a correct statistical
model able to accurately estimate the technical parameters (work time and productivity)
and economic parameters (costs per unit of product and per hectare) useful to the forestry
entrepreneur to predict the results of the work in advance, considering only the values detectable
of some characteristic elements of the worksite.
URI: http://hdl.handle.net/2067/51020
ISSN: 1845-5719
DOI: 10.5552/crojfe.2020.611
Diritti: Attribution-NoDerivatives 4.0 International
È visualizzato nelle collezioni:A1. Articolo in rivista

File in questo documento:
File Descrizione DimensioniFormato Existing users please
P129 2020 Proto et al CJFE.pdf1.26 MBAdobe PDF  Richiedi una copia
Visualizza tutti i metadati del documento

Page view(s)

60
controllato il 15-feb-2025

Google ScholarTM

Check

Altmetric


Questo documento è distribuito in accordo con Licenza Creative Commons Creative Commons