Please use this identifier to cite or link to this item: http://hdl.handle.net/2067/51009
DC FieldValueLanguage
dc.contributor.authorCastrignanò, Annamariait
dc.contributor.authorButtafuoco, Gabrieleit
dc.contributor.authorConforti, Massimoit
dc.contributor.authorMaesano, Mauroit
dc.contributor.authorMoresi, Federico Valerioit
dc.contributor.authorScarascia Mugnozza, Giuseppeit
dc.date.accessioned2024-02-27T09:09:42Z-
dc.date.available2024-02-27T09:09:42Z-
dc.date.issued2023it
dc.identifier.issn2072-4292it
dc.identifier.urihttp://hdl.handle.net/2067/51009-
dc.format.mediumELETTRONICOit
dc.rightsAttribution 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.titleImproving the Spatial Prediction of Sand Content in Forest Soils Using a Multivariate Geostatistical Analysis of LiDAR and Hyperspectral Datait
dc.typearticle*
dc.identifier.doi10.3390/rs15184416it
dc.identifier.urlhttps://www.mdpi.com/2072-4292/15/18/4416it
dc.relation.journalREMOTE SENSINGit
dc.relation.article4416it
dc.relation.volume15it
dc.relation.issue18it
dc.contributor.countryITAit
dc.type.miur262*
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.fulltextWith Fulltext-
item.openairetypearticle-
crisitem.journal.journalissn1032-9714-
crisitem.journal.anceE235714-
Appears in Collections:A1. Articolo in rivista
Files in This Item:
File Description SizeFormat
remotesensing-15-04416-v2.pdf3.69 MBAdobe PDFView/Open
Show simple item record

Page view(s)

71
checked on Mar 15, 2025

Download(s)

5
checked on Mar 15, 2025

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons