Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/2067/48938
Titolo: Real-time-capable prediction of temperature and density profiles in a tokamak using RAPTOR and a first-principle-based transport model
Autori: Redondo, J.
Meyer, H.
Eich, Th
Beurskens, M.
Coda, S.
Hakola, A.
Martin, P.
Adamek, J.
Agostini, M.
Aguiam, D.
Ahn, J.
Aho-Mantila, L.
Akers, R.
Albanese, R.
Aledda, R.
Alessi, E.
Allan, S.
Alves, D.
Ambrosino, R.
Amicucci, L.
Anand, H.
Anastassiou, G.
Andrèbe, Y.
Angioni, C.
Apruzzese, G.
Ariola, M.
Arnichand, H.
Arter, W.
Baciero, A.
Barnes, M.
Barrera, L.
Behn, R.
Bencze, A.
Bernardo, J.
Bernert, M.
Bettini, P.
Bilková, P.
Bin, W.
Birkenmeier, G.
Bizarro, J. P.S.
Blanchard, P.
Blanken, T.
Bluteau, M.
Bobkov, V.
Bogar, O.
Böhm, P.
Bolzonella, T.
Boncagni, L.
Botrugno, A.
Bottereau, C.
Bouquey, F.
Bourdelle, C.
Brémond, S.
Brezinsek, S.
Brida, D.
Brochard, F.
Buchanan, J.
Bufferand, H.
Buratti, P.
Cahyna, P.
Calabrò, G. 
Camenen, Y.
Caniello, R.
Cannas, B.
Canton, A.
Cardinali, A.
Carnevale, D.
Carr, M.
Carralero, D.
Carvalho, P.
Casali, L.
Castaldo, C.
Castejón, F.
Castro, R.
Causa, F.
Cavazzana, R.
Cavedon, M.
Cecconello, M.
Ceccuzzi, S.
Cesario, R.
Challis, C. D.
Chapman, I. T.
Chapman, S. C.
Chernyshova, M.
Choi, D.
Cianfarani, C.
Ciraolo, G.
Citrin, J.
Clairet, F.
Classen, I.
Coelho, R.
Coenen, J. W.
Colas, L.
Conway, G.
Corre, Y.
Costea, S.
Crisanti, F.
Cruz, N.
Cseh, G.
Czarnecka, A.
EUROfusion MST1 Team (di cui mastrostefano)
Mastrostefano, Stefano 
Rivista: NUCLEAR FUSION 
Data pubblicazione: 2018
Abstract: 
The RAPTOR code is a control-oriented core plasma profile simulator with various applications in control design and verification, discharge optimization and real-time plasma simulation. To date, RAPTOR was capable of simulating the evolution of poloidal flux and electron temperature using empirical transport models, and required the user to input assumptions on the other profiles and plasma parameters. We present an extension of the code to simulate the temperature evolution of both ions and electrons, as well as the particle density transport. A proof-of-principle neural-network emulation of the quasilinear gyrokinetic QuaLiKiz transport model is coupled to RAPTOR for the calculation of first-principle-based heat and particle turbulent transport. These extended capabilities are demonstrated in a simulation of a JET discharge. The multi-channel simulation requires ∼0.2 s to simulate 1 second of a JET plasma, corresponding to ∼20 energy confinement times, while predicting experimental profiles within the limits of the transport model. The transport model requires no external inputs except for the boundary condition at the top of the H-mode pedestal. This marks the first time that simultaneous, accurate predictions of T e, T i and n e have been obtained using a first-principle-based transport code that can run in faster-than-real-time for present-day tokamaks.
URI: http://hdl.handle.net/2067/48938
ISSN: 00295515
DOI: 10.1088/1741-4326/aac8f0
È visualizzato nelle collezioni:A1. Articolo in rivista

File in questo documento:
File Descrizione DimensioniFormato Existing users please
2018Real_felici.pdf900.66 kBAdobe PDF  Richiedi una copia
Visualizza tutti i metadati del documento

SCOPUSTM
Citations

34
Last Week
0
Last month
0
controllato il 17-apr-2024

Page view(s)

23
Last Week
0
Last month
1
controllato il 24-apr-2024

Download(s)

1
controllato il 24-apr-2024

Google ScholarTM

Check

Altmetric


Tutti i documenti nella community "Unitus Open Access" sono pubblicati ad accesso aperto.
Tutti i documenti nella community Prodotti della Ricerca" sono ad accesso riservato salvo diversa indicazione per alcuni documenti specifici