Please use this identifier to cite or link to this item: http://hdl.handle.net/2067/48938
Title: Real-time-capable prediction of temperature and density profiles in a tokamak using RAPTOR and a first-principle-based transport model
Authors: Redondo, J.
Meyer, H.
Eich, Th
Beurskens, M.
Coda, S.
Hakola, A.
Martin, P.
Adamek, J.
Agostini, M.
Aguiam, D.
Ahn, J.
Aho-Mantila, L.
Akers, R.
Albanese, R.
Aledda, R.
Alessi, E.
Allan, S.
Alves, D.
Ambrosino, R.
Amicucci, L.
Anand, H.
Anastassiou, G.
Andrèbe, Y.
Angioni, C.
Apruzzese, G.
Ariola, M.
Arnichand, H.
Arter, W.
Baciero, A.
Barnes, M.
Barrera, L.
Behn, R.
Bencze, A.
Bernardo, J.
Bernert, M.
Bettini, P.
Bilková, P.
Bin, W.
Birkenmeier, G.
Bizarro, J. P.S.
Blanchard, P.
Blanken, T.
Bluteau, M.
Bobkov, V.
Bogar, O.
Böhm, P.
Bolzonella, T.
Boncagni, L.
Botrugno, A.
Bottereau, C.
Bouquey, F.
Bourdelle, C.
Brémond, S.
Brezinsek, S.
Brida, D.
Brochard, F.
Buchanan, J.
Bufferand, H.
Buratti, P.
Cahyna, P.
Calabrò, G. 
Camenen, Y.
Caniello, R.
Cannas, B.
Canton, A.
Cardinali, A.
Carnevale, D.
Carr, M.
Carralero, D.
Carvalho, P.
Casali, L.
Castaldo, C.
Castejón, F.
Castro, R.
Causa, F.
Cavazzana, R.
Cavedon, M.
Cecconello, M.
Ceccuzzi, S.
Cesario, R.
Challis, C. D.
Chapman, I. T.
Chapman, S. C.
Chernyshova, M.
Choi, D.
Cianfarani, C.
Ciraolo, G.
Citrin, J.
Clairet, F.
Classen, I.
Coelho, R.
Coenen, J. W.
Colas, L.
Conway, G.
Corre, Y.
Costea, S.
Crisanti, F.
Cruz, N.
Cseh, G.
Czarnecka, A.
EUROfusion MST1 Team (di cui mastrostefano)
Mastrostefano, Stefano 
Journal: NUCLEAR FUSION 
Issue Date: 2018
Abstract: 
The RAPTOR code is a control-oriented core plasma profile simulator with various applications in control design and verification, discharge optimization and real-time plasma simulation. To date, RAPTOR was capable of simulating the evolution of poloidal flux and electron temperature using empirical transport models, and required the user to input assumptions on the other profiles and plasma parameters. We present an extension of the code to simulate the temperature evolution of both ions and electrons, as well as the particle density transport. A proof-of-principle neural-network emulation of the quasilinear gyrokinetic QuaLiKiz transport model is coupled to RAPTOR for the calculation of first-principle-based heat and particle turbulent transport. These extended capabilities are demonstrated in a simulation of a JET discharge. The multi-channel simulation requires ∼0.2 s to simulate 1 second of a JET plasma, corresponding to ∼20 energy confinement times, while predicting experimental profiles within the limits of the transport model. The transport model requires no external inputs except for the boundary condition at the top of the H-mode pedestal. This marks the first time that simultaneous, accurate predictions of T e, T i and n e have been obtained using a first-principle-based transport code that can run in faster-than-real-time for present-day tokamaks.
URI: http://hdl.handle.net/2067/48938
ISSN: 00295515
DOI: 10.1088/1741-4326/aac8f0
Appears in Collections:A1. Articolo in rivista

Files in This Item:
File Description SizeFormat Existing users please
2018Real_felici.pdf900.66 kBAdobe PDF    Request a copy
Show full item record

SCOPUSTM   
Citations

34
Last Week
0
Last month
0
checked on Apr 17, 2024

Page view(s)

23
Last Week
0
Last month
1
checked on Apr 17, 2024

Download(s)

1
checked on Apr 17, 2024

Google ScholarTM

Check

Altmetric


All documents in the "Unitus Open Access" community are published as open access.
All documents in the community "Prodotti della Ricerca" are restricted access unless otherwise indicated for specific documents