Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/2067/48864
Titolo: State Estimation of Pest Populations subject to Intermittent Measurements
Autori: Rossello, Nicolas Bono
Rossini, Luca 
Speranza, Stefano 
Garone, Emanuele
Rivista: IFAC-PAPERSONLINE 
Data pubblicazione: 2022
Abstract: 
This paper introduces an observer-based scheme to estimate pest populations in agricultural fields. The proposed scheme describes the different stages of the life cycle of insects as a system of ODEs and it uses an Extended Kalman Filter with intermittent observations to provide a state estimation. This scheme aims at providing a general framework to formally combine physiologically-based models and field measurements, contrary to current best practices where both methodologies are used independently in parallel. The presented approach allows to apply this framework to a large number of species of agricultural interest and to take advantage from different counting systems. The improvement of the presented approach with respect to current best practices is demonstrated by means of numerical simulations based on the case of Drosophila suzukii.
URI: http://hdl.handle.net/2067/48864
DOI: 10.1016/j.ifacol.2022.11.128
Diritti: Attribution-NonCommercial-NoDerivatives 4.0 International
È visualizzato nelle collezioni:D1. Contributo in Atti di convegno

File in questo documento:
Visualizza tutti i metadati del documento

SCOPUSTM
Citations

1
Last Week
0
Last month
controllato il 27-mar-2023

Page view(s)

75
Last Week
2
Last month
3
controllato il 29-mar-2023

Download(s)

5
controllato il 29-mar-2023

Google ScholarTM

Check

Altmetric


Questo documento è distribuito in accordo con Licenza Creative Commons Creative Commons