Please use this identifier to cite or link to this item: http://hdl.handle.net/2067/48644
DC FieldValueLanguage
dc.contributor.authorBiagi, Stefanoit
dc.contributor.authorMugnai, Dimitriit
dc.contributor.authorVecchi, Eugenioit
dc.date.accessioned2022-11-26T13:59:10Z-
dc.date.available2022-11-26T13:59:10Z-
dc.date.issued2022it
dc.identifier.issn02191997it
dc.identifier.urihttp://hdl.handle.net/2067/48644-
dc.description.abstractIn this paper, we provide necessary and sufficient conditions for the existence of a unique positive weak solution for some sublinear Dirichlet problems driven by the sum of a quasilinear local and a nonlocal operator, i.e. Lp,s = -Cp + (-C)ps. Our main result is resemblant to the celebrated work by Brezis-Oswald [Remarks on sublinear elliptic equations, Nonlinear Anal. 10 (1986) 55-64]. In addition, we prove a regularity result of independent interest.it
dc.format.mediumSTAMPAit
dc.language.isoengit
dc.titleA Brezis-Oswald approach for mixed local and nonlocal operatorsit
dc.typearticle*
dc.identifier.doi10.1142/S0219199722500572it
dc.identifier.scopus2-s2.0-85140244566it
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85140244566it
dc.relation.journalCOMMUNICATIONS IN CONTEMPORARY MATHEMATICSit
dc.description.internationalnoit
dc.contributor.countryITAit
dc.type.refereeREF_1it
dc.type.miur262*
item.grantfulltextrestricted-
item.openairetypearticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.cerifentitytypePublications-
item.languageiso639-1en-
crisitem.journal.journalissn0219-1997-
crisitem.journal.anceE040276-
Appears in Collections:A1. Articolo in rivista
Files in This Item:
File Description SizeFormat Existing users please
BMV_BO_approach.pdfaccepted version360.97 kBAdobe PDF    Request a copy
Show simple item record

SCOPUSTM   
Citations

6
Last Week
0
Last month
checked on Mar 17, 2023

Page view(s)

22
Last Week
1
Last month
1
checked on Mar 23, 2023

Google ScholarTM

Check

Altmetric


All documents in the "Unitus Open Access" community are published as open access.
All documents in the community "Prodotti della Ricerca" are restricted access unless otherwise indicated for specific documents