Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/2067/47872
Titolo: A Deep Deterministic Policy Gradient Learning Approach to Missile Autopilot Design
Autori: Candeli, Angelo
Tommasi, Gianmaria De
Lui, Dario Giuseppe
Mele, Adriano 
Santini, Stefania
Tartaglione, Gaetano
Rivista: IEEE ACCESS 
Data pubblicazione: 2022
Abstract: 
In this paper a Deep Reinforcement Learning algorithm, known as Deep Deterministic Policy Gradient (DDPG), is applied to the problem of designing a missile lateral acceleration control system. To this aim, the autopilot control problem is recast in the Reinforcement Learning framework, where the environment consists of a 2-Degrees-of-Freedom nonlinear model of the missile's longitudinal dynamics, while the agent training procedure is carried out on a linearized version of the model. In particular, we show how to account not only for the stabilization of the longitudinal dynamic, but also for the main performance indexes (settling-Time, undershoot, steady-state error, etc.) in the DDPG reward function. The effectiveness of the proposed DDPG-based missile autopilot is assessed through extensive numerical simulations, carried out on both the linearized and the fully nonlinear dynamics by considering different flight conditions and uncertainty in the aerodynamic coefficients, and its performance is compared against two model-based control strategies in order to check the capability of the proposed data-driven approach to achieve prescribed closed-loop response in a completely model-free fashion.
URI: http://hdl.handle.net/2067/47872
ISSN: 2169-3536
DOI: 10.1109/ACCESS.2022.3150926
È visualizzato nelle collezioni:A1. Articolo in rivista

File in questo documento:
File Descrizione DimensioniFormato Existing users please
FINAL article.pdf1.92 MBAdobe PDF  Richiedi una copia
Visualizza tutti i metadati del documento

SCOPUSTM
Citations 20

12
Last Week
1
Last month
1
controllato il 5-ott-2024

Page view(s)

55
Last Week
0
Last month
0
controllato il 5-ott-2024

Download(s)

2
controllato il 5-ott-2024

Google ScholarTM

Check

Altmetric


Tutti i documenti nella community "Unitus Open Access" sono pubblicati ad accesso aperto.
Tutti i documenti nella community Prodotti della Ricerca" sono ad accesso riservato salvo diversa indicazione per alcuni documenti specifici