Please use this identifier to cite or link to this item: http://hdl.handle.net/2067/46452
DC FieldValueLanguage
dc.contributor.authorAnelli, Vito Walterit
dc.contributor.authorBellogín, Alejandroit
dc.contributor.authorFerrara, Antonioit
dc.contributor.authorMalitesta, Danieleit
dc.contributor.authorMerra, Felice Antonioit
dc.contributor.authorPomo, Claudioit
dc.contributor.authorDonini, Francesco Mariait
dc.contributor.authorDi Sciascio, Eugenioit
dc.contributor.authorDi Noia, Tommasoit
dc.date.accessioned2022-01-24T18:38:46Z-
dc.date.available2022-01-24T18:38:46Z-
dc.date.issued2021it
dc.identifier.urihttp://hdl.handle.net/2067/46452-
dc.description.abstractRecommender Systems have shown to be an effective way to alleviate the over-choice problem and provide accurate and tailored recommendations. However, the impressive number of proposed recommendation algorithms, splitting strategies, evaluation protocols, metrics, and tasks, has made rigorous experimental evaluation particularly challenging. ELLIOT is a comprehensive recommendation framework that aims to run and reproduce an entire experimental pipeline by processing a simple configuration file. The framework loads, filters, and splits the data considering a vast set of strategies. Then, it optimizes hyperparameters for several recommendation algorithms, selects the best models, compares them with the baselines, computes metrics spanning from accuracy to beyond-accuracy, bias, and fairness, and conducts statistical analysis. The aim is to provide researchers a tool to ease all the experimental evaluation phases (and make them reproducible), from data reading to results collection. ELLIOT is freely available on GitHub at https://github.com/sisinflab/elliot.it
dc.format.mediumELETTRONICOit
dc.language.isoengit
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.titleHow to perform reproducible experiments in the ELLIOT recommendation framework: Data processing, model selection, and performance evaluationit
dc.typeconferenceObject*
dc.identifier.scopus2-s2.0-85115647658it
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85115647658it
dc.identifier.urlhttp://ceur-ws.org/Vol-2947/paper14.pdfit
dc.relation.journalCEUR WORKSHOP PROCEEDINGSit
dc.relation.ispartofbookProceedings of the 11th Italian Information Retrieval Workshop, IIR 2021it
dc.relation.numberofpages9it
dc.relation.alleditorsPablo Castells, Rosie Jones, Tetsuya Sakaiit
dc.relation.conferencename11th Italian Information Retrieval Workshop, IIR 2021it
dc.relation.conferenceplaceBari, Italyit
dc.relation.conferencedate13 September 2021 through 15 September 2021it
dc.relation.volume2947it
dc.subject.scientificsectorING-INF/05it
dc.description.numberofauthors9it
dc.description.internationalit
dc.contributor.countryITAit
dc.contributor.countryESPit
dc.type.refereeREF_1it
dc.type.invitednoit
dc.type.miur273*
dc.publisher.nameAachen: M. Jeusfeld c/o Redaktion Sun SITE, Informatik V, RWTH Aachen.it
dc.publisher.placeAachenit
dc.publisher.countryDEUit
item.fulltextWith Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.languageiso639-1en-
item.grantfulltextopen-
item.openairetypeconferenceObject-
item.cerifentitytypePublications-
crisitem.journal.journalissn1613-0073-
crisitem.journal.anceE211129-
Appears in Collections:D1. Contributo in Atti di convegno
Files in This Item:
File Description SizeFormat
paper14.pdfPublished paper488.89 kBAdobe PDFView/Open
Show simple item record

Page view(s)

116
Last Week
1
Last month
4
checked on Oct 2, 2024

Download(s)

284
checked on Oct 2, 2024

Google ScholarTM

Check


This item is licensed under a Creative Commons License Creative Commons