Please use this identifier to cite or link to this item: http://hdl.handle.net/2067/46434
DC FieldValueLanguage
dc.contributor.authorMugnai, Dimitriit
dc.contributor.authorPerera, Kanishkait
dc.contributor.authorLippi, Edoardo Proiettiit
dc.date.accessioned2022-01-20T21:10:10Z-
dc.date.available2022-01-20T21:10:10Z-
dc.date.issued2022it
dc.identifier.issn1534-0392it
dc.identifier.urihttp://hdl.handle.net/2067/46434-
dc.description.abstractWe first prove that solutions of fractional p−Laplacian problems with nonlocal Neumann boundary conditions are bounded and then we apply such a result to study some resonant problems by means of variational tools and Morse theory.it
dc.format.mediumSTAMPAit
dc.language.isoengit
dc.titleA priori estimates for the fractional p−laplacian with nonlocal neumann boundary conditions and applicationsit
dc.typearticle*
dc.identifier.doi10.3934/cpaa.2021177it
dc.identifier.scopus2-s2.0-85120959130it
dc.identifier.isiWOS:000712326200001it
dc.identifier.urlhttps://www.aimsciences.org/article/doi/10.3934/cpaa.2021177it
dc.relation.journalCOMMUNICATIONS ON PURE AND APPLIED ANALYSISit
dc.relation.firstpage275it
dc.relation.lastpage292it
dc.relation.volume21it
dc.relation.issue1it
dc.description.internationalit
dc.contributor.countryITAit
dc.contributor.countryUSAit
dc.type.refereeREF_1it
dc.type.miur262*
item.fulltextWith Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairetypearticle-
item.cerifentitytypePublications-
crisitem.journal.journalissn1534-0392-
crisitem.journal.anceE183545-
Appears in Collections:A1. Articolo in rivista
Files in This Item:
File Description SizeFormat Existing users please
1534-0392_2022_1_275.pdfFile pubblicato190.91 kBAdobe PDF    Request a copy
Show simple item record

SCOPUSTM   
Citations 20

4
Last Week
0
Last month
1
checked on Sep 11, 2024

Page view(s)

74
Last Week
0
Last month
0
checked on Sep 18, 2024

Google ScholarTM

Check

Altmetric


All documents in the "Unitus Open Access" community are published as open access.
All documents in the community "Prodotti della Ricerca" are restricted access unless otherwise indicated for specific documents