Please use this identifier to cite or link to this item: http://hdl.handle.net/2067/46404
DC FieldValueLanguage
dc.contributor.authorMugnai, Dimitriit
dc.contributor.authorPagliardini, Dayanait
dc.date.accessioned2022-01-12T08:54:35Z-
dc.date.available2022-01-12T08:54:35Z-
dc.date.issued2017it
dc.identifier.issn1864-8258it
dc.identifier.urihttp://hdl.handle.net/2067/46404-
dc.description.abstractIn this paper, first we study existence results for a linearly perturbed elliptic problem driven by the fractional Laplacian. Then, we show a multiplicity result when the perturbation parameter is close to the eigenvalues. This latter result is obtained by exploiting the topological structure of the sublevels of the associated functional, which permits to apply a critical point theorem of mixed nature due to Marino and Saccon.it
dc.format.mediumSTAMPAit
dc.language.isoengit
dc.titleExistence and multiplicity results for the fractional Laplacian in bounded domainsit
dc.typearticle*
dc.identifier.doi10.1515/acv-2015-0032it
dc.identifier.scopus2-s2.0-85019137474it
dc.identifier.isiWOS:000398968300001it
dc.identifier.urlhttps://www.degruyter.com/document/doi/10.1515/acv-2015-0032/htmlit
dc.relation.journalADVANCES IN CALCULUS OF VARIATIONSit
dc.relation.firstpage111it
dc.relation.lastpage124it
dc.relation.volume10it
dc.relation.issue2it
dc.description.internationalnoit
dc.contributor.countryITAit
dc.type.refereeREF_1it
dc.type.miur262*
item.fulltextWith Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairetypearticle-
item.cerifentitytypePublications-
crisitem.journal.journalissn1864-8258-
crisitem.journal.anceE195322-
Appears in Collections:A1. Articolo in rivista
Files in This Item:
File Description SizeFormat
MugPag_pubblicato.pdf605.12 kBAdobe PDFView/Open
Show simple item record

Page view(s)

85
Last Week
1
Last month
0
checked on Oct 5, 2024

Download(s)

15
checked on Oct 5, 2024

Google ScholarTM

Check

Altmetric


All documents in the "Unitus Open Access" community are published as open access.
All documents in the community "Prodotti della Ricerca" are restricted access unless otherwise indicated for specific documents