Please use this identifier to cite or link to this item: http://hdl.handle.net/2067/45979
DC FieldValueLanguage
dc.contributor.authorBertini, Laurait
dc.contributor.authorCozzolino, Florait
dc.contributor.authorProietti, Silviait
dc.contributor.authorFalconieri, Gaia Salvatoreit
dc.contributor.authorIacobucci, Ilariait
dc.contributor.authorSalvia, Rosannait
dc.contributor.authorFalabella, Patriziait
dc.contributor.authorMonti, Mariait
dc.contributor.authorCaruso, Carlait
dc.date.accessioned2021-11-08T09:40:04Z-
dc.date.available2021-11-08T09:40:04Z-
dc.date.issued2021it
dc.identifier.issn2218-273Xit
dc.identifier.urihttp://hdl.handle.net/2067/45979-
dc.description.abstractGlobal warming is strongly affecting the maritime Antarctica climate and the consequent melting of perennial snow and ice covers resulted in increased colonization by plants. Colobanthus quitensis is a vascular plant highly adapted to the harsh environmental conditions of Antarctic Peninsula and understanding how the plant is responding to global warming is a new challenging target for modern cell physiology. To this aim, we performed differential proteomic analysis on C. quitensis plants grown in natural conditions compared to plants grown for one year inside open top chambers (OTCs) which determine an increase of about 4 °C at midday, mimicking the effect of global warming. A thorough analysis of the up and downregulated proteins highlighted an extensive metabolism reprogramming leading to enhanced photoprotection and oxidative stress control as well as reduced content of cell wall components. Overall, OTCs growth seems to be advantageous for C. quitensis plants which could benefit from a better CO2 diffusion into the mesophyll and a reduced ROS‐mediated photodamage.it
dc.format.mediumELETTRONICOit
dc.language.isoengit
dc.rightsAttribution-ShareAlike 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by-sa/3.0/us/*
dc.titleWhat antarctic plants can tell us about climate changes: Temperature as a driver for metabolic reprogrammingit
dc.typearticle*
dc.identifier.doi10.3390/biom11081094it
dc.identifier.pmid34439761it
dc.identifier.scopus2-s2.0-85110630818it
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85110630818it
dc.relation.journalBIOMOLECULESit
dc.relation.firstpage1094it
dc.relation.volume11it
dc.relation.issue8it
dc.subject.scientificsectorBIO-10it
dc.description.internationalnoit
dc.contributor.countryITAit
dc.type.refereeREF_1it
dc.type.miur262*
item.fulltextWith Fulltext-
item.openairetypearticle-
item.cerifentitytypePublications-
item.grantfulltextrestricted-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
crisitem.journal.journalissn2218-273X-
crisitem.journal.anceE222630-
Appears in Collections:A1. Articolo in rivista
Files in This Item:
File Description SizeFormat Existing users please
2021_Biomolecules.pdf20.71 MBAdobe PDF    Request a copy
Show simple item record

SCOPUSTM   
Citations 20

15
Last Week
0
Last month
0
checked on Mar 22, 2024

Page view(s)

87
Last Week
0
Last month
1
checked on Mar 27, 2024

Download(s)

3
checked on Mar 27, 2024

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons