Please use this identifier to cite or link to this item:
http://hdl.handle.net/2067/43569
Title: | Biomass steam gasification, high-temperature gas cleaning, and sofc model: A parametric analysis | Authors: | Marcantonio, Vera Monarca, Danilo Villarini, Mauro Di Carlo, Andrea Del Zotto, Luca Bocci, Enrico |
Journal: | ENERGIES | Issue Date: | 2021 | Abstract: | Gasification technology is actually one of the most effective ways to produce power and hydrogen from biomass. Solid oxide fuel cells (SOFCs) have proved to be an excellent energy conversion device. They can transform the chemical energy content in the syngas, produced by a gasifier, directly into electrical energy. A steady-state model of a biomass-SOFC was developed using process simulation software, ASPEN Plus (10, AspenTech, Bedford, MA, USA). The objective of this work was to implement a biomass-SOFC system capable of predicting performance under diverse operating conditions. The system is made of a gasification zone, gas cleaning steps, and SOFC. The SOFC modelling was done without external subroutines, unlike most models in the literature, using only the existing ASPEN Plus blocks, making the model simpler and more reliable. The analysis of the syngas composition out of each cleaning step is in accordance with literature data. Then, a sensitivity analysis was carried out on the main parameters. The results indicate that there must be a trade-off between voltage, electrical efficiency, and power with respect to current density and it is preferable to stay at a low steam-to-biomass ratio. The electrical efficiency achieved under the operating conditions is 57%, a high value, making these systems very attractive. |
URI: | http://hdl.handle.net/2067/43569 | ISSN: | 1996-1073 | DOI: | 10.3390/en13225936 | Rights: | Attribution-NonCommercial-NoDerivs 3.0 United States |
Appears in Collections: | A1. Articolo in rivista |
Files in This Item:
File | Description | Size | Format | Existing users please |
---|---|---|---|---|
computation-08-00086 (2).pdf | 1.36 MB | Adobe PDF | Request a copy |
SCOPUSTM
Citations
10
10
Last Week
0
0
Last month
0
0
checked on Sep 27, 2024
Page view(s)
82
Last Week
0
0
Last month
0
0
checked on Oct 2, 2024
Download(s)
5
checked on Oct 2, 2024
Google ScholarTM
Check
Altmetric
This item is licensed under a Creative Commons License