Please use this identifier to cite or link to this item:
http://hdl.handle.net/2067/43365
Title: | Comparison between finite element and experimental evidences of innovative W lattice materials for sacrificial limiter applications | Authors: | De Luca, R. Fanelli, Pierluigi Hünteler, C. B. Vivio, F. Zhang, K. von Müller, A. Calabrò, Giuseppe Maviglia, F. You, J. H. |
Journal: | FUSION ENGINEERING AND DESIGN | Issue Date: | 2021 | Abstract: | Power exhaust is a key mission for the realization of fusion electricity. Engineering challenges may arise from the extreme heat fluxes developed during plasma transients, above the limit offered by existing materials. These can reduce the lifetime of plasma-facing components (PFCs), imposing extraordinary maintenance, reactor safety issues and ultimately delayed return to normal operation. Concerning the EU DEMO reactor, discrete sacrificial limiters are being investigated as the last safety resource of the reactor's wall in case of unmitigated events. Within this context, micro-engineered tungsten (W) lattices are proposed to cope with unmitigated plasma disruptions. Unlike bulk W, lattices can be tailored to meet the operational requirements of the limiter, compromise between steady-state and off-design performances while avoiding overloading of the heat sink and delay the need for extraordinary maintenance. By calibrating an equivalent solid model originally developed and validated for open-cell aluminum (Al) foams, tailored lattices have been modelled and samples fabricated through additive manufacturing for characterization and testing, currently ongoing. In the present work, the thermal response of lattice samples during thermal shock high heat flux (HHF) tests performed at the linear facility QSPA Kh-50 facility is simulated using ANSYS and compared with available results. Enthalpy changes of W were imposed to simulate phase change. Good agreement with experiments and SDC-IC reference up to melting point was observed. Ultimately, a thermal quench of an unmitigated DEMO disruption was simulated involving an original MAPDL routine that removes mesh elements at the melting or vaporization point. |
URI: | http://hdl.handle.net/2067/43365 | ISSN: | 0920-3796 | DOI: | 10.1016/j.fusengdes.2021.112493 |
Appears in Collections: | A1. Articolo in rivista |
Files in This Item:
File | Description | Size | Format | Existing users please |
---|---|---|---|---|
1-s2.0-S0920379621002696-main.pdf | 3.96 MB | Adobe PDF | Request a copy |
SCOPUSTM
Citations
20
7
Last Week
0
0
Last month
0
0
checked on Nov 26, 2024
Page view(s)
90
Last Week
0
0
Last month
0
0
checked on Nov 30, 2024
Download(s)
4
checked on Nov 30, 2024
Google ScholarTM
Check
Altmetric
All documents in the "Unitus Open Access" community are published as open access.
All documents in the community "Prodotti della Ricerca" are restricted access unless otherwise indicated for specific documents