Please use this identifier to cite or link to this item:
Title: Yeast cytochrome c integrated with electronic elements: A nanoscopic and spectroscopic study down to single-molecule level
Authors: Delfino, Ines 
Bonanni, B.
Andolfi, L.
Baldacchini, Chiara 
Bizzarri, Anna Rita 
Cannistraro, Salvatore 
Issue Date: 2007
Various aspects of redox protein integration with nano-electronic elements are addressed by a multi-technique investigation of different yeast cytochrome c (YCC)-based hybrid systems. Three different immobilization strategies on gold via organic linkers are explored, involving either covalent bonding or electrostatic interaction. Specifically, Au surfaces are chemically modified by self-assembled monolayers (SAMs) exposing thiol-reactive groups, or by acid-oxidized single-wall carbon nanotubes (SWNTs). Atomic force microscopy and scanning tunnelling microscopy are employed to characterize the morphology and the electronic properties of single YCC molecules adsorbed on the modified gold surfaces. In each hybrid system, the protein molecules are stably assembled, in a native configuration. A standing-up arrangement of YCC on SAMs is suggested, together with an enhancement of the molecular conduction, as compared to YCC directly assembled on gold. The electrostatic interaction with functionalized SWNTs allows several YCC adsorption geometries, with a preferential high-spin haem configuration, as outlined by Raman spectroscopy. Moreover, the conduction properties of YCC, explored in different YCC nanojunctions by conductive atomic force microscopy, indicate the effectiveness of electrical conduction through the molecule and its dependence on the electrode material. The joint employment of several techniques confirms the key role of a well-designed immobilization strategy, for optimizing biorecognition capabilities and electrical coupling with conductive substrates at the single-molecule level, as a starting point for advanced applications in nano-biotechnology. © IOP Publishing Ltd.
ISSN: 0953-8984
DOI: 10.1088/0953-8984/19/22/225009
Appears in Collections:A1. Articolo in rivista

Files in This Item:
File Description SizeFormat Existing users please
JPCM_07.pdf1.09 MBAdobe PDF    Request a copy
Show full item record

Citations 5

Last Week
Last month
checked on Jul 29, 2021

Page view(s)

Last Week
Last month
checked on Aug 4, 2021

Google ScholarTM



All documents in the "Unitus Open Access" community are published as open access.
All documents in the community "Prodotti della Ricerca" are restricted access unless otherwise indicated for specific documents