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Introduction:Monitoring water levels of ephemeral streams is a di�cult yet important

task in hydrology, especially when studying minor river flows in remote areas. The

installation of flow gauging stations on upstream tributaries is impacted by the

lack of economic resources, by accessibility problems and unstable morphological

conditions of riverbeds avoiding the implementation of distributed observation

networks at large scales. This major challenge in hydrology may be addressed

by eventually adopting image-analysis approaches that constitute an e�ective

parsimonious river flow monitoring method, but the demonstration of such

techniques is still an open research topic.

Methodology: This study focuses on the testing of a novel technique that employs a

white pole “sta� gauge” to be photographed using a phototrap (i.e., named stage-

cam which is a high-speed camera trigger system). This technology shows to be

particularly e�cient for observing flood events that represent the most di�cult

scenario for streamflow monitoring. Furthermore, the testing of this innovative

hydrological data-gathering method is performed by adopting citizen science and

participatory image analysis to assess the value and e�ectiveness of non-expert

volunteers to operationalize this novel method. Citizen engagement may be essential

for supporting distributed flow monitoring supporting large scale image analysis

algorithm calibration associated to a continuous series of phototrap images. The

Montecalvello watershed, located near Rome, is selected for this pilot case study.

Results: Results of the conducted tests, involving the University of Tuscia student

community, are presented toward the demonstration of the e�ectiveness of citizen

science to collect valid quantitative hydrological observations, which may correlate

consistently with expert estimates. To better interpret results, the authors consider

mean absolute error (MAE) and mean absolute relative error (MARE) as synthetic

indices to determine the uncertainties associated to voluntary observations. Low

margins of error return positive feedback on the adopted methodology.

Discussion: This research promotes the use of participatory approaches for

addressing an actual hydrological monitoring challenge. In addition, it fosters

increased citizen knowledge and awareness of the importance and value of

hydrological monitoring of small ungauged river basins.
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1. Introduction

Monitoring intermittent and ephemeral streams is a significant

challenge in hydrology in terms of collecting accurate and continuous

data at different spatial and time scales (Davids et al., 2017; Strobl

et al., 2020; Noto et al., 2022). Difficult-to-access-environments

and unstable riverbed conditions represent a significant portion of

upstream areas hindering continuous and accurate hydrologic data

acquisition using traditional instruments, such as remote sensing and

river gauging stations (Ilja Van Meerveld et al., 2017; Seibert et al.,

2019; Noto et al., 2022).

The use of low-cost tools, supported by citizen science and

crowdsourcing methods, represents an innovative and effective

hydrologic monitoring solution for such challenging domains

and scales (Weeser et al., 2018; Zheng et al., 2018). The use

of participatory methodologies is recognized as an important

technique for next-generation solutions, also considering the value

of increased engagement and awareness of indigenous communities.

These methods are recognized to be fundamental to potentially

address the 23 Unresolved Problems in Hydrology (UPH). UPH—

an effort by 230 research scientists sharing the view and plan

to project hydrology research efforts into the future—recognized

transdisciplinary engagement as an important method to tackle

technological, social, cultural, and organizational challenges affecting

hydrologic research (Blöschl et al., 2019; Nardi et al., 2021).

Among the UPH, Blöschl et al. (2019) poses two major concerns

regarding hydrological measurements and data collection: (1) the

adoption of innovative technologies to measure and estimate surface

water flows at different spatial and time scales (UPH #16); and (2)

the collection of soft data from volunteered observations and their

integration with traditional hydrological observations (UPH #17).

Other issues focused on synergies and trade-offs between various

societal goals in water management (UPH #22).

Crowdsourcing requires the use of suitable technologies to engage

non-expert volunteers to carry out empirical research activities—

such as data collection and interpretation—and higher-level work

such as the co-production of knowledge and dissemination of results

(Spasiano et al., 2021). Considering the multidisciplinary perspective

of this type of work, the use of citizen science requires standardized

and controlled protocols to support the validity and reliability of the

results (Cappa et al., 2016; Kosmala et al., 2016).

UPH, with specific focus on the complexity of human-water

interactions, prompts the need for adoption of transdisciplinary

methodological approaches for solving hydrological challenges. In

particular, the introduction of soft data (collected through informal

methods) for use in estimates and measurement in hydrologic

models, can be important for the estimation of water levels or water

flows, and for monitoring of water quality in a stream (See et al., 2013;

Zheng et al., 2018; Schrögel and Kolleck, 2019; See, 2019; Etter et al.,

2020).

Citizen science constitutes a methodological paradigm, within a

participatory approach to scientific research, for its characteristics

of multidisciplinary and transdisciplinary collaboration (Eitzel et al.,

2017; Gray et al., 2017; Knapp et al., 2019). As stated in

Spasiano et al. (2021), multidisciplinary collaboration means the

application of citizen science which covers several subject areas;

while transdisciplinary indicates the integration of different scientific

backgrounds and research designs—with operational, professional,

and societal perspectives linked in a unique theoretical framework

(Spasiano et al., 2021).

In this experimental hydrology research, citizen science offers

benefits which address data scarcity through the involvement and

active participation of volunteers. By acting as sensors or interpreters,

volunteers are an important data source that extend spatially and

temporally (Goodchild, 2007; Assumpção et al., 2018). Citizen science

also offers social, cultural, and organizational benefits in terms of: (1)

raising awareness, to encourage sustainable behaviors and a better

use of water and environmental resources, with the potential for

cultural change of citizens in their relationship and common use

and management of water and related risks; (2) democratization of

science, to promote bottom-up approaches to contextualize scientific

research in a local, socio-cultural context; and (3) knowledge

gained and social learning, toward adaptive forms of environmental

management and decision making based on dialogue, consultation,

and sharing of knowledge and practices that could be useful to

address public issues (Walker et al., 2021).

In recent times, scientific research has investigated the value

of citizen and online communities’ involvement in environmental

monitoring, and methods and tools to obtain large quantities of data

to ensure homogeneous spatial and temporal coverage (Bonney et al.,

2009; Dickinson et al., 2012; Zheng et al., 2018; Schrögel and Kolleck,

2019; Spasiano et al., 2022). The development of digital technologies

makes widely available the use of tools such as smartphones and

other applications for the immediate and standardized collection of

data (Njue et al., 2019). Njue et al. (2019) classifies data acquisition

procedures, in the context of citizen science, as: (1) automated,

(2) semi-automated, and (3) manual, which require the use of

smartphone applications, digital solutions, or text media.

Methods and tools also differ according to the specific aspects

to be investigated, including water levels, flow, and quality. The

application of models and tools related to citizen science do not

reflect a single standardized procedure but rely on specific empirical

applications commonly aimed at widening and increasing the

availability of data through the involvement of citizens, especially

in contexts where data acquisition is difficult (Assumpção et al.,

2018). Also, the engagement methods differ according to the specific

contexts and objectives set in the research phase.

Regarding water level estimations, several studies adopt

data collection and public engagement approaches through the

combination of automated and manual methods (Njue et al., 2019).

These approaches aim to obtain water level estimates by volunteer

observations which are then compared to benchmark values,

official data, or with qualitative methods (Ilja Van Meerveld et al.,

2017). Some studies have implemented crowdsourcing tools for

the acquisition of environmental data through mobile-phone and

SMS-text messaging (Fienen and Lowry, 2012; Lowry and Fienen,

2013; Weeser et al., 2018).

These applications combine automated and manual methods of

data collection with digital tools at social and cultural levels (Weeser

et al., 2018). Advances in digital technology enable data collection

and public engagement processes to be implemented through

smartphones and user interaction and data sharing platforms.

For example, data collection methods can be used on virtual

staff gauge locations in which volunteers, in the role of human

sensors, qualitatively estimate water levels by means of specific smart

device apps (Seibert et al., 2019; Etter et al., 2020; Strobl et al., 2020;
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Nardi et al., 2021). These solutions, empowered by advanced digital

technologies, can support, not only the citizen data collection activity,

but also the organizational and communicative aspects that support

the active participation of volunteers in the processes of knowledge

sharing and co-production through specific platforms (Spagnoletti

et al., 2015; Le Coz et al., 2016).

This work illustrates a pilot case study testing methodological

approaches of citizen science in water level estimation of

intermittent basins, with the specific goal of validating the

image recognition algorithms’ calibration by means of crowdsourced

automation estimations.

On a technological level, Noto et al. (2022) designed and

developed a stage-camera system for monitoring water levels in

ungauged headwater streams by means of an image-based approach.

This method was implemented with a simple, white-painted steel

pole to estimate water depth as compared to the out-of-water pole

segment displayed (Noto et al., 2022). This stage-camera system

allows the acquisition of stream images at regular temporal intervals

of 20minutes. The system proved to be adaptable and reliable to

understand and monitor the flow variations in headwater streams.

This research, thus, tests volunteer capabilities to provide reliable

data for integration into a calibration strategy of the stage-cam

method. The proposed procedure uses mean andmedian positioning,

and variability measures, to assess volunteer performance to assign

reliable values and to evaluate the effectiveness of volunteer

observations over time.

Starting with positioning measures, the study, then, calculates

mean absolute error (MAE) andmean absolute relative error (MARE)

as synthetic indices to determine the uncertainties associated to

voluntary observations. Qualitative insights from demographics

indicators (educational background, university position, and

environmental expertise) are also analyzed to evaluate the impact

of social and cultural components on volunteers’ performance. The

proposed test applies principles of citizen science according to a

transdisciplinary approach.

The research design is based on citizen science principles in terms

of: (1) engagement of a small and controlled group of volunteers;

(2) recruitment and training activities; (3) digital communication

campaigns to support engagement; and (4) data processing. To

conduct this experimental study, we adopted a contributory citizen

science approach (Bonney et al., 2009). Our research team organized

and coordinated all procedures of the experiment to support the

volunteered data collection activity.

The paper is structured as follows: in Section 2, the authors

provide an overview of citizen science principles and their application

in water science. Section 3 focuses on methods and data collection

descriptions at the foundation of the research design. Section 4

illustrates the results derived from data analysis. Sections 5 and 6

provide respectively discussion and concluding remarks.

2. The adopted citizen science
framework

2.1. A brief summary of citizen science
principles

The term citizen science generally refers to the engagement

of non-expert volunteers in research activities. Citizen science

knowledge and tools are often employed to face environmental

challenges, such as the sustainable management of water resources,

flood monitoring, and disaster risk reduction (Buytaert et al., 2014;

Annis andNardi, 2019; Annis et al., 2022). Citizen science approaches

vary depending on the level of citizen engagement and the roles

assigned to volunteers in data collection, processing, dissemination,

and interpretation of results (Jordan et al., 2015; Bonney et al., 2016;

Phillips et al., 2019).

In a contributory citizen science perspective, crowdsourcing is

a basic technique for engaging volunteers in research activities as

data collectors or interpreters (Jordan et al., 2015). Advanced citizen

science approaches engage volunteers in the phases of consultation on

methods and goals (collaborated citizen science) or co-designed and

co-production of scientific knowledge (co-created citizen science;

Phillips et al., 2019; Thornhill et al., 2019). These advanced citizen

science approaches are applied when research goals match with

collective social and environmental needs.

Citizen science is an empirical research approach which has a

conceptual definition and theoretical framework subject to academic

debate (Eitzel et al., 2017). However, the scientific literature identifies

general methodologies and procedures that distinguish citizen

science as a valid research approach (Njue et al., 2019; Spasiano et al.,

2021) that include:

• Adoption of simple procedures

• Development of suitable (digital) tools

• Implementation of communication strategies

• Analysis and assignment to volunteers of specific roles in the

research process and knowledge co-production

2.2. Integration of soft data and
crowdsourcing techniques in water science

The use of soft data, as an alternative and complementary source

of data, is a common practice in the field of hydrological-hydraulic

modeling—such as in the estimation of water levels. However, data

types and acquisition techniques can vary depending on context

and purposes.

Soft data can be distinguished as intentional or unintentional

(Zheng et al., 2018). The first category includes data collected for

intentionally scientific purposes. The volunteer collects data—usually

via digital mobile devices—for scientific research and environmental

monitoring purposes (See et al., 2016). To this regard, citizen

science approaches are adopted for the engagement of volunteers.

Unintentional data is a category of data generated for purposes other

than scientific research and environmental monitoring.

This is incidental data, often unstructured, including textual

information and social media contents (Zheng et al., 2018). Data

mining techniques are usually used to extract scientifically relevant

information from user-generated contents, without the active

involvement of volunteers. Unintentional data also includes data

acquired by automatic detection tools which do not require direct and

intentional action by human agents (Zheng et al., 2018).

In the field of surface water levels and water quality, the

acquisition of data from citizen observations is mainly supported by:

(1) dedicated tools; and (2) images or videos (Zheng et al., 2018;

See, 2019). Dedicated tools include the development or adoption
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of technological solutions (software packages, apps, and digital

platforms) for real-time data collection (See et al., 2016; Zheng et al.,

2018; Seibert et al., 2019; Strobl et al., 2020). Images or videos provide

data from in-situ instruments and sensors for subsequent analysis by

volunteered users (Starkey et al., 2017).

This categorization also reflects a differentiation of activities

and roles played by volunteers schematically divided into citizen as

sensor (Goodchild, 2007; Elwood et al., 2012; Nardi et al., 2021)

or citizen as interpreter (Assumpção et al., 2018). In the first case,

volunteers act as sensors for field activities by using mobile digital

devices to collect intentional data to be integrated into subsequent

analysis and modeling (Le Coz et al., 2016). In the second case,

volunteers do not collect data directly but are required to provide

interpretations of an event by direct observation, but not necessarily

in real time.

The use of soft data in water science is a widespread

and well-established practice, notwithstanding some challenges

remain. A first order of challenges concerns the ability and

reliability of voluntary observations in relation to citizens as

data interpreters—how accurate are their observations (Assumpção

et al., 2018). Regarding this concern, we designed and tested a

procedure of engagement and observation collection, by means

of standardized and replicable protocol. The adopted procedure

aimed at reducing and quantifying margins of error resulting from

subjective evaluations. Standardization, homogenization, and large-

scale data collection constitute a second order of problems which

must be overcome to confidently use soft data in water science.

3. Methodology and data

This section describes the methods and data used in this research.

Firstly, we illustrate the research methodology to understand the

data collection process from the engagement activities of volunteers.

Secondly, we report the adopted empirical approach to our

methodology based upon firsthand experience to support our citizen

science project.

3.1. The hydrological application: Stage-cam
for water level observation

The stage-cam system represents a low-cost technological

solution to acquire images that quantify water level variations in

ephemeral streams at regular intervals of time (i.e., 20minutes). The

infrared technology integrated in the stage cam allows the retrieval of

images at night and in low visibility conditions, ensuring continuous

temporal coverage.

The study area is theMontecalvello Creek Basin in the province of

Viterbo (central Italy), about 100 km north of Rome, where 16 stage-

cams were installed to monitor the drainage network. With this set

up, it was possible to estimate water levels upstream and downstream

during the same meteorological event, and also to compare different

events at the same site. In front of the camera lens, positioned at the

bottom of the watercourse, a white-painted pole was installed to serve

as the reference observation tool for estimating stream water levels.

At peak flows, a black ribbon was tied to the pole as a reference

point to estimate water levels by an out-of-water-length method

(Figure 1). Image analysis algorithms, used on the collected white

pole images allowed the estimation of the distance in pixels between

the black ribbon and the water surface elevation, providing the

surface water level at a specific range of time.

Common hydrologic monitoring instruments are not effective in

low-flow surface water environments, typically because a benchmark

is not available for the calibration or the validation of data. The

use of citizen science volunteers is a promising solution to obtain

large data samples from numerous observations of streamflow levels.

However, the use of citizen science implies, firstly, the need to identify

a potential group of volunteers as field testers to verify the validity of

the adopted procedures; secondly, the implementation of simple and

replicable procedures for non-expert volunteer groups; thirdly, the

use of digital technologies that enable volunteers to join the project,

to access information, and to carry out the activities remotely and in

a dependable and controlled environment.

Unlike most citizen science projects, in this study our research

team asked volunteers to act as interpreters. Volunteers were not

required to acquire data from their own but were asked to examine

images provided by teams of experts according to established

procedures. This solution tended to mitigate the potential margin of

error but also limited the role of volunteers as contributors.

3.2. Training and engagement methodology
of volunteers

The engagement methodology adopted in this project was based

on simple procedures illustrated in Figure 2. The methodological

procedure was articulated as follows: (1) recruitment and training;

(2) engagement and digital communication; (3) data collection; and

(4) results dissemination.

Recruitment activities, designed by the research team, included

a dedicated brief workshop to prepare prospective citizen science

students. The workshop (1) presented the research project; (2) framed

the environmental and social issues related to the monitoring and

management of water courses; (3) explained citizen science as a

method of research toward shared and participatory solutions for

water challenges; and (4) provided training on volunteered activities

to estimate stream water levels through the observation of photo-

traps frames.

The engagement activity took place during in-person meetings

with students of different academic levels and disciplinary

background. The research team organized brief workshops

of 30min each during classroom sessions to involve as many

students as possible. During in-person workshops, researchers

provided a theoretical introduction to citizen science to

explain the use of non-expert volunteers in environmental and

hydrogeological monitoring.

Researchers also trained students on the required activities for

the project, to be carried out remotely. The training phase involved:

(1) observation of images through open-source software GIMP; (2)

recording observations on a spreadsheet shared in the cloud. The

meetings were held over 4 months—from January to April 2022.

At the end of each workshop, the researchers asked participants

to provide email addresses in order to: (1) identify and involve

in the project only people interested to participate voluntarily; (2)

share the material (images to observe and tutorials) to carry out

the required activities remotely; (3) share research progress and
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FIGURE 1

An example of stage-cam system installed at the Montecalvello basin.

FIGURE 2

Methodological procedure adopted to support active participation of volunteers (UNITUS: University of Tuscia, Viterbo, Italy).

results; (4) support the project through communication campaigns.

The engagement methodology was designed to test and verify the

voluntary character of the project. No monetary awards, university

credits, nor other types of benefits were provided to students.

The data collection activity consisted of a stage of direct

observations aimed at analyzing a sequence of continuous images

related to a given upstream basin site. Volunteers were asked

to examine sequences of 30 images during a rainfall event. The

purpose was to estimate variations in streamflow levels. Subsequent

replication observation stages were planned to cross-test the validity

of the methodological procedure, volunteers’ capabilities, and their

interests to the project in the short term.

At the end of observation stage, the results are shared by a

dedicated web interface and dashboard which allowed participants to

visualize their observed data and project outcomes.

3.3. Data

The firsthand experimental test was based exclusively on direct

observations of volunteers to assess their reliability by means of

positioning, variability measures, and error estimation. Our research

team developed a specific and controlled protocol of procedures to
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guarantee the effectiveness and validity of data collection, and to

reduce uncertainty resulting from subjective perceptions. During the

in-person workshops, we instructed volunteers on the procedure to

acquire controlled data and on how to share it with researchers.

In this regard, each volunteer received an online folder with the

materials needed to perform the required tasks: (1) subfolders with

images to analyze; (2) a table to report observations; and (3) tutorials

with guided steps to carry out the tasks.

After visualizing image sequences, volunteers filled a shared

spreadsheet to report the value of the coordinate Y—at the point

of intersection between the water level and the reference pole—to

estimate changes in water levels (Figure 3). To derive these water level

estimates, absolute reference values were established:

• Fixed pole reference value [pixel]

• Pole length [mm]

• Pole length [pixel]

Then, we derived the difference between the observed water level

and the fixed reference point on the pre-installed white pole. This

value, subtracted from the length of the observation pole, provided

the estimate of water levels for each of the 30 images (Figure 3).

4. Results

In a recent study, Capdevila et al. (2020) points out how citizens’

attributes can constitute potential success factors of improved

data quantity and quality utilizing citizen science. These citizen

attributes include: (1) knowledge and experience; (2) awareness

of environmental issues; and (3) socio-economic backgrounds of

citizens (Capdevila et al., 2020). Starting from this theoretical

framework scheme, we created a preliminary survey for participants

after the initial engagement step. Since this sample was limited to

students from the university community, qualitative information

collection was focused on: (1) educational level; (2) university

career background; and (3) non-academic environmental expertise

to relate the data collection activity to specific socio-cultural patterns

(Figure 4).

Figure 4 suggests that the collected sample is quite heterogeneous.

Indeed, volunteer academic backgrounds span from humanities to

engineering, and from high school to graduate-level programs. Most

students did not have any expertise or prior background in similar

environmental topics.

4.1. Insights from observation stage

We analyzed the observations of 37 student volunteers (our

maximum number of active volunteers). Figure 5 summarizes the

variation of water levels from the collected volunteer observations.

The boxplot depicts the confidence intervals and positioning trends

for each photo-trap image.

Results indicate a high variability of the student observations,

despite a strong concentration around the median values for each

analyzed image. To better interpret these trends, we estimated the

MAE and the MARE of each student volunteer and compared each

observation with a benchmark value. The benchmark value was

derived from the observations provided by an expert from our

research team. Furthermore, researchers estimated the mean absolute

error for each volunteer to see how far each observation deviated

from the benchmark value.

Finally, we estimated the average mean absolute error of all

volunteers which was equal to 24.5 pixels. This average value was,

however, within a wide confidence interval of errors between 3.6 and

201.9 pixels, where the median value was 16.7 pixels.

The average MARE recorded in this observation stage was equal

to 0.14 (14%). Average MARE is a measurement to evaluate the

performance of all participating volunteers on the single event.

The sample of volunteers active in the observation stage

presented heterogeneous qualitative attributes in terms of education,

university career background, and environmental expertise. Sample

heterogeneity prompted to verify possible impacts of the qualitative

attributes on the volunteers’ performances. Figure 6 shows the

distribution of the absolute mean error for each category within

groups (1) educational level, (2) university career path, and (3)

environmental expertise. Interestingly, there is counterintuitive

evidence, indeed, that the lowest mean absolute error (16.2 pixels)

was provided by undergraduate volunteers while the highest values

are recorded among those who have a master’s degree (MAE = 64.6

pixels). Similarly, it was not expected that, considering university

career paths, that the lowest error (10.7 pixels) is provided by

those who follow a career path in law disciplines. No considerable

differences were reported related to environmental expertise. In fact,

the difference in MAE between the environmental expertise group

and the no-expertise group was 5.3 pixels. These results, however, do

not reflect the specific trend of each individual group, but rather the

distribution of outlier values among individual volunteers linked to

personal biases and uncertainties.

Personal biases were also confirmed in Figure 7. The continuous

distribution (Y-axis) of the stream-water level is uneven due to

the uncertainties recorded for each image (X-axis) by each student

volunteer (Z-axis) in the observation stage of the study.

4.2. Preliminary insights from replication
stages

We replicated the methodological procedure for estimating

stream water levels and extended the observation activity of

the student volunteers to two additional replication stages. The

replication of observations had four main purposes: (1) increase

the amount of data collected to obtain more significant estimates;

(2) test the validity of the methodological procedure; (3) test the

motivations of volunteers; and (4) evaluate any variation in volunteer

performance over time. Furthermore, we asked the 37 participants

to observe a second continuous series of 30 images of a downstream

site during the same rainfall event. Finally, researchers asked student

volunteers to examine a third continuous series of 30 images relative

to the initial upstream site during a different rainfall event.

During the replication stages a drastic drop in participants was

recorded, undermining the initial goals of this study. Only five

volunteers replicated the observation activities of the water flow

image series.

The secondary results provided an indicative insight into

volunteers’ performance and demonstrated the replicability of the

methodological procedure designed for estimating stream water
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FIGURE 3

Working environment for data collection and observations recording: (upper figure) A screenshot from GIMP displays the time series of 30 images related

to stream water levels; (lower figure) The observation table shows values provided from image visualization by volunteers.

levels during a flood event. The limitation of the secondary

sample size to only five observations did not permit analysis

of these observations. Regardless, the results reported below

showed the potential effectiveness of the proposed methodological

procedure. The secondary results, which emerged from the

small but motivated group of active student volunteers, showed

promising variations—from the reduction of both the average

MAE and the average MARE indices from the first stage

of observations.

In the replication stage, the recorded average MAE among

five volunteers also active in replication stages was equal to 120.2

pixels within a range between a minimum value of 12.4 pixels and

maximum of 221.4 pixels. Compared to the observation stage, the

average MARE increased to 25%. Regardless, focusing our attention
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FIGURE 4

Qualitative attributes of volunteers engaged in active participation: (left panel) educational level; (center panel) university career path; (right panel)

environmental expertise.

FIGURE 5

Variation of observed water levels at the initial observation stage. A total of 37 student volunteers took part in this stage.

FIGURE 6

Mean absolute error (MAE) in initial observation stage sorted by qualitative attributes of volunteers: (left panel) educational level; (center panel) university

career path; (right panel) environmental expertise.

on only the five consistently active volunteers, we noted a substantial

improvement in performance across the first two phases of the study.

Among the five consistently active volunteers, an average MARE

equal to 28% at the first observation stage was recorded.

The same five volunteers completed the second replications stage

and demonstrated strong interest to contribute to the citizen science

experiment. In the final replication stage of the study, the average

MAE was equal to 25.29 pixels, and the average MARE significantly

decreased to 6%.

The MAE and MARE indices were useful in interpreting the

performance of volunteers to better understand, if during the

different stages of the study, volunteers had acquired a greater

Frontiers inWater 08 frontiersin.org

https://doi.org/10.3389/frwa.2023.1050378
https://www.frontiersin.org/journals/water
https://www.frontiersin.org


Spasiano et al. 10.3389/frwa.2023.1050378

FIGURE 7

Flood wave reconstruction from collected student volunteer observations.

FIGURE 8

Mean absolute error (measured in pixels) of the five volunteers over the three stages.

ability to provide reliable observations. Outcomes from MAE and

MARE pointed out a decreasing margin of error in the performances

of five consistently volunteers across the three observation stages.

The decreasing trend is also confirmed by the error distribution

within volunteers (Figure 8), where recorded error was attributable

primarily to one participant.
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The limited sample size does not permit generalization of the

effective changes recorded in the observation skills of volunteers.

Furthermore, the small number of volunteers does not allow us to

fully understand the possible impacts of the training activities across

the three different stages of the study. However, the convergence

of observed values around the median values, especially in the

final replication stage, suggests that the repetition of simple tasks,

by small but motivated groups, can lead to an improvement in

volunteer performance.

5. Discussion

In this study concepts and methods of citizen science were

empirically tested to improve innovative procedures for hydrological

monitoring. The active participation of 131 volunteers, among

the large number of students who participated in the in-

person initial workshop (around 400 people), addressed the

researcher’s decision to work remotely with the support of web-

based cloud technologies to permit the collection of a large set

of observations.

Student engagement in the role of observers was purely based on

volunteer assistance. No incentives or remuneration was provided

to support or motivate the participation of volunteers. They did,

however, gain a sense of engagement and learned about selected study

methods during the activity. Our aim was to analyze the student

participation and to understand—also at an indicative level—the

possible motivations that encouraged student volunteers to take an

active part in a scientific research process.

The choice of voluntary participation obviously entailed risks

that limited the dynamics of participation. Considering the initial

group of 131 participants, in fact, only 37 volunteers contributed to

the further development of the project by successfully performing

the first observation stage test. In the replication stages, we found a

drastic drop in participation, where only five volunteers contributed.

The difference between active and passive volunteers is a common

issue within online communities. The active participation of 37 out

of 131 volunteers can be considered a satisfactory result. On the

other hand, the drastic drop in participation during the replication

is an aspect that need to be investigated. Authors hypothesize that

this drop in participation is due to the following three factors:

(1) repetitive tasks were requested; (2) there was a gap between

communication and organizational phases of the project; and (3) the

participants lacked substantial interest and motivation over time. At

the present, these are only hypotheses and further investigations are

required for future work on how to increase and maintain volunteers’

engagement over time.

From available data indicative insights on the background of

participating student volunteers can be derived. Among the 37 active

participants, 25 volunteers declared to have a university degree (21

bachelor’s degrees and four master’s degrees). However, this is not

particularly significant in a sample limited to university students.

On the other hand, more relevant indications can be derived from

the declared university career background. Most participants (41%)

stated they were on a technical-scientific career path, and 32% were

on a scientific pathway.

A higher educational level, combined with a disciplinary affinity

with the hydrological monitoring study, seems to be a logical

reason for active and lasting participation of a volunteer. This

contrasts with other types of university careers that do not have

an affinity with hydrological monitoring and could explain why

only five students participated in the two replication stages of the

research. One unexpected behavior has to do with volunteers with

environmental expertise. The lack of environmental expertise does

not seem to have a major impact on participation in the project.

Of the 37 volunteers, a smaller percentage (38%) stated that their

environmental experiences were obtained primarily from service

in military corps activities related to environmental issues. Other

students stated their environmental experiences were gained through

job-related purposes. This is reasonable since students are still

undergoing academic and professional training. In the light of the

experiment carried out, there is, therefore, no common matrix that

justifies long-term participation. However, there are indications that

require further investigation. Further input derived from a follow-

up questionnaire, which focuses on the analysis of motivations of

student volunteers.

At the end of our experimental citizen science test, research

team asked student participants which of the following motivations

led them to participate in the project: (1) interest in environmental

issues; (2) scientific curiosity; (3) personal satisfaction; (4) desire to be

part of a scientific community; (4) sense of duty; (5) contributing to

scientific research; (6) opportunity to improve knowledge and skills;

or (7) environmental sensitivity. The replies received focused on three

primary aspects: (a) interest in environmental issues; (b) contributing

to scientific research; and (c) opportunity to improve knowledge and

skills. The volunteers unanimously stated that they were very satisfied

with the experience gained andmoderately satisfied of their improved

knowledge and skills. They also agreed that their contribution has

been useful for scientific research. However, student volunteers

stated that their level of awareness regarding environmental issues

remained unchanged.

What is evident from the initial observations is the constant

participation of a small but motivated group of volunteers (total =

5) in all stages of the project. Another aspect is the reliability of

the observations and the trends in performance, as attested by the

averageMARE index equal to 0.14 in the peak of total participants (37

volunteers). The general convergence of water level estimations from

volunteer observations, and the relative low average MARE index

(0.14), are probably affected by training. This allowed each volunteer

to replicate autonomously and remotely the methodological designed

for data acquisition through direct observations. Therefore, it appears

that the training allowed, albeit in a limited and restricted sample,

the replicability of the methodological procedure of data acquisition.

This was achieved through direct observation of a continuous series

of images, relative to different sites and rainfall events, during the

replication stages. The average MARE index, equal to 0.06 obtained

in the last replication stage, is an encouraging sign—albeit it was

obtained from a very small sample.

In general, we have not found incidences of qualitative variables

related to the backgrounds of student volunteers, but rather

the results are conditioned by outlier values resulting from the

subjectivity of the single observer. However, we do not have a

significant sample size to provide more detailed assessments of

the incidence of qualitative variables. This aspect of the research

identified a general improvement in volunteer performance due to

the use of simple, repetitive tasks.
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The data used in this study are not included into the category of

User-Generated Contents (UGC), as they were not released through

social media or digital platforms (Zheng et al., 2018; See, 2019; Sy

et al., 2019; Modaresnezhad et al., 2020). Rather, data was acquired

using crowdsourcing methods according to precise protocols set in

the research design phase of the study (Brabham, 2008; Estellés-

Arolas and González-Ladrón-De-Guevara, 2012; Palacios et al., 2016;

Lowry et al., 2019; Martinez-Corral et al., 2019).

Our data collection activity conforms to the contributory

typology of citizen science (Bonney et al., 2016; Aristeidou et al.,

2017; Gray et al., 2017). The contributory approach indicates that

research questions and research design adapt to a top-down research

process coordinated by expert scientists. The role of the volunteer

is limited to interpretation of guided data collection. Subsequently,

data processing and analysis therefore remain with the competence

of the experts.

Volunteers’ engagement, however, is applied to the dissemination

of results, with the support of digital dashboards, to increase

knowledge and awareness on issues related to environmental

management and monitoring, and awareness of sustainability

and conflict reduction related to the improved use of water

resources. Public engagement during information dissemination is

also important because it will highlight the role of the volunteers

in the formulation of scientific knowledge. This is useful not only

for research but also for setting decision-making scenarios for

the public to be included, informed, and active participants in

the process.

6. Conclusions

Our research evaluated some principles of citizen science,

to obtain estimates of water levels in an ephemeral stream,

through visual image analysis. In this regard, we designed a

procedural protocol for the validation of volunteer observations.

The procedure was assessed on the Montecalvello river

basin, but it is replicable in other geographic settings.

To evaluate the validity of the research methodology, we

relied on a sample of university students from the Tuscia

University community to establish a controlled group

of volunteers.

TheMAE andMARE of volunteer observations yields satisfactory

and promising results in terms of the reliability of data from

volunteered observations. The average MAE of 24.5 pixels implies

that the overall error margin recorded by the volunteers is 70mm

(1mm = 0.35 pixel). The smallest recorded MAE of 3.57 pixels

implies that the margin of error obtained is 10.2mm. Furthermore,

the data shows a decrease in the margin of error from the first to

the last phase, indicating how training and replicability can affect the

improved validity of the data obtained.

The application of the pilot case has been useful to highlight issues

and limits related to the effective participation of volunteers and

the reliability of their observations. The adoption of communication

techniques, aimed at encouraging participation and the application

of the test on a controlled sample, however, affected the activity

of the volunteers. The main issue encountered during this work

was the recruitment and engagement of student volunteers.

We found that it was difficult to maintain high and constant

motivation of volunteers since they did not appear to be

motivated—in terms of material gain—in the scientific research

activity. Continuous communication campaigns to update and

encourage participation in the various phases also had very

limited effects.

As a result, this research assesses the difficulty of establishing

stable and lasting volunteer communities for citizen science

projects, regardless of whether they are in-person or virtual online

communities. In our study, we experimented a mixed mode of

approaches in which, at the initial phases of in-person recruitment

through classroomworkshops, we followed upwith activities through

online methods. This leads us to conclude that a greater effectiveness

of citizen science projects can be ensured by temporally limited

activities which are addressed to limited groups of participants

who are strongly motivated by common interests, and personal or

collective appreciation for the proposed research topics. In our study

we adopted a contributory approach, where research questions and

methodologies followed a top-down model. Approaches related to

other types of citizen science—such as collaborated or co-created—

could provide different indications of the motivations that support

volunteer participation. Regardless, a scientific research activity

established on a bottom-up approach would imply a greater level of

participation and involvement but could not be established in our

specific study.
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