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Abstract: Application of wastewater to agricultural soils not only enhances economic benefits but is
also considered as a safe disposal option by the administrators. Worldwide, peri-urban horticulture
is a common practice for growing vegetables. When agricultural soils are irrigated with wastewater,
numerous potentially toxic elements (PTEs) contained therein are bioaccumulated and pose health
risks. The presented study aimed to reveal the PTEs, i.e., copper (Cu), cadmium (Cd), nickel (Ni) and
lead (Pb) concentration in the agricultural soils irrigated with wastewater for longer times. Zeolite,
a natural mineral was used to immobilize these in contaminated soils to reduce its availability to
brinjal (Solanum melongena L.). During a pot study, zeolite was applied at four different levels, i.e.,
0.25, 0.50, 1.00 and 2.00% in contaminated soil, keeping one control. The results revealed that growth
as well as biochemical and physiological characters were found best with treatment receiving zeolite
at 2.00%. In edible parts (fruit), PTE contents were found lowest in the same treatment. Relative to
the control, ~121, 87, 120 and 140% less DTPA-extracted Cu, Cd, Ni and Pb in soil was found with
this treatment. Based on the results, it was revealed that zeolite effectively immobilized Cu, Cd, Ni
and Pb in the soil. Although all the applied levels of zeolite had positive potential to immobilize
PTEs in wastewater-contaminated soil, zeolite applied at 2.00% proved most effective.

Keywords: peri-urban horticulture; irrigation water; health risks; metals remediation; toxic elements

1. Introduction

Globally, 70% of the wastewater generated is used for irrigation to agricultural crops
and contains considerably higher amounts of pollutants including potentially toxic metals
(PTEs) [1]. Contaminant is any unwanted material which causes unfavorable effects on
quality of soil, air, and water [2,3]. The PTEs have various dangerous functions in both
human and plant growth and functionality, but they can be labeled as contaminant when
their concentrations are increased above a threshold point [4,5]. The industrial segment
creates a lot of wastewater, which is ultimately released into fresh and irrigation water
channels [6–8]. As there is no proper framework for the treatment of these effluents, farmers
utilize wastewater for irrigation of agricultural fields, especially in peri-urban areas for
vegetables production. An advantage of using wastewater is that the wastewater is full
of many nutrients which promote plant growth and yield. However, in combination with
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these nutrients, wastewater also contains PTEs and other organic contaminants. These
contaminants pose serious threats to plant and human life when accumulated in excess [1,9].

Wastewaters from textile industries that contain high level of PTEs must be de-
toxified/immobilized before their adoption in agricultural fields for irrigation, to avoid their
accumulation in the soils [10,11]. Due to their human and plant health disruptions, i.e., gas-
trointestinal aggravation, and liver and kidney diseases [12,13], root damage, and reduced
plant growth and yield, wastewater containing excessive PTEs should be considered for
treatment. Numerous strategies, i.e., oxidation–reduction, flocculation, electro-coagulation,
and adsorption, as well as treatment via constructed wetlands, reverse osmosis, and use of
natural and artificial zeolites are used for the treatment of wastewater [14,15].

In comparisons with the other remediation technologies, zeolite might be more appro-
priate because of its quality to alter pH estimation of soil as it is hydrated aluminosilicate
mineral, with permeable structure, showing profitable physicochemical properties such as
cation exchanger atomic sieving, catalysis, and sorption [16]. Among various zeolite species,
clinoptilolite is the best exchanger, having an expanded cation trade limit and security
in acidic situations [17–19]. Their structure comprises a system of [SiO4]4− and [AlO4]5−

tetrahedron connected to each other’s corners by sharing oxygen particles. The substitution
of silicon (Si4+) by aluminum (Al3+) in tetrahedral destinations brings about more negative
charges and a high cation trade limit [19]. Zeolites, as common cation exchangers, are
reasonable substitutes to expel dangerous cations [20,21]. As such, clinoptilolite is by all
accounts the most effective particle exchanger and particle specific material [22,23] for
expelling and balancing out overwhelming PTEs [24,25].

Brinjal (Solanum melongena L.), also known as eggplant, is a common vegetable food
crop and widely used around the world. It is rich in folic acid, which is an integral part of
the red blood cells synthesis. It is also used to combat anemia, a disease of blood deficiency
and cancer. It supplies enough folic acid to pregnant women if daily taken. It is also low
in sodium and rich in anti-oxidants, vitamins, iron, magnesium, calcium, potassium, and
zinc [26,27]. Brinjal is commonly cultivated in peri-urban areas which are majorly irrigated
with industrial effluents containing numerous toxic elements. These toxic elements can
translocate and accumulate in the edible parts of the crops and can cause human health
risks [5]; in addition, PTEs can interfere with the plant growth, biochemistry and yield
by leaf chlorosis, stunted growth, and resulted in limited uptake of essential nutrients
and protein synthesis [28,29]. So far, no scientific study has been reported to assess the
metal-associated human health risks through metal-contaminated brinjal consumption.
This study hypothesized that the application of zeolite in agricultural soils could be a
suitable solution to mitigate the transfer of toxic element in vegetables and, therefore,
reduce the risk associated with human health. The main objectives of this research work
were to assess capability of clinoptilolite for metal remediation/ immobilization in metal-
contaminated wastewater-irrigated soils in brinjal vegetable crop and associated health
risks after consumption of metal-contaminated brinjal.

2. Materials and Methods
2.1. Collection of Soils and Amendment

Wastewater-irrigated PTEs-contaminated soil was collected from the Uchkera village,
Faisalabad (31.2732 N, 73.020 E) (a site where a wastewater treatment facility is present for
primary treatment of wastewater and has continuously irrigated the soil of the area with
industrial wastewater for more than four decades). The soil samples were collected from
the upper layer (0–15 cm). Collected samples were air-dried and sieved from 2 mm sieve,
and then physico-chemical properties and elemental composition were determined using
standard procedures before being filled in glazed pots (Table 1). Only a single artificial
zeolite type was bought from scientific store, Faisalabad, Pakistan.
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Table 1. Pre-experiment soil characteristics.

Properties Unit Value Reference

pHs - 7.8 [30]

ECe dS m−1 1.82 [31]

TSS mmolc L−1 18.2

[30]

SAR (mmol L−1)1/2 9.13

Ca2+ + Mg2+ mmolc L−1 45

Na+ mmolc L−1 13.7

CO3
2- mmolc L−1 Absent

HCO3
- mmolc L−1 40

Cl- mmolc L−1 75

Texture - Sandy loam [32]

OM % 0.77 [33]

Cu mg kg−1 86

[34]Cd mg kg−1 2.27

Ni mg kg−1 2.32

Pb mg kg−1 2.85

2.2. Treatment Plan and Experimental Set-Up

After pre-experimental analysis, the PTEs-contaminated soil was mixed with zeolite
(Z) at four different rates (0.25%, 0.5%, 1.0% and 2.0% w/w) and obtain five treatments.
These treatments were control (Z-0%), Z-0.25%, Z-0.5%, Z-1.0% and Z-2.0% with three
replicates of each treatment. The ceramics pots having 10 kg capacity were filled with
the treated soil according treatment plan and were transferred with extreme care to the
wire-house (having light (8–10 h), humidity (40–50%) and temperature (37 ◦C)). Afterwards,
these pots were irrigated to attain field capacity for seed sowing. The seeds of brinjal
variety “Shamli”, popular for its long-fruit-shape trait, were purchased from a registered
seed store named “Siddiq seed store”. Prior to sowing, the seeds were placed on a moist
filter paper for 8 h. Later, four seeds of brinjal were sown in each pot. After two weeks of
plant emergence, the plants were thinned and maintain one plant per pot. The plants were
fertilized with recommended doses of NPK nutrients at the rate of 50, 60 and 50 mg kg−1,
respectively, and other agronomic practices such as weeding, irrigation and plant protection
measures were also applied in all experimental units. Brinjal plants were allowed to grow
for a period of 100 days.

2.3. Data Collection
2.3.1. Plant Analysis

Chlorophyll contents (SPAD value) was taken after 40 days of sprouting of seedling in
the morning time of three fully expanded leaves using SPAD-502 m. Gaseous exchange
parameters (photosynthetic rate and stomatal conductance) of three healthy fully expended
leaves per replication were determined via portable narrow chambered infrared gas ana-
lyzer (IRGA, LCA-4, Hoddesdon, UK), and the average of three was reported. The brinjal
plants were harvested on the 100th day of growth by carefully clipping the plants immedi-
ate above the surface of soil using a sharp scissor and segregated into shoot, root, and fruit.
The shoot, root, and fruit of brinjal were thoroughly washed with tap water for removing
the adhesive dust and to wash away adhered PTEs in the free spaces of the root and length
of root and shoot were recorded. The fresh biomass (shoot, root, and fruit) of brinjal was
recorded and then dried (at 70 ± 10 ◦C, for 24 h) in an oven until the constant dry weight
was obtained.
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2.3.2. Enzymes Activity

The enzyme was extracted by macerating fresh fruit pulp in pre-cooled 0.2 M sodium
phosphate buffer (pH 7.0). The extract was centrifuged at 5000 rpm for 15 min [26]. The
supernatant was used for analysis of enzyme activities. Peroxidase (POD) enzyme activity
was measured using guaiacol as substrate at 470 nm. A change of 0.01 unit per minute in
absorbance was considered equal to one unit POD activity. Superoxide dismutase (SOD)
activity was assayed according to [35]. One unit of SOD activity was measured as the
amount of enzyme required to cause 50% inhibition of the nitroblue tetrazolium (NBT)
reduction measured at 560 nm. Ascorbate peroxidase (APX) activity was determined in the
presence of 2.0 mmol L−1 ascorbic acid and 2.0 mmol L−1 EDTA by measuring the decrease
in absorbance at 290 nm [36]. Catalase (CAT) enzyme activity was assayed by following
the decomposition of H2O2 at 240 nm with a UV spectrophotometer [37].

2.3.3. Plant PTE Contents

Dried plant samples were ground to a fine powder passed through a sieve (0.5 mm
mesh size) and digested in a di-acid mixture (HNO3: HClO4, 2:1) as recommended by [38].
Digested material was filtered, and 50 mL final volume was made by adding distilled water
and Cu, Cd, Ni and Pb was assessed via Atomic Absorption spectrophotometer (AAS)
(Solaar S-100, CiSA, Thermo Fisher Scientific, Cramlington, UK) equipped with respective
cathode lamp.

2.3.4. Soil Analysis

After harvesting of plants, the samples of soil were collected from each experimental
pot with the help of soil sampler. Chemical analysis of these soil samples was performed
by using protocols given in [30]. The ECe and pHs were determined using EC meter and
pH meter, HCO3

−, CO3
2−, Cl−, Ca2+ + Mg2+ were determined from the saturated soil

paste extract. Ammonium bicarbonate-diethylene tri-amine penta acetic acid (AB-DTPA)-
extractable concentrations were used as an availability index of the elements in our soils.
The available Cu contents in the soils was extracted with 1 M ammonium bicarbonate
(NH4HCO3) + 0.005 M diethylene tri-amine penta acetic acid (DTPA) solution according
to [39], using AAS.

2.3.5. Human Health Risk Assessment

The normal body weight of children and adult (male and female) were considered for
human risk assessment. Since children present higher daily intake values than the older
population since ingested PTEs are distributed in a lower body mass [40]. Values of average
daily intake (ADI) were calculated based on the trace element contents in vegetables, body
weight, and consumption habits [41], by using Equation (1). All the parameters used in the
study with their values are elaborated in Table 2.

ADI =
ED × C × IR × EF

AT × BW
(1)

Concentrations of PTEs in soil and vegetable samples from exposed and control were
analyzed for the enrichment factor (EF). Enrichment factor for TEs was calculated using
the following equation:

EF =
Ta

Tc
(2)

where Ta and Tc are the concentrations of PTEs (mg kg−1) in exposure areas and in the
control area, respectively.
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Table 2. Description of parameters and values used in the study.

Factor Description Unit Male Female Child

Cplant Heavy metal in plant mg kg−1 - - -

EF Exposure frequency day year−1 350 350 350

ED Exposure duration year 30 30 6

BW Body weight of the
exposed individual kg 66 59 18.6

AT Averaged time days 365ED 365ED 365ED

IR Vegetable intake kg day−1 0.260 0.260 0.130

Average body weight for the age group of 1–6 years children is 18.60 kg [42]. The
mean weight of age group 30 y men was 66 kg while it was 59 kg in women. Mean height
of men and women was 165.8 cm and 153.9 cm, respectively [43]. Average daily vegetable
intakes taken for children and adults (male and female) were 130 and 260 g person−1 day−1,
respectively, as reported in the literature [44]. The oral reference dose value for Cu, Cd, Ni
and Pb at 0.04, 0.001, 0.02 and 0.004 (mg kg−1 day−1) was used, respectively [41].

2.3.6. Translocation Factor

The Cd translocation factors (TF) were calculated using the following equation [45]. As:

TF =
Cs

Cr
(3)

where Cs and Cr are the metal concentrations (µg g−1) in shoot and roots, respectively.
Here, a TF > 1 indicates that the plant translocated Cd effectively from root to shoot.

2.3.7. Remediation Factor

The remediation factor (RF) of Cd was calculated using the following equation [45]:

RF (%) =
Cs × SDW
Cs × Ws

× 100 (4)

where Cs is metal concentration in shoot, SDW is shoot dry weight (g), and Ws is weight of
soil (kg) in pots.

2.4. Statistical Analysis

The data collected was subjected to summary statistics using Minitab v17.1.0., and
treatments were compared using the least significant difference (LSD) test at p ≤ 0.05. All
the illustrations were generated using Origin 2019b v9.65.

3. Results
3.1. Physiological Parameters

Maximum chlorophyll contents were recorded with Z-2.0% (46.03 SPAD value) fol-
lowed by Z-0.50% (Figure 1). Maximum stomatal conductance Z-2.0% (+39%) followed
Z-0.50% (+33%), while photosynthetic rate was found maximum in Z-1.0% (+298) compared
to the control (Figure 1). Applied zeolite significantly increase plant stomatal conductance
and photosynthetic rate. Maximum values for stomatal conductance and photosynthetic
rate were recorded with Z-2.0% (Figure 1).



Agronomy 2022, 12, 2433 6 of 15

Agronomy 2022, 12, x FOR PEER REVIEW 6 of 16 
 

 

and photosynthetic rate. Maximum values for stomatal conductance and photosynthetic 
rate were recorded with Z-2.0% (Figure 1). 

 
Figure 1. Effect of zeolite on plant physiological parameters (total chlorophyll contents, stomatal 
conductance, and photosynthetic rate). Different letters and error bars on the top of column repre-
sent significant difference p < 0.05 and standard error (SE), respectively. 

3.2. Fruit Enzymatic Activity 
Zeolite treatment significantly increases the SOD, POD, CAT and APX activity in 

fruit pulp (Figure 2). Maximum antioxidant enzyme (SOD) activity was observed in Z-
2.0%, and it was about 47% higher with respect to the control. Similarly, a 52%, 34%, and 
16% increase in POD, CAT and APX activity was observed, respectively, with the highest 
tested dose (Z-2.0%) in comparison to the control. 

 

d c
ab bc

a

c

b
ab

b
a

d
c

b

a a

0

10

20

30

40

50

60

To
ta

l C
hl

or
op

hy
ll 

co
nt

en
ts

(S
PA

D
 v

al
ue

)

Control Z0.25% Z0.5% Z1.0% Z2.0%
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Treatment

St
om

at
al

 c
on

du
ct

an
ce

(m
ol

 m
−2

 s
−1
)

Control Z0.25% Z0.5% Z1.0% Z2.0%
0

1

2

3

4

Ph
ot

os
yn

th
et

ic
 ra

te
(μ

m
ol

 C
O

2 m
−2

 s
−1
)

Treatment

d
c c

b
a

e d c

b a

e
d

c
b

a

d
c c b

a

0

2

4

6

8

10

12

SO
D

 (U
ni

ts
)

0

4

8

12

16

20

24

28

32

C
AT

 (U
ni

ts
)

Control Z0.25% Z0.5% Z1.0% Z2.0%
0

2

4

6

8

10

PO
D

 (U
ni

ts
)

Treatment
Control Z0.25% Z0.5% Z1.0% Z2.0%

0

20

40

60

AP
X 

(U
ni

ts
)

Treatment

Figure 1. Effect of zeolite on plant physiological parameters (total chlorophyll contents, stomatal
conductance, and photosynthetic rate). Different letters and error bars on the top of column represent
significant difference p < 0.05 and standard error (SE), respectively.

3.2. Fruit Enzymatic Activity

Zeolite treatment significantly increases the SOD, POD, CAT and APX activity in fruit
pulp (Figure 2). Maximum antioxidant enzyme (SOD) activity was observed in Z-2.0%,
and it was about 47% higher with respect to the control. Similarly, a 52%, 34%, and 16%
increase in POD, CAT and APX activity was observed, respectively, with the highest tested
dose (Z-2.0%) in comparison to the control.
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Figure 2. Effect of zeolite on brinjal fruit enzymatic activity. The SOD (superoxide dismutase), POD
(peroxidase), CAT (catalase) and APX (ascorbate peroxidase). Different letters and error bars on the
top of column represent significant difference p < 0.05 and standard error (SE), respectively.
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3.3. Growth Parameters of Plants

The responses of plant growth characteristics, i.e., shoot and root length, and fresh and
dry weight of shoot and root were recorded in the ranges 41.03–54.33 and 15.33–22.80 cm,
94.77–133.00 and 23.60–29.17, and 32.53–35.30 and 12.73–17.80 g pot−1, respectively (Figure 3).
These characteristics were significantly improved by the application of zeolite at different rates
to wastewater-irrigated soil. Maximum growth improvement was observed by the application
of 2% zeolite (Z-2.0%). The same treatment also increased shoot and root length significantly
by 32.41 and 48.70%, respectively, as compared to the control. Similarly, the highest shoot fresh
weight (40%) and shoot dry weight (23%) were observed with Z-2.0%, as compared to the
control. However, the difference was statistically non-significant when compared with other
treatments (Z-1.00%). The highest root fresh (35.30 g pot−1) and dry (17.80 g pot−1) weights
were also observed with Z-2.0%. Regarding brinjal fruit weight, the maximum fruit fresh and
dry weights were observed in same treatment with 19 and 16% improvement relative to the
control, respectively (Figure 3).
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weight (FFW), fruit dry weighs (FDW). Different letters and error bars on the top of column represent
significant difference p < 0.05 and standard error (SE), respectively.

3.4. Post-Harvest Soil Characteristics

Application of zeolite to metal contaminated wastewater-irrigated soil significantly
affected the soil characteristics, i.e., pHs, ECe, HCO3−, Cl− Ca2+ + Mg2+ (Table 3). Post-
harvest soil analysis revealed that pHs increased with zeolite treatment, especially in Z-2.0%,
and soil pHs increased 5.72% as compared to the control treatment. The ECe values of the
samples recorded were in the range of 1.1–1.7 dS m−1, and the highest ECe were observed in
Z-2.0%. Similarly, the soil basic ions, i.e., HCO3

−, Cl− and Ca2+ + Mg2+ increased significantly
in the range 4.53–6.61, 32.42–44.17, 68.07–76.08 and 41.69–46.07 mmolc L−1, respectively, when
treated with Z-2.00%.
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Table 3. Post-experiment soil characteristics.

Treatment pHs ECe HCO3− Cl− Ca2+ + Mg2+

Control 7.52 ± 0.00 1.16 ± 0.03 32.43 ± 0.72 68.07 ± 0.67 41.69 ± 0.07
Z0.25% 7.72 ± 0.01 1.49 ± 0.09 35.20 ± 0.75 70.10 ± 0.05 44.03 ± 0.03
Z0.5% 7.72 ± 0.01 1.57 ± 0.04 40.06 ± 0.23 74.51 ± 0.53 45.37 ± 0.20
Z1.0% 7.73 ± 0.01 1.65 ± 0.03 38.09 ± 0.45 72.31 ± 0.40 45.25 ± 0.66
Z2.0% 7.95 ± 0.02 1.73 ± 0.04 44.17 ± 0.14 76.08 ± 0.15 46.07 ± 0.05

LSD value 0.0428 0.1849 2.0072 1.6506 1.1935

Values ± SE presented in table for HCO3
−, Cl− and Ca2+ + Mg2+ are in mmolc L−1 and ECe in dS m−1.

The results clearly show that as the rate of zeolite application increased, the soil
available metal content decreased (Table 4). The treatment Z-2.0% stabilized 121, 87, 120
and 140% more Cu, Cd, Ni and Pb of wastewater-irrigated soil, as compared to the control,
respectively.

Table 4. Effect of zeolite treatments application on metal concentrations (mg kg−1) in different parts
of plant and soil.

Treatment Fruit Shoot Root Soil TF RF

Cu

Control 9.62 a 18.52 a 25.67 a 44.84 a 0.72 236
Z0.25% 9.95 a 17.31 a 22.20 b 38.19 b 0.78 265
Z0.5% 7.66 b 11.3 b 17.33 c 32.81 c 0.65 266
Z1.0% 5.34 c 10.8 b 11.82 d 26.74 d 0.91 281
Z2.0% 5.52 c 9.2 b 10.22 e 20.28 e 0.90 292

Cd

Control 0.36 a 0.47 a 0.59 a 0.78 a 0.80 236.0
Z0.25% 0.27 b 0.43 ab 0.43 b 0.77 a 1.00 264.7
Z0.5% 0.10 c 0.28 bc 0.37 b 0.66 b 0.76 266.3
Z1.0% 0.02 d 0.15 c 0.23 c 0.64 b 0.65 281.0
Z2.0% 0.01 d 0.15 c 0.17 c 0.41 c 0.88 291.7

Ni

Control 0.37 a 0.50 a 0.57 a 0.80 a 0.88 236.0
Z0.25% 0.27 b 0.42 b 0.58 a 0.80 a 0.72 264.7
Z0.5% 0.37 a 0.38bc 0.4 b 0.80 a 0.95 266.3
Z1.0% 0.18 c 0.35 c 0.41 b 0.54 b 0.85 281.0
Z2.0% 0.11 d 0.23 d 0.30 c 0.36 c 0.77 291.7

Pb

Control 0.47 a 0.66 a 0.83 a 0.95 a 0.79 236.0
Z0.25% 0.33 b 0.55 b 0.76 b 0.92 a 0.72 264.7
Z0.5% 0.26 c 0.48 c 0.53 c 0.71 b 0.90 266.3
Z1.0% 0.10 d 0.28 d 0.42 d 0.53 c 0.67 281.0
Z2.0% 0.00 e 0.22 e 0.20 e 0.40 d 1.10 291.7

Different letters indicate statistical difference among the treatments (LSD, p < 0.05).

3.5. Plant Tissue PTE Concentrations

The concentration of PTEs in roots, shoots and fruit significantly decreased with
increasing zeolite dose (Table 4). The Cu contents in plant roots, shoots and fruit were
in the range 25.67–10.22, 18.52–9.2, and 9.95–5.52 mg kg−1, respectively. The minimum
concentration was recorded with Z-2.0% treatment. With the same treatment, the maximum
decrease was recorded with respect to the Cd contents (21% and 24%) in plant roots and
shoots was recorded. The minimum Ni contents (0.3, 0.23 and 0.11 mg kg−1) in plant roots,
shoots and fruit was observed with Z-2.0%. The Pb concentration in plant roots, shoots
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and fruit varied in the range 0.83–0.2 mg kg−1, 0.66–0.22 mg kg−1 and 0.47–0 mg kg−1,
respectively, and the minimum was observed with the highest tested zeolite dose.

The translocation and remediation factors were significantly affected by the application
of increasing zeolite doses. The maximum translocation (91%) and remediation factor (292)
were recorded with Z-1.00 and Z-2.00%, respectively, in the case of Cu. The detailed
summary of the treatment effects on remediation and translocation factors on Cd, Pb and
Ni are presented in Table 4.

3.6. Human Health Risk Assessment

Average daily intake (DI) of Cu, Cd Pb and Ni via consumption of brinjal is shown in
Table 5. Our results revealed that DI decreased with an increase in the application level
of zeolite to soil. The maximum DI values was observed in children in comparison with
adults, whereas among adults, the intake rates in women were higher than men. The risk
of non-carcinogenic toxicity to children and adult residents caused by PTEs were calculated
and are shown in Table 5. The non-carcinogenic risks (HQ) decreased with the application
rate of zeolite. The estimated value of HQ was less than 1 with all treatments.

Table 5. Effect of zeolite treatment on average daily intake (ADI) of trace metals and health risk index
(HQ) under different treatments.

Treatment
DI HQ

Cu Cd Pb Ni Cu Cd Pb Ni

Children Control 0.015 0.00056 0.00073 0.00057 0.371 0.561 0.183 0.029
Z0.25% 0.014 0.00037 0.00045 0.00036 0.339 0.368 0.112 0.018
Z0.5% 0.011 0.00015 0.00038 0.00052 0.280 0.146 0.095 0.026
Z1.0% 0.007 0.00003 0.00014 0.00024 0.181 0.033 0.035 0.012
Z2.0% 0.008 0.00002 0.00000 0.00017 0.208 0.015 0.000 0.008

Men Control 0.008 0.00032 0.00041 0.00032 0.209 0.316 0.103 0.016
Z0.25% 0.008 0.00021 0.00025 0.00020 0.191 0.207 0.063 0.010
Z0.5% 0.006 0.00008 0.00021 0.00029 0.158 0.083 0.054 0.015
Z1.0% 0.004 0.00002 0.00008 0.00014 0.102 0.018 0.020 0.007
Z2.0% 0.005 0.00001 0.00000 0.00009 0.117 0.008 0.000 0.005

Women Control 0.009 0.00035 0.00046 0.00036 0.234 0.354 0.115 0.018
Z0.25% 0.009 0.00023 0.00028 0.00023 0.214 0.232 0.071 0.011
Z0.5% 0.007 0.00009 0.00024 0.00033 0.177 0.092 0.060 0.016
Z1.0% 0.005 0.00002 0.00009 0.00015 0.114 0.020 0.022 0.008
Z2.0% 0.005 0.00001 0.00000 0.00010 0.131 0.009 0.000 0.005

Parameter UL TWI TDI TDI
Guideline

values value 10 mg day−1 2.5 µg kg−1

bw−1 week−1
0.3 µg kg−1

bw−1 day−1
2.8 µg kg−1

bw−1 day−1

Reference [46] [47] [48] [49]

HQ > 1 indicates significant risk to human health, while HQ < 1 indicates that trace metals intake is not harmful.
Bw: body weight, UL: upper-level intake, TDI: tolerable daily intake, TWI: tolerable weekly intake.

4. Discussion

Post-harvest analysis of wastewater-contaminated soil revealed that properties such
as ECe, CO3

2−, HCO3− and Ca2+ + Mg2+ were significantly altered with application of
zeolite (Table 3). The ECe is directly related to ion exchange. Zeolite is the negatively
charged mineral having pores filled with K, Na, Ca, Mg and H2O molecules, allowing
for the exchange of ions and the release of water back and forth [50]. In this study, the
applied zeolite has led to an increase in soil ECe. Other researchers have also reported
the increase in ECe in zeolite amended soil [51,52]. The increase in ECe with the zeolite
treatments is attributed to the presence of mineral ions in the zeolite, as well as its salt-
holding capacity [53]. Similarly, high content of base cations such as Ca2+ + Mg2+ was also
observed in zeolite treated soil. High concentration of base cations in acidic soil amended
with zeolite was also reported [50].

Soil pH is a fundamental and essential factor that significantly influences the metal
behavior in soil and affects the effectiveness of PTEs in soil; it also affects the level of
toxicity the soil and plants face, both directly and/or indirectly [54]. In this experiment,
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increased soil pHs was observed in zeolite treated soil (Table 3). This might be possible
due to the strong alkaline pH and release of base cations [55]. It was reported that the
addition of zeolite resulted in a significant increase in the soil pH and promoted carbonate
precipitation and oxide formation, thereby reducing the quantity of toxic elements in the
soil [54]. The content of amendments added and the incubation time have a substantial
effect on the immobilization of toxic elements and the increase in pH of soil [56]. Since most
toxic elements have very low mobility under alkaline conditions, increasing the soil pH
can often remediate the contamination in soil by PTEs [57]. There are different processes
including selective adsorption, metal precipitation with oxides, hydroxides, phosphates,
and carbonates to reduce the mobility of PTEs in soil solution which increase the soil
fertility and promote the plant growth by providing the best conditions [29,58].

The results demonstrated the significant reduction in Cu availability in zeolite amended
soil (Figure 3). This might be due to increased soil pHs, CEC and high surface area with
zeolite application [59]. Similar results were also reported by [55]. The main mechanism
of action of zeolite in dropping PTEs phytoavailability is a blend of the ion exchange
properties of the zeolite and their capability to enhance soil pH [60], furthermore, the fixed
metal contaminants are either retained in the zeolite framework or precipitated as a metal
carbonate or oxide as the soil pH rises. It has been also reported by [61] that the chemical
fixation by zeolite is widely assumed to decline exchangeable toxic element contents in
polluted soil, because of its adsorption on the lattice of tectosilicate. The zeolite can fix
PTEs in the mineral clay layer of the soil by diffusion and increase the pH of the soil for a
longer time [25]. It is well documented that besides being a cation exchanger, zeolite also
serves as cation absorbent, such as PTEs, so the zeolite can reduce PTEs pollution in the
environment [61,62].

Brinjal is recommended crop for its safe growth on PTEs-contaminated soil based
on the pattern of PTEs accumulation and their distribution in edible portion of different
parts of crop plants [63]. In this experiment, the significant positive effect of zeolite, a toxic
element immobilization agent, on plant growth was noticed (Figure 1). These consequences
are compatible with the results of [64]. They suggested the zeolite for cultivation of brinjal
after observing its dual beneficial effect, the first being in terms of increased flowering,
and second possibly being to serve to hold nutrients from leaching, which may benefit
farmers by saving on fertilizer cost. Contrarily, it has been also reported that zeolite
decreased plant growth of Dieffenbachia amoena in the absence of nutrients, but increased
leaf number and stem diameter in the presence of nutrients [52]. It is possible that in
the absence of any other added fertilizer (chemical or otherwise), plants lacked all the
nutrients necessary, and under these conditions, plants had reduced height in the presence
of zeolite. However, in the present study, recommended doses of NPK were added that
might be a reason for the increased plant height, biomass and fruit weight (Figure 1). In
a study conducted on the effects of the integrated use of zeolite and organic manure on
the yield of sunflower, increased plant height, SPAD value, seed weight, and biological
yield have been observed [65]. It has been reported that the application of zeolite increased
soil chemical fertility at the beginning of barley cultivation and enhanced hydro-soluble
concentrations of the nutrients in soil that resulted in enhancement of barley yield [66],
like the response of brinjal regarding chlorophyll contents, photosynthetic and stomatal
conductance in this study (Figure 2). The addition of zeolite might reduce N loss from soil
caused by leaching, since this amendment has the capability to absorb nitrogen and release
it gradually during the growth season. Having access to sufficient N in soil increased N
absorption and led to more photosynthesis by plants [65]. It was documented that zeolite
at 5% dosage significantly enhanced chlorophyll content in the aerial surface of maize [67].

The significant decrease in the available PTEs concentration of soil, due to zeolite
application (Figure 3), consequently reduced the uptake of PTEs by plant, and thus, the
results presented less plant PTEs concentration in zeolite treatments, as compared to the
control. Correlation analysis strengthens these findings. Similarly, a reduction in Cu
phytoavailability in corn and cabbage plants with the addition of zeolite was reported
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by [20]. Additionally, it was also reported that a zeolite amendment significantly reduced
the Cd and Cu accumulation in the shoots of pakchoi [68], while a reduction in Pb, Cd, Cu,
and Zn accumulations in rice tissues, due to elevated soil pH and CEC with the application
of hydroxy-histidine with zeolite, was reported by [69].

It is summarized that zeolite is a good source of PTEs immobilization in wastewater-
contaminated soil. It not only reduced the uptake of Cu by plants but also increased the
plant growth and yield-contributing parameters. The application of zeolite also improved
the chemical characteristics of soil.

Antioxidant enzymes such as SOD, POD, CAT and APX are produced by plants
under PTEs stress to protect them from the damaging effects of chain reaction of PTEs-
produced ROS chain reactions [70]. Antioxidant enzymes in brinjal plants were enhanced
in our experiment by addition of different zeolite concentrations, compared to the control
(Figure 2). It should be noted that the positive effects were more evident in the treatment
that included 2% zeolite addition. Based on previous research, these findings may be
predicted from the results of [70], who found that biochar and chitosan application to
Cd and Ni-contaminated soils increased SOD, CAT, and APX activities in sunflower and
mung bean, respectively. The same mechanism could also be responsible in our study.
Antioxidant defense mechanisms in plants have improved as a result of the capacity of
applied amendments, i.e., biochar [71,72], to boost plant health [73]. Antioxidant activity is
boosted by chitosan capacity to reduce the formation of damaging free radicals [74] and
to promote the vital nutrients by changing cell osmotic pressure [75]. Covalent grafting
of antioxidant activity on the backbone of CH is also facilitated by the reactive functional
groups on its surface [73,75].

There was a considerable reduction in Ni, Cd, and Pb concentrations in brinjal roots,
shoots, and fruit when zeolite was applied with increasing concentrations. Shoots, roots,
and fruit treated with 2.00% zeolite showed the greatest decrease in metal concentrations.
Several studies have shown that application of zeolite in the soil greatly boosted PTEs
accumulation in the plant roots, as well as in the aerial body parts, i.e., leaves and stems; for
example, [76,77] have shown that the application of PTEs-immobilizing agents, i.e., biochar,
chitosan and zeolite, can effectively immobilize PTEs and inhibit their absorption in plants.
The higher surface area, precipitation, ion exchange, complexation and compartmental-
ization of PTEs in non-edible plant tissues might be a plausible reason for this decline in
metal concentration in different regions of brinjal plant [76,78,79]. Chelation of metallic
ions through inter- or intra-molecular binding could also be a mechanism [80].

Consuming vegetables as part of one’s diet may provide useful data on a person’s
intake of nutrients, bioactive chemicals, and food pollutants, as well as any nutritional
deficiencies or contamination they may have [41]. As, Cd, and Pb EDIs were calculated
based on the average metal content in brinjal fruit and the corresponding consumption
rate for each food type [81]. The consumption rates of brinjal for children and adults are
reported in Table 2. In terms of human exposure to PTEs, oral is by far the most common
route [82]. The studied PTEs were shown to be the most significant contributors to the
possible health risk posed by food consumption in the research region (Table 5) by the total
EDIs of Cu, Ni, Cd, and Pb from all analyzed samples. Based on these data, we conclude
that PTEs could be the major components contributing to the potential health risk via
consumption of the PTEs-contaminated brinjal fruit.

Table 5 give the THQ for the non-carcinogenic risk of the PTEs investigated in brinjal
when consumed by adults and children. In terms of health effects, the THQ estimation
approach does not give a quantitative assessment of the likelihood that a population
exposed to contaminants would suffer a negative health consequence, but it does provide
an indicator of the degree of risk. The THQ values of Cu, Ni, Cd, and Pb did not surpass
the threshold value of 1, and hence, brinjal crop production in PTEs-contaminated areas
is deemed dangerous and not advised for frequent intake. As a result, consumers have a
significant risk of non-carcinogenic hazards.
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5. Conclusions

Overall, it was concluded that zeolite is a good source of Cd, Cu, Pb and Ni immo-
bilization in wastewater-irrigated, potentially toxic elements-contaminated soils. Zeolite
not only reduced the uptake of Cd, Cu, Pb and Ni from brinjal plants but also increased
the growth and yield-contributing parameters. The application of zeolite also improved
the chemical characteristics of soil, and the trend of treatment for improving chemical
characteristics was zeolite at 2.00% > 1.00% > 0.50% > 0.25% and minimum with control.
Moreover, the application of zeolite-based treatments reduced the human health risks by
reducing potentially toxic elements uptake in the fruit of brinjal crops. Based on the fact
that zeolite could be a good source of PTEs immobilization, it should be tested for the
immobilization of a wide array of PTEs in other vegetables and dynamic environmental
conditions to test its efficacy.
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