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Abstract

Effective electricity storage solutions that decouple energy use and production are central to the green energy transition. In
particular, in the residential sector, the implementation of such solutions should boost the potential of nearly zero energy buildings
to reduce the primary energy consumption and greenhouse gases emission and towards a greater energy self-sufficiency.

The aim of this paper is to assess a climate independent scaling law for the introduction of a battery energy storage in a residential
environment. To this end, we evaluate the environmental and economic impact of the integration of a lithium-ion battery in a real
existing residential building, for different climates and for different battery capacities. The building is made of 13 apartments
and features a reversible heat pump, a photovoltaic system, and a lithium-ion battery. We model all the elements and the energy
consumption of the building and validate results against measured data.

The results show that sizing the lithium-ion battery based on the variation of the self-consumed renewable energy yields a
sustainable investment for all climates. Moreover, from a techno-economic perspective, lithium-ion batteries are better suited for
daily energy storage rather than seasonal storage. In fact, they efficiently fill the time lag between demand and production on a daily
time scale. On the other hand, lithium-ion battery costs gathers unsustainable investments for seasonal storage also considering any
foreseeable battery cost reduction. Optimized building-level battery storage cannot fill completely the temporal mismatch between
production and usage. As a consequence, different technologies (e.g. electric mobility) should be also considered to locally
consume all the energy produced by the photovoltaic.

Keywords: Electrical Storage, Lithium-Ion battery, Nearly Zero Energy Buildings, Techno-Economic Analysis, Renewable
Energy.

1. Introduction

The growing concerns about climate change, fossil fuel short-
age, and air pollution are driving the energy transition towards a
sustainable energy sector based on Renewable Energy Sources
(RES) [1]. The European Commission has set to reduce Green-
House Gas (GHG) emissions to at least 40% below the 1990
level by 2030 [2]. Furthermore, in December 2015, the 21st

session of the Conference of the Parties to the United Nations
Framework Convention on Climate Change in Paris ended with
the landmark agreement to reduce GHG emissions by 80% by
2050, to enhance the use of RES, and to improve energy effi-
ciency [3].

In this context electricity generation is becoming more dis-
tributed and multi-energy systems are increasingly popular. They
leverage on the interaction between different energy carriers
(e.g. electricity, hydrogen, and heat) to enhance the economic,
technical, and environmental performance [4–6]. Their opera-
tion is strongly based on the use of RES, whose availability is
often time and weather dependent (e.g. solar and wind power).
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This intermittent nature causes several issues to the operation
and the stability of the power system [7–10] and requires to in-
crease the flexibility of the whole energy system [11–13]. This
can be achieved by switching to “intelligent” networks (smart
grids) capable of managing and regulating multiple electrical
streams that flow in a discontinuous and bidirectional manner
[14–18], through demand side management, and through the
implementation of energy storage systems [11, 19].

The concepts of energy and time are tightly connected. In
this respect, shifting demand to match supply and reconceptual-
izing interactions between time and energy is pivotal to achieve
low-carbon energy goals [20–22]. As a consequence, the design
of new energy systems must rely on real time-varying consump-
tion data, rather than on peak or average demands to allow the
contemporary optimization of production and demand phases
[23–27]. In this scenario, load control technologies (i.e. storage
technologies) able to reshape customer load profiles with the
aim to optimize the use of RES [28] are central. Such storage
technologies still need a co-evolution of innovation, investment,
and deployment strategies [29]. This, highlights a significant
knowledge gap on techno-economic assessment of electricity
storage systems. Such analyses should draw general scaling
laws for the optimized design of electricity storage systems that
aim at optimally allocating the energy and financial resources.
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Among the different energy storage solutions, Battery En-
ergy Storage Systems (BESSs) are the most widespread tech-
nology [30–32]. Batteries are used in a wide range of appli-
cations such as energy storage, electric utility, portable devices,
and electric vehicles [30–34]. They have drawn considerable at-
tention thanks to favourable features, such as fast response, con-
trollability, and geographical independent operation [35, 36].
The integration of RES and BESSs is an effective approach to
solve the temporal mismatch between production and use, and
to perform peak shaving, load leveling, demand response, volt-
age regulation, frequency regulation, and other ancillary ser-
vices [37–41]. Batteries can also reduce the cost of electricity
in commercial buildings and residential dwellings by absorbing
and storing energy from the grid during off-peak periods and
injecting it during high-demand periods when prices are very
high [42, 43]. However, their investment cost is still high [44]
even though in the last decade the price of Lithium-Ion (Li-Ion)
batteries has fallen, and this trend is expected to continue [45].

In 2012 the contribution of buildings to the final energy
consumption in Europe was 40%, making the building stock
responsible for 36% of the total European CO2 emissions [46].
Over the years, the buildings share of the final energy consump-
tion has remained fairly stable and in 2017 it stood at around
42% [47]. Since 2007, stringent building codes and policies
caused this value to decrease slightly in residential buildings.
Conversely, the final energy consumption in non-residential build-
ings remained stable over the last decade [46]. In commercial
buildings, high consumption ordinarily occurs during the day-
time, when the PhotoVoltaic (PV) production also peaks. In-
stead, in residential buildings the consumption is usually lagged
in time with respect to PV production. As a consequence they
are excellent candidates for increasing self-consumption thanks
to the use of BESSs [48, 49]. Such considerations highlight that
it is necessary to refurbish existing buildings and to design new
ones with low energy demand, availability of RES, and electric-
ity storage [50–53]. In the last decade new policies have intro-
duced technical and regulatory measures to promote a more ra-
tional energy use in the residential compartment [54–56]. One
key is the introduction of nearly Zero Energy Buildings (nZEB)
concept as the new building target [57–61]. A nZEB is a build-
ing with a very high energy performance, where the nearly zero
or the very low amount of energy required is covered to a very
significant extent by energy from renewable sources produced
on-site or nearby [62].

In such a building environment, Li-Ion battery systems are
particularly suited to achieve high self-sufficiency, see for in-
stance [63]. Therein, three different types of batteries, includ-
ing lead acid, NaNiCl (Sodium-Nickel-Chloride) and Li-Ion,
are studied in combination with PV within the Swedish context.
Similarly, several studies focus on techno-economic analysis of
BESS in residential buildings in specific energy markets and
climates. In particular, in the Australian energy market com-
bining PV and BESS gathers a sustainable investment [64]. In
Finland, BESS is demonstrated to increase the PV optimal size
for both apartment and detached houses [11]. However, such
a result is subject to the adoption of dedicated energy pricing
policies. In the same way, for the United States energy mar-

ket sustainability of the investment of BESS combined with PV
still relies on the implementation of financial support mecha-
nisms [65]. The profitability of combining PV and BESS in
the residential environment depends on the possibility to sig-
nificantly increment renewable energy self consumption [66].
This also evidence the importance of selecting a proper control
strategy [67, 68]. The relevance of such a control strategy is
demonstrated for a multi energy system in Hong Kong [67] and
for a low energy building in China [68].

Despite site-specific studies clearly evidence the usefulness
and profitability of the BESS in the residential setting, to the
best of our knowledge, climate independent general scaling laws
are still not established. In this paper we posit the challenge
to determine such scaling laws by dissecting the behaviour of
a whole nZEB for different climatic conditions and BESS ca-
pacities. We model all the elements of the system (residential
building, reversible heat pump, PV, and Li-Ion battery). Specif-
ically, we consider the BESS performance as a function of the
State of Charge (SoC) and temperature, and its thermal man-
agement and geometry. High resolution measured energy de-
mands are only sparsely available due to the limited diffusion
of smart energy meters in residential settings and privacy con-
cerns [69, 70]. Thus, we determine the nZEB energy demand
through a thermodynamic building model validated by compar-
ison against site-specific measures.

The paper is organized as follows. The problem statement is
presented in Section 2. In Section 3 we describe the system, its
control logic, and the numerical models. Results are presented
and discussed in Section 4. Finally, in Section 5, we draw the
conclusions.

2. Problem Statement

In this paper we dissect the environmental and economic
impact of the integration of a Li-Ion battery-based electricity
storage in a residential setting (Fig. 1), for different climates
and with different battery capacities. We analyze a year of sys-
tem operation for the five different climates with a hourly time
discretization.

Electricity

Electrical Storage Electricity gridResidential Building

PV System

Heat pump

Heat

Cooling

Figure 1: Schematic representation of the main elements of the system.

We consider a building designed following the “Directive of
the European Parliament on the energy performance of build-
ing” (2010/31/EU) [71] and that meets the “Casaclima” en-
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ergy certificate [72]. It belongs to the CasaClima A energy
class (Class A for what concerns the envelope efficiency, Gold
Class for what concerns the overall energy efficiency). It can be
considered as a nZEB, and it is representative of future energy
communities, in particular in a context of distributed generation
[73]. The building is located in Viterbo, Italy, and is equipped
with energy meters that allow to validate its modeling. Its main
features are shown in Table 1. The building integrated PV (Fig.
1) utilizes 75% of the total building roof, for a peak power
Ppeak = 38.6 kWp . A 42 kW centralized reversible heat pump
system provides cooling and heating energy (Fig. 1). Notably,
such a system converts heat and cooling loads into an electricity
demand, and the nZEB requires no fuels.

Feature Value Unit of Measure
Surface 1314 m2

Floors 6 –
Apartments 13 –
Roof Surface 263 m2

Table 1: Relevant properties of the selected building reported in the
“Casaclima” energy certificate.

Electricity is stored in Li-Ion pouch cell batteries (i.e. those
used in the Nissan Leaf car) whose main characteristics, ac-
cording to the IEC 62660 − 1 [74], are shown below in Table
2. Battery capacity is varied by changing the arrangement and
number of cells.

Feature Value Unit of Measure
Rated capacity 56.3 Ah
Nominal voltage 3.65 V
Lenght 261 mm
Width 216 mm
Thickness 7.91 mm
Mass 914 g
Energy density 224 Wh/kg

Table 2: Relevant properties of the Li-Ion pouch cells, according to
IEC 62660 − 1 [74].

Environment temperature influences heating and cooling en-
ergy demands and, consequently, the interaction between the
PV, the battery, and the electricity grid. To dissect such an in-
fluence, we consider five different climates, according to the
International Energy Agency (IEA) classification [75]: Cold,
Heating based, Moderate, Cooling based, and Hot. The IEA
classifies the climatic conditions according to the total number
of Heating Degrees Days (HDD) and Cooling Degrees Days
(CDD) per year, as reported in Table 3. Therein, we also report
a representative European city for each climate.

3. Modelling and Description of the system

3.1. Energy fluxes
The system bidirectionally interacts with the electricity grid

as evidenced in Fig. 1 and 2. The load is first satisfied by the

Climatic Zone HDD [◦C] CDD [◦C] City
Cold ≥ 2000 ≤ 500 Warsaw (Poland)
Heating based ≥ 2000 [500, 1000] Viterbo (Italy)
Moderate ≤ 2000 ≤ 1000 Malaga (Spain)
Cooling based [1000, 2000] ≥ 1000 Athens (Greece)
Hot ≤ 1000 ≥ 1000 Larnaca (Cyprus)

Table 3: Heating and Cooling Degrees Days and representative cities for each
IEA climatic zone [75].

PV system. When its production is larger than demand, the
surplus energy is sent to the battery and, once its maximum SoC
is reached, to the grid. If the building consumption is greater
than the PV production, the necessary energy is first drawn from
the battery. When it is discharged, the grid feeds the required
power.

PV production ≥ load consumption
Yes No

Battery is full

Feed PV energy
into the grid

Load Battery with
remaining PV energy

PV energy remaining

Yes No

Yes

Yes No

Yes

Battery is empty

Use stored energy
for remaining loads

Purchase energy
from the grid

Loads still need energy

PV energy remaining Loads still need energy

Figure 2: Representation of the nZEB energy fluxes control logic.

3.2. Residential Building

We model the building through the “EnergyPlus” software
[76]. It uses a thermodynamic approach based on energy and
mass balance equations [76]. The building can be divided into
different zones based on their usage and required temperature.
The model inputs are: (i) the geometry of each building zone;
(ii) the envelope properties; (iii) the activities (e.g appliances
and lighting schedule) related to each zone; (iv) the tempera-
tures that must be guaranteed in each zone; (v) the characteris-
tics of the heat pump. Finally, a Typical Meteorological Year
(TMY) provides all the meteorological data for each location.
The outputs are the hourly electricity and HVAC energy de-
mands for each building zone for a calendar year.

Apartments require electricity for lighting, appliances, and
HVAC. Fig. 3 shows the lighting and appliances consumption
of an apartment (uel) calculated through EnergyPlus for one
week. On weekdays, it shows a repetitive daily trend with a
peak in the morning and one in the evening. Weekends show
three peaks per day: one in the morning, one at lunchtime,

3



and one in the evening. The morning peak occurs earlier on
weekdays than on weekend, as tenants get up earlier to go to
work. On weekends, tenants spend more time at home and con-
sume more energy, as arguable from the lunchtime peak and
the longer duration of the evening peak compared to weekdays.
The uel time trace consistently repeats for all weeks of the year
being excessively repetitive compared to real energy demands.
Moreover, all the apartments have the same uel.

0 20 40 60 80 100 120 140 160
0
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1.5

Time [h]

u
e
l
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]

Weekdays Weekend

Figure 3: Weekly appliances ad lighting consumption (uel) of an apartment in
the building.

To gather a more realistic demand we refer to the electricity
demand of the ith apartment:

u∗el,i(t) = uel(t) + σi(t) , (1)

where σi(t) is a Gaussian white noise and t is time. Such a
procedure does not impact the total energy consumption as σ
has zero average. We estimate the amplitude of σi from the
electricity consumption data reported in [69]. Specifically, we
decompose each consumption profile (u) as:

u(t) = ū(t) + u′(t) , (2)

being ū(t) the phase average:

ū(t) =
1

7

6∑
0

(u(t) + u(t+ 24)) . (3)

Fig. 4 reports the consumption deviation from phase average
(u′(t)) relative to the data in Fig. 1 and 9 of [69]. We assume
that the amplitude of σi equals max(u′(t)) = 0.6 kW. The re-
sulting u∗el,i(t) is exemplified in Fig. 5.

We add the HVAC consumption to obtain the total electric-
ity demand of each apartment (utot,i) :

utot,i(t) = u∗el,i(t) +
uh,i(t)

COPh
+
uc,i(t)

COPc
, (4)

where uh,i and uc,i are the heat and cooling demands respec-
tively, while COPh and COPc are the heat pump Coefficients
Of Performance for heating and cooling operations, respectively.
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Figure 4: Consumption deviation from phase average relative to (a) the data in
Figures 1 of [69]; (b) the data in Figures 9 of [69].
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Figure 5: Modified weekly appliances ad lighting consumption (u∗el,i) of an
apartment in the building.

Finally, the total electricity demand (utot) is the sum of all
the utot,i and of the lighting consumption of the common areas
of the building.

The obtained energy demand is validated for the heating
based climate. Table 4 compares the model results to measured
data and to the “Casaclima” energy certificate requirements for
the yearly consumption of electricity for appliances and lighting
(Uel) , heating (Uh) , and cooling (Uc) .

Building Model Measured Data “Casaclima” Data
Uel [kWh] 42856 46319 [77] 38000
Uh [kWh] 7099 6013.3 6574
Uc [kWh] 15426 15898 //

Table 4: Consumption data obtained, measured, and reported in the
“Casaclima” energy certificate for the residential building in the Heating based
climate.

Measured data forUel are not available for the present build-
ing. Yet, the obtained value is consistent because it is included
between the consumption reported in the “Casaclima” energy
certificate and the one reported in [77] for a similar residential
building (with the same number of apartments). Uh is slightly
higher than the measured data and that of the “Casaclima” cer-
tificate. Uc is the same as that measured in the residential build-
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ing. The “Casaclima” certificate, does not report data for Uc.
PV production (Ppv) , is estimated through the “PVGIS”

platform for each considered locations [78].

3.3. Battery

The battery is made of Li-Ion pouch cells, whose charac-
teristics are shown in Table 2. We model the cell through the
zero-th order equivalent circuit presented in [79] (Fig. 6).

VLVoc

I

R0I

R0

discharge

charge

Figure 6: Zero-th order electrical circuit model of the battery [79].

This model demonstrated to be adequate for estimating the
losses that occur during battery operation [80, 81]. We assume
that at time t the current flowing in and out of the battery termi-
nals (I) , the battery temperature (T ) and the SoC are known.
For the battery charging process I is negative. Conversely, for
the discharge process it is positive. The battery load voltage
(VL) is defined as:

VL(t) = ns[Voc(t)−R0(t)I(t)np] , (5)

where ns is the number of cells arranged in series, np is the
number of cells arranged in parallel, Voc is the open-circuit volt-
age, andR0 is the equivalent resistance of the battery. R0 varies
as a function of the temperature and of the SoC (Fig. 7). The
effects of temperature on all the other parameters are neglected.
For Voc, this assumption is supported by experimental results
[82], as evidenced in Fig. 8. The internal resistance of the cell
(Ri) is

Ri(t) = ΩcellR0(t) , (6)

being Ωcell its volume. The heat generated per unit volume
(qgen) is determined through eq. 7.

qgen(t) = Ri(t)
I(t)2

Ω2
cell

− I(t)

Ωcell
T (t)

∆S(t)

F , (7)

where F = 96485 C/mol is the Faraday constant and ∆S is
the entropy variation that is calculated as a function of the SoC
through the experimental formulations presented in [83] and re-
ported in eq. 8.
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Figure 7: Equivalent resistance of the battery as a function of the temperature
and of the SoC.
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Figure 8: Experimentally validated open-circuit voltage curves as a function
of the SoC for different temperatures [79].

∆S(t) =



99.88 SoC(t)− 76, 67 if
0 ≤ SoC(t) ≤ 0.77

−30 if
0.77 < SoC(t) ≤ 0.87

−20 if
0.87 < SoC(t) ≤ 1

(8)

The current I(t+ dt) is obtained as

I(t+ dt) = ±VL(t)−
√
VL(t)2 − 4Pbatt(t)R0(t)

2R0(t)
, (9)

where Pbatt is the electrical power flowing in or out of the bat-
tery. The temperature of the battery T (t+ dt) is

T (t+ dt) = T (t)
qgen(t)− qconv(t)

Ωbatt

cpcell
ρcell

, (10)

where cpcell
is the specific heat capacity, ρcell is the density of

the Li-Ion cell, Ωbatt is the volume occupied by the cells within
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Figure 9: Total building energy consumption as a function of time for (a) Cold climate; (b) Heating based climate; (c) Moderate climate; (d) Cooling based climate;
(e) Hot climate.Numerical data can be found at 10.5281/zenodo.5816951.
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the battery pack, and qconv is the heat exchanged by natural
convection at the battery surface (A) . Specifically,

qconv(t) = hA[T (t)− T∞] , (11)

being h the convective coefficient and T∞ is the environment
temperature. Leveraging on the geometry of the Nissan Leaf
battery pack [84], we calculate A assuming an effective pack
volume equal to 4 Ωbatt. We estimate the SoC(t+ dt) through
the following eq. 12

SoC(t+ dt) = −I(t+ dt)

Qnom
ηc + SoC(t) , (12)

where ηc is the Coulomb’s efficiency [85] and Qnom is the bat-
tery nominal capacity that varies as a function of the number
of cells and their arrangement. To ensure correct operation and
long battery life, and according to [86], companies like Hitachi,
Saft and Solom recommend limiting the SoC variation to the
range 0.1 < SoC < 0.9.

The model is implemented in the Matlab Simulink compu-
tational environment. Each simulation requires few seconds on
a state-of-the-art desktop computer (intel-i7 8th generation, 16
Gb RAM).

4. Results and discussion

4.1. Results

Table 5 reports the relevant consumption properties for each
climate. In literature, the total annual energy consumption per
unit area (ua) is often retrieved through building simulation
models implemented in EnergyPlus, and ranges from a mini-
mum of 30.24 kWh/m2 [87] to a maximum of 88.67 kWh/m2

[88]. We comment that, our results, are consistent with this
range for all the considered climates.

Climatic Zone Uel

[kWh]
Uh

[kWh]
Uc

[kWh]
ua

[kWh/m2]
Cold 42856 38028 3886 64.51
Heating Based 42856 7099 15426 49.76
Moderate 42856 813 1567 34.42
Cooling Based 42856 2132 28486 55.92
Hot 42856 820 37779 61.99

Table 5: Building energy consumption for each climate.

Fig. 9 shows utot as a function of time for the five consid-
ered climates. We observe that in the cold climate the highest
consumption is in winter whereas in the hot climate it is in the
summer and at the beginning of the fall period. The heating
based and cooling based climates exhibit similar trends and air
conditioning during the summer is a relevant energy expendi-
ture in both cases. In the heating based climate, consumption
in the winter period is, as expected, higher than in the cool-
ing based climate. Finally, for the moderate climate demand
is constant throughout the year without significantly dominant
periods unlike the other four.

Table 6 reports the relevant model results for the photo-
voltaic system. Therein, the renewable energy penetration fac-
tor is defined as F = Epv/Utot, where Utot = Uel +Uh +Uc .
We comment that F < 1 for all climates, except for the moder-
ate one. For this particular type of climate, Epv exceeds Utot.

Climatic Zone Epv [kWh] F Pmax [kW]
Cold 40699 0.48 32.91
Heating Based 57434 0.88 32.72
Moderate 65856 1.46 34.75
Cooling Based 62404 0.85 34.30
Hot 64832 0.80 33.25

Table 6: Relevant properties of the PV system as a fucntion of climate.

For each climate we study the annual behavior of the system
for n = 12 different battery capacities: Qnom,i = [0 kWh (no
battery), 40 kWh, 50 kWh, 60 kWh, 70 kWh, 80 kWh, 100 kWh,
120 kWh, 140 kWh, 160 kWh, 215 kWh, 270 kWh]. Specifi-
cally, we seek to assess the optimal capacity of the BESS to
promote the local self-consumption of the PV energy by fill-
ing the time lag between demand and production. To this aim,
Fig. 10(a) represents the self-consumed energy (Es) , that is the
energy produced by the photovoltaic system effectively used to
satisfy the consumption of the residential building, as a function
of the relative battery capacity Θ , defined as

Θ =
Qnom

Pmax
, (13)

being Pmax the maximum power of the PV. Note that Pmax

differs from the Ppeak (Table 6).
Es is a significant parameter both from an energy and sys-

tem point of view. In fact, it should be maximized to enhance
the value of locally produced energy, to minimize grid issues re-
lated to renewable energy sources fluctuations, and to minimize
energy losses. As expected, the cold climate has the lowest Es,
having the lower Epv . Conversely, the hot climate being char-
acterized by a highEpv and a high Utot has the highestEs. The
moderate climate has the highest Epv but also the lowest Utot.
Therefore its Es is relatively low.

Despite in Fig. 10(a) all the curves relative to different cli-
mates qualitatively exhibit the same trend, the different max(Es)
associated to each climate hinders a general analysis of the bat-
tery electricity storage impact.

The same results are reported in Fig. 10(b) through a diffe-
rent parameter space that gathers more insights into the BESS
optimal sizing. Specifically, we define the relative variation of
self-consumed energy (λ) as:

λi = 100× Es(Qnom,i)− Es(Qnom,i−1)

Epv
. (14)

Notably, in Fig. 10(b), the patterns relative to all climates col-
lapse on the same trend allowing a general analysis of the bat-
tery storage optimal sizing and operation. For all the climates,
λ is a decreasing function of Θ. On average, λ ' 20% for
Θ = 1.2 h. Such a figure suddenly drops to λ ' 5% for 1.5 h
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Figure 10: (a) Self-consumed energy as a function of Θ; (b) λ as a function of Θ.

< Θ < 3 h. After a relatively flat pattern for 1.5 h< Θ < 3 h, λ
reduces to negligible values for Θ > 4 h. In summary, Θ > 4 h
is not recommended in terms of capacity of the battery stor-
age to increase the renewable energy self consumption while
Θ = 3.5 h can be safely considered an energy-system optimal
solution. As a consequence, BESS is suitable to fill the daily
temporal discrepancy between production and demand. Con-
versely, seasonal electricity storage would require much larger
Θ not gathering significant benefits in terms of self-consumed
renewable energy. Fig. 10(a) shows that Es reaches a plateau
as Θ increases. For all climates, such a plateau is belowEpv ev-
idencing that a portion of the locally produced renewable elec-
tricity is always fed to the grid (even for large Θ). Such an en-
ergy varies between 4200 kWh (cold climate) and 16500 kWh
(moderate climate) and could be stored for later use by exploit-
ing other storage systems.

In 2020, the average cost of the electricity withdrawn from
the grid in Europe, was ce = 0.2134e/kWh , including all
taxes and levies [89]. Being Cw the total yearly cost of energy
withdrawn from the grid, we define γ as:

γ = 100× Cw(Qnom,i)− Cw(Qnom,i−1)

Epvce
(15)

Fig. 11(a) reports γ as a function of Θ showing a similar trend
compared to λ (Fig. 10(b)). Also in this case, γ ' −20% for
Θ = 1.2 h then the curves flatten almost immediately around
zero after a short plateau around −5%. In 2010, Li-Ion bat-
tery pack prices were above 1100 $/kWh and have fallen to
137 $/kWh in 2020 (89% reduction in real terms) [90]. This
is equivalent to cb = 112.65e/kWh , according to the 2020
reference exchange rates [91]. By 2023, the average prices
will be close to 100 $/kWh, according to the latest forecast by
BloombergNEF (BNEF) [90]. In this economic analysis that
focuses on the interaction between residential building, battery,
and grid, we assume that the energy fed into the grid is not paid
for. In fact, its economic value is dominated by country-specific
subsidiary mechanisms that would hinder a general analysis.
Moreover, battery energy storage system should have the objec-

tive to maximize the self-consumption of locally produced re-
newable energy. Such an objective would be put in background
by very generous subsidiary mechanism for the electricity even-
tually sold to the grid.

To evaluate the feasibility of the BESS investment, we ana-
lyze the Pay Back Period PBP :

PBP =
Ii
Sa

, (16)

where Ii = Qnom cb is the initial investment for the battery and
Sa is the annual saving due to the reduction of the energy with-
drawn from the grid generated by the BESS. Fig. 11(b) shows
PBP as a function of Θ for all the climates. The moderate cli-
mate has the lowest PBP while the cold climate has the high-
est one. The other three climates have approximately the same
PBP. We observe that PBP grows almost linearly for Θ > 2 h
because the initial investment for the battery dominates com-
pared to Sa. For Θ ' 3.5 h, PBP is between 2.5 years (mod-
erate climate) and 4.7 years (cold climate). Therefore, using λ
curves to optimally size the battery returns a sustainable invest-
ment for all climates. Conversely, using the BESS for seasonal
storage is unsustainable either with current batteries costs nor
with those reasonably foreseeable in the short-medium term.

4.2. Discussion

Besides determining the optimal techno-economic size of
the battery, our methodology allows to dissect its operation as a
function of the climatic conditions.

We first consider the average BESS State of Charge (SoCm)
as an indicator of the system utilization factor. Comparing Ta-
ble 7 to Fig. 11(b) we observe that SoCm correlates with the
climatic variation of PBP. Specifically, the pay back period is
inversely proportional to SoCm. Cold and Moderate climates
have the lowest and highest SoCm, respectively. This is coher-
ent with their PBP trends (Fig. 11). Conversely, heating based,
cooling based, and hot climates have similar SoCm and their
pay back period curves collapse on the same pattern (Fig. 11).
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Figure 11: (a) γ as a function Θ; (b) PayBack Period as a function of Θ.

Such an analysis supports the conclusion that, for nZEB appli-
cations, BESSs are not suitable for seasonal storage. In fact,
long term storage requires large capacities but the SoCm de-
creases as Qnom increases, consequently yielding a larger pay
back period. Similar results are obtained in [64] that shows
that the investment cost steadily rises with battery size, and that
PBP is shorter for smaller capacity systems. In addition to this,
our results provide a general criterion for the techno-economic
optimization of the BESS capacity.

Climatic Zone SoCm Es/Utot

Cold 0.29 0.41
Heating based 0.37 0.76
Moderate 0.53 1.00
Cooling based 0.39 0.73
Hot 0.40 0.68

Table 7: Average annual State of Charge and renewable electricity self con-
sumption for Θ = 3.5 h.

The pay back period also correlates to the share of the build-
ing demand fulfilled by local RES, Ξ = Es/Utot , (Tab. 7) as
highlighted in [66]. Therein, it is shown that BESSs are highly
profitable when the combination between the supply and the de-
mand allows a significant increase of energy self-consumption.
Similarly, we found that larger Ξ positively impact the PBP
(Tab. 7). The imbalance between PV production and building
demand :

D = |Ppv(t)− utot(t)| , (17)

largely determines the battery operation, the λ and γ values,
and, finally, the battery optimal capacity. D exhibits the same
frequency histogram for all the climates (Fig. 12). As a con-
sequence, the temporal mismatch between the Ppv and utot is
similar for all the climates, despite they have different F val-
ues (Tab. 5). All diagrams exhibit a major frequency peak for
D ' 3 kW generally followed by a lower peak for 10 kW <
D < 15 kW. This, explains the patterns reported in Fig. 10
and 11 suggesting also that F has a minor impact on the BESS

operation. In fact, the optimal sizing of the battery is related
to the temporal mismatch between Ppv and utot, and by the D
frequency diagram. On the contrary, F compares the total en-
ergy produced by the renewable energy sources to the nZEB
yearly demand, but does not provide information nor on their
instantaneous difference nor on their discrepancy in time.

To this end, Fig. 13 shows the SoC as a function of time
for all the climates and for Θ = 3.5 h. Generally, the battery is
most likely to reach a high state of charge in transitional seasons
when utot is commonly lower than Ppv (Fig. 9). Specifically, in
cold climate, the BESS is discharged for all winter and part of
fall and spring, when the SoC is steadily about 10% and without
significant cycling (Fig. 13(a)). In the rest of the year, the SoC
exhibits a clear daily cycling with relatively large values during
the central part of the day. In fact, in this climate, uh prevails
over the other demands causing a large energy demand in the
colder periods (Tab. 5). As a result, the battery is unused for
about 100 days per year, concentrated in colder seasons. This
further explains why the cold climate has the largest PBP: the
low SoCm results from a relatively long period of BESS disuse
(about 1/3 of the year), rather then from and average low SoC.
As a consequence the pay back period is 1/3 longer than the
average of other climates (Fig. 11(b)).

In heating based climate (Fig. 13(b)), the BESS has a steadily
low SoC only for less than 30 days during summer. For the rest
of the year there is a clear daily SoC cycling, indicating that the
battery is effectively used to match photovoltaic production and
nZEB demand. The highest SoC occurs during fall and spring,
when it generally varies between 50% and 90%. In winter the
state of charge is lower, in particular during late night and be-
fore noon. However, during such a cold season, the SoC varies
between 10% and 90% showing a deeper cycling compared to
warmer seasons. Only during transitional periods, SoC is con-
sistently high at the evening, and energy is transferred to the
following morning. The summer disuse period, causes such a
climate to have the second longest PBP (Fig. 11(b)).

In moderate climate the BESS has almost the same behavior
throughout the whole year (Fig. 13(c)). It is charged during the
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Figure 12: D Frequency histograms: (a) Cold climate; (b) heating based climate; (c) moderate climate; (d) cooling based climate; and (e) hot climate.

central hours of the day, reaching high state of charge and then
discharged in the evening and during the morning. The SoC
cycles between 35% and 90% during hot and transitional sea-
sons, and between 10% and 90% during cold periods. At night,
generally, SoC > 40% and residual energy is used during the
subsequent morning. As a consequence the minimum state of
charge locates at late morning (just before noon). This is partic-
ularly evident for the colder periods, when the PV production
is lower in particular at morning.

In cooling based climate, the BESS is always used. In fact,
even during summer, when SoC < 40% for about 60 days, Fig.
13(c) evidences daily a SoC cycling. State of charge is always
maximum after noon. During transitional seasons, residual SoC
in the evening (SoC > 50%), is used to satisfy the demand in
the morning. Conversely, during summer, at night the battery is
already completely discharged due to the large cooling energy
demand (Fig. 9). Cold periods, exhibit a more variable behav-
ior where SoC at the evening varies between 10% and 40%.
Overall, such a battery usage pattern returns the second shorter
pay back period (Fig.11(b)).

Hot climate exhibits a SoC pattern similar to cooling based
climate. Yet, the hot season is much longer and the state of
charge remains below 40% for about 100 days. This reduces
the effectiveness of the battery and yields a longer PBP, similar
to that of the heating based climate.

SoC patterns show that the BESS never consistently charges
during one season and discharges during another. Rather, it is
always characterized by a daily state of charge cycling. This
is consistent with and supports the results of Fig. 10(b) and
11(b). Therein, Θ = 3.5 h was identified as the optimal techno-
economic size for the battery that qualifies as a daily storage
solution for nZEB (see also [63, 64] for similar conclusions). In
fact, the BESS allows matching the PV production and nZEB
demand within a day (Fig. 13). Notably, such optimized battery
storage increases the percentage of the nZEB energy consump-

tion supplied by RES by roughly 50%. Similar results are also
reported in [67] for different RES scenarios in typical high-rise
building in Hong Kong. Moreover, our results allow analyz-
ing the BESS impact the RES consumption share for diverse
climates. Specifically, the hot climate shows the largest incre-
ment (56%), the cold, heating based and cooling based climates
are all close to 50%, whereas the moderate climate exhibits the
lowest one (35%). In the moderate climate, the low increment
is explained considering that for Θ = 3.5 h PV already com-
pletely fulfill the energy demand.

Results show that building level electricity storage cannot
completely match production and demand, even when F < 1.
Other technologies (i.e. grid or sub-grid level storage) are re-
quired to further increase the self consumption share of the lo-
cally produces renewable energy. Electric mobility is one of
such technologies. The Nissan Leaf consumes 20.6 kWh/100 km
[92]. In Europe, the average daily distance traveled by a car
is about 33 km [93], that results in an average energy required
to recharge a car of about 2481 kWh per year. Therefore, the
PV energy that cannot be locally used, could be exploited to
fully recharge from a minimum of 2 vehicles (cold climate) to a
maximum of almost 7 vehicles (moderate climate). The emis-
sion limits for a EURO 6 diesel vehicle are gCO2

= 95 g/km
[94], gCO = 0.5 g/km [95], gNOx = 0.08 g/km [95], gPM =
0.005 g/km [95]. Thus, this solution would avoid the release
into the atmosphere of a minimum of aboutGCO2

= 1945 kg/year
,GCO = 10 kg/year,GNOx

= 1.6 kg/year,GPM = 0.1 kg/year
(cold climate) to a maximum of about GCO2

= 7815 kg/year,
GCO = 41 kg/year, GNOx

= 6.6 kg/year, GPM = 0.4 kg/year
(moderate climate). Vehicle energy storage, can be effectively
integrated into the nZEB as demonstrated in [96].
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5. Conclusions

In this paper we assess a climate independent scaling law
for the optimization of a BESS in a residential environment.
We evaluate the environmental and economic impact of the in-
tegration of a Li-Ion battery based electricity storage in a real
existing nZEB, for five different climates and for different bat-
tery capacities. We optimize the system control in order to
maximize the share of self consumed renewable energy for all
configurations. We model the demand of the residential build-
ing for each climate through the “EnergyPlus” software. We
determine the PV production with the “PVGIS” platform. In
addition, we model the Li-Ion battery trough the zero-th order
equivalent circuit presented in [79]. Consumption data are val-
idated against measured energy demands.

We leverage on such data and models to carry out a techno-
economic analysis of battery integration for five different cli-
mates and for twelve different battery capacities. We evaluate
the self-consumed energy, his relative variation and the relative
variation of the cost of energy withdrawn from the grid, as a
function of the relative battery capacity. These representations
correlate all the most significant energy quantities of the plant.

The results highlight that a relative battery capacity 1.5 h
< Θ < 3.5 h is the best solution from an energy and econom-
ical point of view. We observe that the selected design crite-
rion yields a PBP between 1.8 years (moderate climate) and
4.7 years (cold climate). In conclusion, such an investment is
sustainable and gathers significant advantages both on an en-
ergy and environmental level, for all the climates analyzed.

The methodology is also used to dissect the hourly opera-
tion of the optimized battery. This analysis, demonstrates that,
in the nZEB scenario, the BESS qualifies as a daily storage sys-
tem. In fact, allows matching the photovoltaic production and
building consumption on a daily basis. Conversely, the battery
never consistently charges during one season and discharges
during another not even when Ξ < 1 and Es < Epv . This high-
lights the possibility/necessity to combine BESSs with different
technologies, possibly grid or sub-grid level storage. Electric
vehicles could effectively be one of such technologies.

In our vision, the presented framework is a valuable tool
for the preliminary design of batteries in buildings. On the one
hand, the design of such systems should leverage on instanta-
neous energy consumption and production data. On the other
hand the scaling laws presented in Fig. 10 and 11 greatly sim-
plify BESSs sizing requiring only the maximum renewable en-
ergy sources production as input. Designing BESSs according
to the results herein presented yields both a sustainable invest-
ment and an effective solution in terms of RES exploitation and
limitation of grid issues. Moreover, the battery and nZEB mod-
els, are valuable tools for policy makers to determine pricing
policies that optimize specific objective functions such as to
maximize the renewable energy sources exploitation. A fur-
ther feasible application is utilizing the proposed battery model
for the design of the battery. In fact, such model allows select-
ing the number of the cells, their connection (number of cells
in parallel and in series), the battery volume, and cooling sur-
face. To this end, the model could be ameliorated by imple-

menting a more detailed thermal management. So far, battery
self-discharge has been discarded. Its impact on the present
results are negligible due to the low storage duration. How-
ever, such a phenomenon should be considered for longer (i.e.
seasonal) storage. Finally, our results leverage on a rule based
strategy for system control. Using an optimized strategy could
further improve the framework effectiveness.
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