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A B S T R A C T   

In front of climate change scenarios and global loss of biodiversity, it is essential to monitor the structure of old- 
growth forests to study ecosystem status and dynamics to inform future conservation and restoration pro
grammes. We propose an Unmanned Aerial Vehicle (UAV)-based framework to monitor fine-grained forest top 
canopy structure in a primary old-growth beech (Fagus sylvatica L.) forest in Pollino National Park, Italy, which 
belongs to the UNESCO World Heritage (UNESCO WH) serial site “Ancient and Primeval beech forests of the 
Carpathians and other regions of Europe”. Canopy profile, gap properties and their spatial distribution patterns 
were analysed using the canopy height model (CHM) derived from UAV surveys. Very high-resolution ortho
mosaic images coupled with direct field measurement data were used to assess gap detection accuracy and CHM 
validation. Forest canopy properties along with the vertical layering of the canopy were further explored using 
second-order statistics. The reconstructed canopy profile revealed a bimodal top height frequency distribution. 
The upper canopy layer (h > 14 m) was the most represented canopy height, with the remaining 50% split 
between the medium and lowest layer; 551 gaps were identified within 11.5 ha. Gap size varied between 2 m2 

and 353 m2, and 19 m2was the mean gap size; the gap size-frequency relationship reflected a power-law 
probability distribution. About 97 % of the gaps were <100 m2 in size, showing a significant tendency to 
cluster. Most gaps were located in the upper and medium canopy layers; however, the highest relative gap area 
was found in the lowest layer. These results confirmed the high natural integrity of the ecosystem processes that 
distinguish the old-growth beech stands in respect to managed woodlands. Our findings demonstrate that the 
low-cost UAV-DAP (Digital Aerial Photogrammetry) workflow has the potential to generate realistic old-growth 
forest canopy attributes at a very fine scale. The proposed protocol can be adopted for monitoring the structural 
dynamics of high-value natural forest ecosystems as in the case of UNESCO WH sites or other old-growth stands. 
This approach is also helpful for mapping and deriving spatially explicit canopy structure information over 
confined forest areas and determining where conservation actions should be directed to preserve or restore 
natural ecosystem function.   

1. Introduction 

As climate change intensifies and biodiversity loss accelerates (Erb 
et al., 2018; García-Vega & Newbold, 2020), understanding primeval 

and old-growth forests’ structural dynamics is of great importance from 
both a conservation and management perspective (Feldmann et al., 
2018, 2020). Actually, old growth structure and dynamics constitute a 
benchmark for evaluating the impacts of man-induced disturbances, e.g. 
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how close-to-nature is the forestry at work. Such close-to-nature forestry 
can therefore contribute to the mitigation of the effects of climate 
change and reaching biodiversity conservation targets. Stand structure 
is a direct result of long-term, interacting ecological factors that can 
affect tree mortality, regeneration and growth dynamics. Natural dis
turbances can create openings in the forest canopy (i.e., gaps), initiating 
different growth patterns and processes, dependent on disturbance 
ecology. Gaps generated by tree falls are the dominant disturbance 
regime in many forest ecosystems, driving the composition and abun
dance of stand regeneration (Runkle, 1981; Brokaw, 1982). The derived 
structural complexity found in forests are essential predictors of biodi
versity (Lindenmayer et al., 2000; Oettel & Lapin, 2021). Thus, under
standing the vertical variation of canopy height (Müller & Brandl, 
2009), canopy cover (Smith et al., 2008), and forest gaps (Zellweger 
et al., 2013, 2019) provide essential information on forest dynamics in 
secondary old-growth forests. Furthermore, gap dynamics in old-growth 
stands represents an important benchmark for defining nature-driven 
management to restore native biodiversity by emulating old-growth 
properties within human-influenced or traditionally managed forests 
(Seymour et al., 2002; Solano et al., 2021a). 

European beech (Fagus sylvatica L.) forests represent one of the most 
prevalent forest types in Europe (Packham et al., 2012). Due to 
anthropogenetic pressure thousands of years ago (Munteanu et al., 
2015; Parviainen, 2005), the dynamics of primeval beech forests in 
western Europe have been overlooked, and few scattered relicts of 
natural beech forests remain (Hobi et al., 2015a). Thus, it becomes 
increasingly important to monitor old-growth beech ecosystem integrity 
and functionality especially as climate change intensifies. Assessing the 
structural properties of old-growth beech forests can provide critical 
information for managing beech forests sustainabily at the landscape 
level and for detecting and mapping potential primeval beech forests 
(Chiarucci & Piovesan, 2020). 

However, despite a wide range of studies about disturbances in 
beech-dominated forests (Asenova et al., 2019; Bagaram et al., 2018; Di 
Filippo et al., 2017; Feldmann et al., 2018; Kenderes et al., 2008; Kho
daverdi et al., 2019; Petritan et al., 2013; Pie & Schreiber, 2016), it is 
challenging to compare results and draw conclusions because of varying 
methodologies. The development of a translatable method based on a 
technologically advanced approach to monitor structural dynamics is 
needed. 

Gap size and spatial distribution are the most frequently mapped 
parameters across various terrestrial (Hobi et al., 2015b; Stepper et al., 
2014) and remote sensing surveys (Getzin et al., 2014). Between these 
two approaches remote sensing analyses enable the user to map larger 
landscapes and describe change over time (Praticò et al., 2021; White 
et al., 2018). The tools to map canopy gaps vary and include: multi
spectral satellite images (Hobi et al., 2015b), unmanned aerial vehicles 
(UAV) (Getzin et al., 2012, 2014), RGB and infrared stereo aerial images 
(Nuske, 2006), airborne laser scanning (ALS) (Koukoulas & Blackburn, 
2004; Vepakomma et al., 2012), and terrestrial laser scanning (TLS) 
(Seidel et al., 2015). Before LiDAR-based methods had been developed, 
few studies focused on canopy gaps because field methods were time 
consuming. However, the usage of UAVs can allow accurate mapping of 
canopy gaps within a small forested stand at high resolution and quality 
(Getzin et al., 2012). UAVs are cost effective because they allow for easy 
replicability and minimize cloud cover in imagery compared to aerial or 
satellite one. Advances in the field of digital photogrammetry indicate 
great potential for deriving digital surface models (DSMs) and canopy 
height models (CHMs), allowing for accurate representations of forest 
canopy structure (Miranda et al., 2021; Straub et al., 2013) and gap 
detection. Despite the increasing number of applications and ap
proaches, few studies have used these techniques in complex old-growth 
forests in mountaneous environments of the Mediterranean basin. 

The primary goal of the present study was to design a UAV-based 
forest canopy survey capable of capturing the fine properties of the 
canopy gaps and their spatial distribution, as well as the vertical layering 

of the forest canopy. The research was carried out and validated in 
Pollino National Park (South Italy) in a primary old-growth beech forest 
(Fagus sylvatica L.) located at the upper altitudinal limit of beech dis
tribution (Piovesan et al., 2019). Because of its exceptional ecological 
value, this area is a conservation priority and it was recently included in 
the UNESCO World Natural Heritage (UNESCO WH) of serial sites’ 
“Ancient and Primeval beech forests of the Carpathians and other re
gions of Europe” (https://whc.unesco.org/en/list/1133/). Considering 
the capabilities provided by the adopted technology and the now 
widespread availability of these products, we suggest a UAV monitoring 
framework for describing and tracking canopy and gap patterns and 
processes in high-natural forest stands such as site with the UNESCO WH 
network. 

2. Materials and methods 

2.1. Study area 

The research area is located on Mount Pollinello, within Pollino 
National Park (Fig. 1). This beech forest is a strong representative of old 
growth, growing at an altitude ranging from 1900 to 2000 m a.s.l. within 
a strict reserve area. Due to its remote location, we selected only the core 
of the old growth forest which has not had human influence for at least 
70 years. With assistance from park staff, we determined that the 
perimeter of the ancient forest was 11.5 ha. 

This forest is characterized by the Asyneumato-fagetum sylvaticae as
sociation, a community endemic to high-altitude areas in the Southern 
Italian Apennines, characterized by an uneven-aged structure. Beech 
trees can grow up to 620 years old and grow in proximity to old 
(800–1200 years) Pinus heldreichii trees (Piovesan et al., 2019). 

The proposed method to monitor fine-grained forest canopy struc
ture in primary old-growth forests is outlined in Fig. 2 and described 
below. 

2.2. Aerial image acquisition and processing 

Digital imagery of the study area was acquired using the DJI Phan
tom 4Pro + quadcopter at the end of August 2020. Four different flight 
missions were carried out based on the UAV technical characteristics, 
extension, and morphology of the study area, with 80% of mean overlap, 
ensuring the maximum coverage and mean altitude across the study area 
(Supplementary material S1). The main processing steps included 
camera alignment, georeferencing, building a dense 3D point cloud 
using a structure from motion (SfM) algorithm (Solano et al., 2021b), 
generating a digital terrain model (DTM), a digital surface model (DSM), 
and mosaicked orthofotos. The following data were obtained from the 
SfM photogrammetric workflow: a raster grid orthomosaic with a 
ground sample distance (GSD) of 3 cm, a DSM and a DTM with 15 cm of 
GSD. Finally, the DTM was resampled to 3 cm for further analysis. 

2.3. Mapping forest canopy gaps 

Across remote sensing canopy gap research, fixed and variable 
height thresholds are the most frequent methods for gap detection. 
However, disagreement on the definition of gap closure is ongoing. 
Several studies considered different regeneration height thresholds be
tween 2 m and 20 m (Asner et al., 2013; Blackburn et al., 2014; Gaulton 
& Malthus, 2010; Kenderes et al., 2008; Nuske et al., 2009; Petritan 
et al., 2013; White et al., 2018) depending on the biogeographical 
context, forest composition, and the purpose of the research together 
with the accuracy of the data to detect those gaps (Bagaram et al., 2018; 
Zielewska-Büttner et al., 2016). The same disagreements can be found 
regarding the accepted minimum gap dimensions, varying from 1 to 
1000 m2 (Bonnet et al., 2015; Garbarino et al., 2012; Getzin et al., 2014; 
Hobi et al., 2015a; Vepakomma et al., 2008). Based on these statements, 
we chose to adopt a fixed height threshold approach, determined by 
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previous studies in the area and the ecological conditions of the beech 
forest ecosystem (Piovesan et al., 2019). We considered a gap as a 
canopy opening defined by the vertical crown projection of the 
bordering trees, reaching the ground through all strata to 2 m vegetation 
height and a minimum of at least 2 m2. The vertical difference mea
surement between DTM and DSM (i.e., CHM) was then used to evaluate 
the height of the forest canopy above the ground, covering all the study 
area at 3 cm of spatial resolution. We used the R package ForestGapR 
(Silva et al., 2019) to detect canopy gaps across the CHM, allowing us to 
locate contiguous areas consistent with our gap definition. 

2.4. Forest canopy height and vertical structure 

Height variation between the canopy layers were considered indic
ative of different stages of development. Maximum canopy height has 
often been used to describe a forest stand (Gaulton & Malthus, 2010; 
Hobi et al., 2015b; Rehush & Waser, 2017; Roşca et al., 2018), and 
because height is strongly correlated with stem diameter, we used the 
100 tallest trees per hectare to estimate the max height (Koch et al., 
2009). We first resampled the original CHM of the entire study area to 
0.5 m resolution (CHM0.5) and then divided it into subareas of approx
imately 1 ha. Within each subarea, we applied a maximum local moving 
filter in a 5 × 5 window to generate an area representing the maximum 
height of the forest canopy. We chose this filter size to prevent the top of 
the canopy from overlapping smaller gaps (<3 m2), thus preserving the 
height variation in the study area (Gaulton & Malthus, 2010; White 
et al., 2018). The greatest 100 height values were collected and averaged 
to estimate the top height of each subarea. The average value between 
the 12 subareas was used to separate the canopy layers of the beech 
forest, corresponding to the IUFRO classification (Leibundgut, 1956): 

upper layer > 2/3 of the CHM0.5 max height, medium layer > 1/3 and 
≤2/3 of the CHM0.5 max height and lower canopy layer ≤ 1/3 of the 
CHM0.5 max height. The gap layer was considered below the lower area 
(Fig. 3). Finally, we reclassified the CHM0.5 with each height layer value 
obtained. 

We used the Rumple index to estimate canopy surface roughness 
(Parker et al., 2004). Following Kane et al. (2008), we computed the 
ratio between the 3D CHM surface area and its 2D ground projection 
surface area using the lidR package (Roussel et al., 2020) with CHM0.5 as 
the input raster data. 

2.5. Accuracy assessment and data validation 

Forty-two tree heights, diameters at DBH and geographic coordinates 
were measured in-situ to validate CHM across various canopy layers 
using a Vertex IV hypsometer and transponder (Haglöf, Sweden). We 
then used ordinary least square (OLS) regression to fit a linear model 
between measured and estimated heights from the CHM, using the 
adjusted determinant coefficient (adjR2) and the root mean square error 
(RMSE) to evaluate model accuracy and therefore the reliability of the 
CHM. Statistical analysis was performed in R (4.1.0) statistical software 
(R Core Team, 2021). 

Gap validation data were derived from both field surveys 
(geographic coordinates of 25 sample gaps), and visual interpretation of 
the UAV derived very high-resolution outputs. First, we superimposed a 
25 m × 25 m grid (sample cell of 625 m2) over the study area (Fig. 4). 
Then, we randomly selected 60 sample cells within the grid, covering 1/ 
3 of the total study area. Inside each sample cell, all visually detectable 
gaps were manually digitized as vector polygons, representing the 
reference gap boundaries, using the orthomosaic and the CHM as base 

Fig. 1. Study area localization and UAV-derived very high-resolution orthomosaic image.  
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layers (Fig. 4). 
The interpreter was not aware of the CHM-derived gap to ensure 

independence (White et al., 2018). Gap detection accuracy was deter
mined via object-based evaluation (Solano et al., 2021b) by comparing 
the total number of true gaps as identified from the CHM with the 
validation data. This process was performed using an independent 
sample for recall (r) and precision (p), both used to calculate the F-score 
(Modica et al., 2021; Sokolova et al., 2006) for the overall accuracy 
(equation (1)): 

F = 2 ×
(r × p)
(r + p)

(1)  

where 

r =
TP

(TP + FN)
(2)  

p =
TP

(TP + FP)
(3) 

The omission error is related to r (equation (2)), while the commis
sion error to p (equation (3)). These performance indicators consider 
correctly detected gaps (true positives-TP), erroneously detected gaps 
(false positives-FP), and gaps not detected (false negatives-FN). The 
ratio between TP and the total number of gaps was used as a gap 

Fig. 2. Workflow of the presented methods for monitoring primary old-growth forest canopy structure.  
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detection rate indicator. Validation data acquisition and accuracy 
assessment were performed using QGIS (ver. 3.16 LTR) (QGIS.org, 
2021). 

2.6. Forest canopy gaps and spatial pattern analysis 

After the CHM-derived gaps were analyzed, they were extracted and 
converted to vector polygons before calculating statistics to determine 
structural properties: i) gap area; ii) maximum, minimum, and mean 
canopy height; iii) the standard deviation of canopy height; and iv) Gini 
coefficient of canopy height. Statistical analysis was performed using the 
ForestGapR R package (Silva et al., 2019). To analyze the geometrical 
properties of each gap, we explored the area-perimeter relationship 
(Khodaverdi et al., 2019) and calculated the gap shape complexity index 
(GSCI). This index is frequently used forest gap metric (Koukoulas & 
Blackburn, 2004), representing the ratio of a gap’s perimeter (P) to the 
perimeter of a circular gap of the same area (A) (equation (4)). 

GSCI =
P
̅̅̅̅̅̅̅̅
4πA

√ (4) 

When GCSI is equal to 1, the gap is a circle, and increasing values 
correspond to more compelx shapes. 

To quantify the size-frequency distribution of forest canopy gaps, we 
used the Zeta distribution function from the R package ForestGapR. This 
distrubition is characterized by the exponent (λ), representing the 
discrete power-law probability density, also known as the Pareto dis

tribution (White et al., 2008). For the Zeta distribution with parameter 
λ, the probability that the gap size takes the integer value k is: 

f (k) =
k− λ

ζ(λ)
(5) 

We used the calculation method proposed Hanel et al. (2017) to 
determine the estimates of maximum likelihood values for λ by utlizing 
the negative log-likelihood function (Asner et al., 2013). In this equa
tion, the exponent (λ) is represented by a negative slope on a log–log 
scale of the relationship between gap size and frequency. Results are 
reported in a log–log plot depicting λ and possible minimum likelihood 
values. Asner et al. (2013) reported values of λ > 2.0 (steeper slope) 
which suggests that the prominence of smaller gaps in a forest could be 
indicative of high-growth, low-mortality dynamics. Values of λ < 2.0 
indicate the prevalence of larger canopy gaps associated with large 
canopy mortality or high disturbance rates to whole stands. 

The mapped forest gaps were further analysed exploring their spatial 
pattern, using second-order statistics. Because our gap sizes are variable 
and the centroid of the gap could be far from the edges, we could not use 
point-pattern analysis (Picard et al., 2009; Silva et al., 2019). Therefore, 
we used an adapted version of the pair correlation function (PCF) to 
adequately consider the irregular shapes and sizes of gaps (Nuske et al., 
2009; Wiegand et al., 2006). The PCF g(r) is often defined as the pre
dicted number of gaps (points) per unit area (intensity) at a set distance 
(r) from a random point, divided by the intensity of λ (Stoyan & Stoyan, 
1994). The method involves three fundamental steps: (i) computing null 
models to test for deviations from the Complete Spatial Randomness 
(CSR) by randomizing areas of the initial pattern within the study area, 
(ii) determinig the buffer area and correcting edge boundaries, and (iii) 
calculating the minimal distance between patches (Nuske et al., 2009). 
As proposed by Stoyan & Stoyan (1994), we set the bandwidth param
eter of the smoothing kernel to 0.15/√λ (with λ representing pattern 
intensity). Using the PCF from the null model a pointwise critical en
velope was derived. Confidence envelopes (95%) were computed using 
199 Monte Carlo simulations. The artithmentic mean of all PCFs of the 
null models were then used to correct for bias in the empirical PCF and 
of the extreme bounds of the envelope. The output is the resulting g(r) 
function that, under CSR condition, is equal to 1. Values less than 1 [g(r) 
< 1] indicate regularity and values greater than 1 [g(r) > 1] indicate 
aggregation Nuske et al. (2009). Polygon-based PCF calculation was 
performed with the apfc R package (Nuske et al., 2009), using GDAL 
2.2.3 (https://gdal.org/) and GEOS 3.6.1 (https://trac.osgeo.org/geos) 
libraries. 

The value of the Clark-Evans (Clark & Evans, 1954) aggregation 
index R was used to test for clustering or ordering of the gap pattern, 
with a two-sided alternative hypothesis and the Z-test for statistical 
significance. When R < 1 the pattern is clustered and when R > 1 the 
pattern is uniform (Law et al., 2009). The R package ForestGapR was 
used to perform this analysis. 

Finally, to infer the occurrence of the gap position related to vertical 
layering, the gap polygons and the canopy height distribution map were 
used to analyze the neighborhood relationship between the gap 
boundaries and the forest height layers. 

3. Results 

3.1. CHM and gap detection validation 

The results of the CHM validation assessment were statistically sig
nificant, with adjR2 > 0.95 and an RMSE value < 1 m (Fig. 5). 

The interpreter detected 294 randomly distributed gaps throughout 
the study area upon inspection. Of the 294 gaps, 280 were correctly 
extracted, and 14 were not detected. There were no falsely detected 
gaps. The recall (r) performance metricwas 0.95, and the precision (p) 
value was 1. The F-score (0.98) determined the overall accuracy, thus 

Fig. 3. Results of canopy gap detection and layers stratification.  
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achieving an overall gap detection rate value of 95%. 

3.2. Forest canopy height distribution 

The most representative forest canopy height was the upper layer 
(13 ≥ h ≥ 20), mainly found in the central and southern areas (Fig. 6). 

Approximately 50% of the remaining canopy layer is the lower and 
medium layers (Fig. 7) with a clustered pattern distribution. The average 
Rumple index of the canopy reached a value of 3.32. 

3.3. Canopy gap properties 

In total, 551 gaps were identified, representing 9% of the total study 
area. The mean gap size was 19.16 m2, varying considerably from 2 m2 

(i.e., the fixed minimum threshold) to 353.42 m2 (Table 1). There was a 
significant difference between the perimeter-area relationship especially 
as gap size increased (Supplementary material S2). The P/A ratio ranged 
from 1.0 to 8.93, with a mean value of 3.22 (Table 1). The average GSCI 
was 2.83 (183% gap shape complexity) with a max value of 9.94 (594% 
complexity) (Table 1). 

The vegetation height range varied from 0.15 m to 2 m within the 
canopy gaps (Fig. 8), with a mean height of 1.3 m (±0.5). The mean Gini 
coefficient of the height of the gap vegetation is 0.26. About 97% of the 
gaps were <100 m2 in size. The 90% was smaller than 50 m2, and the 
52% was <10 m2 of area (Fig. 8). 

Small gaps (area < 100 m2) were most prevalent, accounting for 
81% of the overall gap area and were primarily located in the upper and 
medium canopy layer, while the lower layer had the highest gap area per 
canopy layer ratio (Fig. 9). 

Gap-size frequency distribution of all 551 detected gaps followed a 
power-law distribution. The observed distribution has a negative slope 
characterized by a λ-value of 2.45 (Supplementary material S3). 

The spatial pattern distribution of the canopy gaps did not digress 
greatly from the confidence envelopes of the CSR null model (Fig. 10). 
The PCF deviates significantly from the confidence envelope more 
clearly at the smaller scales (1–3.5 m) and less pronounced at greater 
scales (9–11) and from 13.5 to 15 m, suggesting the amassing of values 
at these distances. The PCF showed an overall soft-core effect without 
significant differences. These distances are more frequent than expected 
under CSR and suggest a trend towards clustering. According to the 
aggregation index (R = 0.71, p-value < 0.001), the distances between 

Fig. 4. Data validation scheme for gaps accuracy assessment.  

Fig. 5. Scatter plot of the CHM validation results, obtained by comparing tree 
heights measured in-situ in the different canopy layers with the height recov
ered from CHM. The solid blue line represents the fitted linear model and the 
grey area its 95% confidence interval.. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of 
this article.) 
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the neighboring gaps showed a significant tendency to cluster. 

4. Discussion 

4.1. Mapping complex forest canopy structure 

The UAV digital aerial photogrammetry (DAP) approach provided 
consistent data regarding tree canopies by obtaining 3D point clouds 
from images with high overlap (>80% overlap), which made the 
stitching process more efficient (Mohan et al., 2017). We showed that 
the UAV-DAP workflow has the potential to generate realistic CHM 
(RMSE < 1 m) in an old-growth forest characterized by a very complex 
structure and achieve similar accuracy to LiDAR products (Iglhaut et al., 
2019;Krause et al., 2019; Roşca et al., 2018; White et al., 2018). 

However, our study identified and dealt with some critical limita
tions about understory vegetation and the overall forest vertical struc
ture that were not easily detectable. This is directly due to the usage of a 
UAV-DAP approach, as photogrammetry is limited to reconstructing 
surfaces visible from above in the image data (Iglhaut et al., 2019). To 
overcome these issues, pre-existing ground data derived from LiDAR or 
TLS can be merged with photogrammetric data (Blanchette et al., 2015; 
Seidel et al., 2015) to achieve better accuracy in particular in old-growth 
forests. Moreover, recent developments in processing algorithms can 
better detect local minima in 3D point clouds (Zhang et al., 2021) and 
may improve the generation of DTM under dense canopy cover without 
external datasets. This enables quick, accurate estimation and moni
toring of valuable characteristics at the stand level, facilitating the 
upscaling at a larger scale. 

Gap mapping produced very promising results, with a detection rate 
of 95%. However, the omission error is likely due to the fact that the 
spaces in between tree crowns, as detected by the orthomosaic, had 
vegetation above the defined height threshold. Likewise, the spaces 
covered by small branches resulted in a greater height of vegetation 
along the edge of the gap, which reduced the overall width of the gap, 
leading to the absence of misidentified gaps. Considering the complex 
forest structure and the geomorphology of the study area, the results 
confirm the potential of the proposed approach, in agreement with 

similar studies (Getzin et al., 2012, 2014; Kent et al., 2015; J. C. White 
et al., 2018). 

4.2. Old-growth beech forest canopy structure 

The reconstructed canopy profile revealed a bimodal top height 
frequency distribution (Fig. 6) as reported in other studies (Harding 
et al., 2001; Maltamo et al., 2005). In our approach, the forest vertical 
canopy structure was subdivided into three non overlapping layers and 
canopy height analysis indicated that the middle layer (7–12 m) was less 
represented than the upper layer (13–20 m). Such bimodality could 
result from the merging of tree canopies alongside the pole stage and 
regeneration processes in gaps. Moreover, once released, beech trees can 
“grow fast” through the medium-diameter classes (Hobi et al., 2015a), 
forming a wide canopy height distribution up to reach the top canopy 
layer (20 m), as seen in other old-growth European beech forests (Hobi 
et al., 2015b; Rugani et al., 2013). 

The forest canopy heterogeneity found in our study area reflects the 
relatively high mean canopy Rumple index value. This complexity seems 
to result from the fine-scale canopy gap pattern and the vertical vari
ability among individual trees (Blanchette et al., 2015). To the best of 
our knowledge, there are very few applications of this “roughness” index 
in old-growth broadleaved forests to compare our results. We found 
variation between 0 and 5 in tropical forests (Fagua et al., 2021) to 12 in 
conifer stands in North America (Lesmeister et al., 2019; Parker et al., 
2004; Seidl et al., 2012). The variability of Rumple index is closely 
related to different tree dimensions and crown architectural properties, 
dependent on species composition, different top heights and develop
ment stages. The rugosity of stands increased with vertical complexity 
(Kane et al., 2010) and tree crown architecture, and the mean value of 
3.32 for a pure forest with a dominant height of 20 m indicates a very 
complex outer canopy surface (Kane et al., 2008; Parker et al., 2004). 

The horizontal complexity observed in our study area could result 
from a long-term fine-scale disturbance regime as expected in a primary 
forest (Franklin et al., 2002). Small-scale disturbances, like single gap 
maker tree, can stimulate structural complexity through the creating of 
favorable conditions for massive beech regeneration as well as the 

Fig. 6. Vertical layer distribution map Mount Pollinello’s old-growth forest according to the canopy height classification scheme, estimated from CHM0.5.  
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growth of understory trees (Willim et al., 2019; Ziaco et al., 2012). 
The mean gap size and fraction found is comparable to other Euro

pean old-growth beech forests (Getzin et al., 2014; Kenderes et al., 
2008), confirming the important role of small-scale disturbances in 
stand dynamics. As suggested by the Gini coefficient, it seems that these 
events do not cause considerable alterations to the light environment in 

the forest (Valbuena et al., 2016) because the beech crown architecture 
enabled rapid horizontal growth into gaps so the smallest one could 
persist only for a few years (Madsen & Hahn, 2008). Our maximum gap 
shape complexity of 6.94 indicates a high complexity of canopy gaps, 
while other studies had values of 2.64 for a deciduous woodland and 2.3 
for unmanaged beech (Getzin et al., 2014; Koukoulas & Blackburn, 
2005). Higher values of GSCI are strongly correlated with species rich
ness (Getzin et al., 2012), and this result highlights the key role that old- 
growth forests have in maintaing biodiversity. 

The observed gap-size frequency distribution follows a similar trend 
reported in tropical (Brokaw, 1982) and boreal forests (Goodbody et al., 
2020). The obtained value (>2) suggests that the forest is characterized 
by small openings in the canopy, indicative of sustained growth, and low 
mortality dynamics (Fisher et al., 2008). Our results differ from those 
reported in other old-growth forests (Goulamoussène et al., 2017; Kent 
et al., 2015) which could be a result of the size of the study area, which 
could influence gap are fraction and result in systematically biased es
timates of λ (Lobo and Dalling, 2014). It may also be a result due to the 

Fig. 7. Forest canopy structure defined by the frequency distribution of the upper canopy heights derived from the CHM0.5. Error bars indicate ± standard error. The 
continuous red line refers to the cumulative frequencies reported in the secondary axes. Height curve derived from the trees measured in the field modeled using a 
third-order polynomial function. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 1 
Principal gap geometric properties of Mount Pollinello’s old-growth beech for
est. (P): perimeter; (A): area; (GSCI): gap shape complexity index; (±st.dv): 
standard deviation.   

Area 
(m2) 

Perimeter 
(m) 

P/A GSCI 

mean  19.16  42.45  3.22  2.83 
min  2.03  7.40  1.00  1.42 
max  353.42  390.63  8.93  6.94 
± st.dv  28.6  42.6  1.33  0.91  
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frequency of tree sizes (Asner et al., 2013), such as the spatial configu
ration of tree canopies within and among canopy layers and disturbance 
regimes across forested environments. The peaks of the PCF showed that 
most gaps are approximately 1 to 13 m apart, the latter is about the 
diamter of the crown of a large beech tree in the study area. Our findings 
suggest an uneven recruitment as a result of the gap creation dynamics, 
which could be influenced also by soils and slopes characteristics 
(Aldrich et al., 2003). The death of a single gap maker tree with a large 
crown appears to be the primary driver of gap opening, while the partial 
destruction of large branches at gap edges can cause lateral gap 
expansion. The tendency of gaps to cluster at larger distances could be a 
result of several topographical factors including slope or aspect, which 
are also related to gap area formation in this ecosystem, as other studies 
have reported. (Splechtna & Gratzer, 2005). However, the clustered 
distribution that we found differs from other studies in European 
temperate forests (Torimaru et al., 2012) and North America (Spies 
et al., 1990). Where the PCF showed no significant deviation from the 
CSR model indicated that the gaps are approximately randomly 
distributed,in agreement with other studies in temperate forests (Nuske 
et al., 2009). 

Fig. 8. Distribution of the canopy gap size of the detected gaps (a); distribution of the mean vegetation height within the detected gaps (b) of the beech forest of 
Mount Pollinello (Italy). 

Fig. 9. Canopy gap frequency for each canopy layer (a); gap area percentage per canopy layer total extension (b) of the old-growth beech forest of Mount Polli
nello (Italy). 

Fig. 10. Adapted pair-correlation function (PCF) of the gaps of the old-growth 
beech forest of Mount Pollinello (Italy). 
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5. Conclusions 

In our study, we used a CHM approach derived from UAV-SfM to 
measure old-growth forest attributes of the canopy, including vertical 
layering of canopy top heights and gap detection. Cost-effective UAV 
surveys and the combined use of Rumple Index (as a proxy for canopy 
roughness), P/A relationship, GSCI and second-order statistics for can
opy gap spatial pattern characterization proved to supply basic and 
applicable information about forest structure. Differences found in 
canopy profile and spatial pattern distribution are also linked to local 
topographic or edaphic factors and tree growth rates, but these as
sumptions need further research. The proposed approach could be used 
as a standard monitoring protocol for gathering reliable canopy esti
mates that can be used to improve reference knowledge for site condi
tions, forest conservation issues, and restoration planning purposes. This 
protocol could be extended to natural forests (old-growth stand, 
UNESCO WH forests) for monitoring the preservation of ecological 
integrity and functioning in the face of global changes. This study con
firms its suitability in providing detailed canopy data that can also be 
integrated with dendroecological and floristic-vegetational surveys to 
understand better gap ecology concerning the disturbance regime and 
global changes. 
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