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Abstract

Remote surface flow observations are crucial for improving the comprehen-1

sion of hydrological phenomena. A recent advancement in remote hydrological2

measurements involves the use of drones for generating surface flow velocity3

field maps through Large Scale Particle Image Velocimetry (LSPIV). In this4

work, we perform a comparative analysis of drone-based LSPIV with fixed5

implementations. Quantitative indices are introduced to test the efficiency of6

the techniques with respect to measurement accuracy, sensitivity to the transit7

of tracers, and platform mobility. Experimental findings support drone-based8

observations in outdoor settings. Specifically, measurements from the aerial9

platform are more sensitive to the transit of tracers and closer to benchmark10

values than traditional LSPIV implementations. Future work should aim at11

improving the stability of the aerial platform and mitigating the effects of12

tracer scarcity.13
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1 Introduction14

Surface flow measurements are crucial for understanding the organization of natural15

waters and predicting hydrological phenomena. However, the availability of accurate16

observations is hindered by practical difficulties (Hrachowitz et al., 2013; McDonnell17

et al., 2007). For instance, flow observations in difficult-to-access environments are18

challenging, and current measurement procedures are often intrusive and highly user-19

assisted (Buchanan and Somers, 1969). Such drawbacks are partially addressed by20

optical techniques, such as Large Scale Particle Image Velocimetry (LSPIV), which21

entails the use of digital video acquisition systems to construct velocity maps of22

surface flows.23

LSPIV is a remote surface flow measurement system that enables potentially24

continuous characterization of water bodies based on digital image acquisition from25

locations placed outside the flow current (Fujita et al., 1997; Bradley et al., 2002).26

Directly based on classical particle image velocimetry (PIV), which is typically used27

in fluid mechanics laboratories to estimate the instantaneous flow velocity of seeded28

fluids (Adrian, 1991, 2005; Raffel et al., 2007), this technique has found several ap-29

plications in hydrological sciences. For instance, it has been instrumental to estimate30

hydrodynamic features in natural water bodies (Hauet et al., 2009) and flow discharge31

and patterns in riverine and limnological environments (Creutin et al., 2003; Jodeau32

et al., 2008; Kantoush and Schleiss, 2009). LSPIV does not require either physical33

sampling or the presence of operators (Gunawan et al., 2012; Kantoush et al., 2011),34

and allows for safely monitoring extended channel reaches in varying flow regimes,35

ranging from heavy floods to low flows (Bechle et al., 2012; Tsubaki et al., 2011). For36

instance, in a recent application (LeBoursicaud et al., 2015), videos captured from37

an amateur are utilized to estimate flow discharge during an extreme event.38

LSPIV implementations include digital cameras installed at a distant position and39

inclined with respect to the water surface and a processing unit to a posteriori analyze40

images and extract the flow velocity field (Kim et al., 2008; Muste et al., 2008, 2011).41

Typically, floating material is added onto the water surface to improve visibility. In42

the absence of externally added material, foam, bubbles, or naturally occurring debris43

can be used for flow tracing. In the post-analysis phase, images are orthorectified44

using ground reference points (GRPs) and are assigned metric dimensions (Hauet45

et al., 2008). After orthorectification, surface flow velocity is estimated by applying46

a high-speed cross-correlation algorithm on sequences of captured images (Raffel47

et al., 2007).48

According to (Kantoush et al., 2011; Hauet et al., 2008; Kim, 2006), LSPIV49

measurements are highly sensitive to the surface seeding density, the acquisition of50
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GRPs, and the process of image orthorectification. In (Tauro et al., 2014), limitations51

related to image orthorectification and calibration are addressed by developing a52

portable telescopic apparatus, whereby the camera axis is perpendicular to the water53

surface and a system of lasers creates reference points in the field of view for image54

calibration. This apparatus is nonintrusive and inherently thought for installations55

underneath bridges and boardwalks. However, monitored fields are spatially limited,56

and can only be varied upon reinstallation of the setup in alternative locations.57

Fully remote surface flow observations are achieved in (Pagano et al., 2014; Tauro58

et al., 2015a,b), where a custom-built and a commercial drones are used for surface59

flow observations on small scale streams. In the last years, drones have empowered60

the realm of Earth science with novel observational capabilities. They enable data61

collection in hostile environments (McGonigle et al., 2008; Shelley et al., 2014) and62

observations at the large scale (Cohen, 2007; Schiffman, 2014). Among environmental63

applications, drone technology has been adopted to map drainage networks in glacial64

environments (Rippin et al., 2015), to study erosion and deposition dynamics (Eltner65

et al., 2014; Smith and Vericat, 2015), to monitor crop fields (Gago et al., 2015) and66

coastal wetlands (Klemas, 2015), and to investigate channel reach morphology (Tam-67

minga et al., 2015). Further, low-cost drones have enabled the generation of digital68

elevation models in impoverished areas (Heimhuber et al., 2015), and have been69

tested for environmental disaster and flooding sensing (Liu et al., 2015; Luo et al.,70

2015). In (Pagano et al., 2014; Tauro et al., 2015b), the feasibility of drone-based71

flow velocimetry is demonstrated through proof-of-concept experiments. Notably,72

in (Tauro et al., 2015b), the drone hovering accuracy is characterized in an outdoor73

laboratory, and the platform is then used to yield accurate surface flow maps at74

sub-meter spatial resolution on the Rio Cordon mountainous stream in the Italian75

Alps, Italy.76

In this work, we build on the promising findings in (Tauro et al., 2015b) to77

quantitatively assess the performance of drone-based surface flow measurements in78

outdoor settings against fixed LSPIV implementations. Specifically, the efficacy of79

surface flow observations from an aerial sensing platform is investigated with respect80

to traditional LSPIV implementations and the modified portable LSPIV configura-81

tion presented in (Tauro et al., 2014) through experiments performed in the Rio82

Cordon. Data from each experimental configuration are evaluated with respect to:83

i) the accuracy of velocity estimations with respect to benchmark values; ii) the84

sensitivity to the transit of tracing material; and iii) the effect of the mobility of85

the apparatus. In addition, this assessment explores the dependence of the different86

experimental configurations on the observation time length and on the type of tracer87

released on the water surface.88
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The selected experimental site features a high-flow regime, small scale, artificial89

stream with shallow water depths and incident sunlight. To provide a thorough as-90

sessment of the potential of LSPIV-based observations in these challenging settings,91

in this work, two different locations are selected along the stream. In the first loca-92

tion, surface flow velocities are higher and the water surface is mostly shadowy. In93

the second location, the water depth is extremely shallow (2 − 3 cm) and the sur-94

face is directly illuminated. Remote surface flow observations are performed from a95

commercial low cost drone, whereas the portable telescopic system in (Tauro et al.,96

2014) is utilized for the fixed configurations. Experiments are conducted both with97

and without tracers. Namely, two classes of floating materials, that is, high-visibility98

particles and natural debris are deployed in the stream. Further, tests are performed99

in the absence of added material and using water reflections as tracers to evaluate100

the influence of tracer visibility on measurement accuracy.101

The rest of the paper is organized as follows. In Section 2, the study site and102

instrumentation are described. Further, details are provided on the experimental103

campaign, LSPIV analyses, and the quantitative parameters introduced for the as-104

sessment. In Section 3, experimental findings from all experimental configurations105

are reported for each location. In Section 4, results are discussed and advantages106

and limitations of the illustrated methodologies are presented. Finally, Section 5 is107

left for concluding considerations and future perspectives.108

2 Methodology109

2.1 Study Site110

Surface flow observations are executed at a gauging station located in the Rio Cordon111

natural catchment, Italy (Tauro et al., 2012a). The Rio Cordon drains a 7.68 km2
112

natural basin located in the Dolomites, Northeastern Italy. This mountainous stream113

is a tributary of the Fiorentina stream that in turn flows into the Rio Cordevole. The114

catchment drainage network extends for approximately 19 km at an average slope of115

47.85%. The Agenzia regionale per la prevenzione e protezione ambientale del Veneto116

(A.R.P.A.V.) gauging station is located at 1763m above sea level and is equipped117

with water gauges, a coarse sediment grille, and a diversion pool for water and finer118

material.119

Figure 2.1 presents a map view of the gauging station. Experimental observations120

are conducted at two different locations. A set of tests is executed at the artificially121

channelled stream reach located in the proximity of the downstream gauge. The122

selected stream reach is a rectilinear tract with a concrete rectangular section that is123
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Figure 2.1: Left, aerial view of the study site: solid boxes indicate the locations where
surface flow observations are conducted. Red stars indicate the location of the fixed
sensing platforms (a boardwalk for the artificial channel and a downstream bridge,
not visible in the picture, for the diverging segment), and yellow markers denote the
approximate location of the drone. Dark blue markers indicate the locations along
the stream banks where tracer deployment occurs. Right, view of the aerial sensing
platform. The DJI Phantom 2 features a H3-2D gimbal, a GoPro Hero 3 camera,
and a system of four green lasers.
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1m wide and was 11 cm deep at the time of the experiments, as per measurements124

provided by A.R.P.A.V. Another set of measurements is conducted at the diverging125

stream segment that spills water into the downstream pool.126

2.2 Aerial and fixed sensing platforms127

The aerial sensing platform is a DJI Phantom 2 quadrotor (DJI, 2014) mounting a128

Zenmuse H3-2D gimbal and a GoPro Hero 3 camera oriented with its axis along the129

perpendicular, see Figure 2.1. The gimbal allows for compensating the drone’s vibra-130

tions about the pitch and roll axes while minimizing distortions in videos. Remote131

photometric calibration is enabled through four green lasers (532 nm in wavelength132

and less than 5mW in power) installed at the four corners of the fuselage and aligned133

with the drone’s yaw axis. The drone is flown above the artificially channelled stream134

reach and the divergent stream segment to capture fields of view of approximately135

9× 5m2 and 30× 17m2, respectively.136

Measurements from the drone are compared to observations obtained from fixed137

LSPIV configurations based on the apparatus in (Tauro et al., 2014). This portable138

setup features a system of two low power lasers and was initially introduced for remote139

surface flow monitoring in riverine settings. In the artificially channelled stream, two140

configurations of the apparatus are tested. In the fixed-ortho configuration, the141

camera axis is set perpendicular to the water surface to capture a field of view of142

5 × 3m2 (corresponding to the lower region of the field of view captured by the143

drone). In the fixed-inclined observations, the apparatus is set along the vertical on144

a bridge boardwalk across the downstream section of the field of view captured by145

the drone. In this case, the camera axis is inclined with respect to the water surface146

to capture a field of view of 6× 6m2.147

In the diverging stream segment, aerial data are compared to observations from148

the fixed-inclined configuration. Specifically, the apparatus is located along the ver-149

tical on a downstream bridge above the downstream pool, see Figure 2.1, with the150

camera axis inclined with respect to the water surface. The total field of view cap-151

tured from this configuration is 17× 30m2.152

2.3 Experimental data acquisition153

Table 1 reports the total number of tests executed in the experimental campaign.154

In the artificially channelled stream, surface flow measurements are conducted by155

using both high-visibility artificial beads and naturally floating debris, such as leaves.156

Artificial tracers are in-house fabricated particles synthesized from biocompatible and157
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Table 1: Synoptic table of the experimental tests performed in the Rio Cordon. At
the artificial channel, tests are executed with three experimental configurations, two
types of tracers, and in the absence of floating material. At the diverging segment,
drone data are compared to videos from the fixed-inclined configuration. Debris and
water reflections are therein used as tracers.

Artificial channel Diverging segment
Configuration Tracer Replicates Configuration Tracer Replicates

Drone beads 10 Drone debris 10
debris 10 – 6

– 10
Fixed - ortho beads 10

– 10
Fixed - inclined debris 10 Fixed - inclined debris 10

– 10 – 6

buoyant children-friendly dough. Surface flow velocity observations based on the use158

of high-visibility beads have been demonstrated in (Tauro et al., 2012b,c, 2013a,b).159

Particle size ranges from 0.5 up to 1 cm, and beads are red, yellow, orange, and green160

in color. The transit of the artificial particles is captured using the drone and the161

fixed-ortho configuration. Further, natural debris is used as tracer in experiments162

from the drone and the fixed-inclined configuration.163

Due to the larger field of view and the absence of boardwalks, experiments on the164

diverging segment of the stream are conducted using only the drone and the fixed-165

inclined configuration (which enables monitoring over larger areas), and deploying166

natural debris for flow tracing (which can be massively deployed in the stream). To167

provide a thorough assessment of the performance of optical observations in out-168

door settings, LSPIV analyses are also conducted in the absence of tracers for each169

configuration (“–” in Table 1).170

In both locations, the drone captures Full HD videos at 60Hz frame rate. In the171

fixed-ortho and fixed-inclined configurations on the artificial channel, the camera172

captures 1280× 720 pixels videos at 60Hz frame rate. In the fixed-inclined setup on173

the diverging segment, Full HD images are captured at 30Hz frame rate.174

2.4 Field data analysis175

Experimental videos are fish-eye undistorted using the GoPro Studio 2.0 Software.176

Further, videos are unpacked to extract grayscale images. Images recorded in the177
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fixed-inclined configuration are orthorectified using landmarks on the stream banks178

as GRPs. Preliminary analyses are performed to identify the optimal settings for179

LSPIV processing through the high-speed cross-correlation edPIV software (Gui,180

2013). Table 2 reports the adopted LSPIV settings for each experiment illustrated181

in Table 1. The average time length of the experiments (Obs. time) is also reported182

in Table 2.

Table 2: Synoptic table of the parameters adopted for LSPIV processing of data cap-
tured in the Rio Cordon. Image resolution and frequency are opportunely adjusted
for LSPIV analyses. Average observation times (Obs. time) are reported for each
set of experiments.

Artificial channel
Tracer Resolution Frequency Obs. time Int. window

pixels Hz s pixels
Drone beads Full HD 60 0.6 32× 32

debris Full HD 60 1.1 32× 32
– Full HD 60 0.8 64× 64

Fixed beads 1280× 720 60 0.7 32× 32
- ortho – 1280× 720 60 0.8 64× 64
Fixed debris 720× 735 20 2.9 32× 32

- inclined – 720× 735 20 1.5 32× 32
Diverging segment

Tracer Resolution Frequency Obs. time Int. window
pixels Hz s pixels

Drone debris Full HD 15 2.6 32× 32
Drone – Full HD 15 2.5 32× 32
Fixed debris Full HD 30 2.7 64× 64

- inclined – Full HD 30 2.7 64× 64

183

LSPIV processing is conducted on sequences of images depicting the continuous184

transit of tracing material in the entire field of view, whereas images displaying the185

entrance and exit of tracers from the field of view are not considered. Since the186

amount of artificial beads deployed in the stream is much lower than natural debris,187

image sequences pertaining to experiments with the beads are on average shorter188

than experiments with debris.189
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2.5 Performance evaluation criteria190

Surface flow velocity maps are generated by averaging LSPIV velocity estimates in191

time. In case of experiments with the drone, the imperfect hovering capability of192

the platform results in non-null velocities at nodes lying outside the stream. To par-193

tially mitigate this effect, the average velocity of the nodes lying outside the stream194

is computed and subtracted by the entire set of velocity values. For each experi-195

mental configuration, subareas of the stream consistently captured in each video are196

identified, and time-averaged profiles of selected cross-sections in the subareas are197

computed. To assess the effect of the observation time length, velocity maps are198

generated by considering 30%, 60%, and 100% of the total number of images for199

each replicate, thus corresponding to 30%, 60%, and 100%, respectively, of the total200

observation time length.201

Benchmark flow velocity for experiments in the artificial channel is obtained using202

an OTT C2 small current meter. The instrument is set to the time measurement203

mode, whereby the number of impulses recorded in 10 s are counted and related204

to flow velocity. The velocity is measured at a cross-section of the stream a few205

centimeters upstream the subarea selected for comparison. Measurements result in206

an average velocity of 2.54m/s at 0.5m from the right stream bank (that is, in the207

center of the stream) and at 3 cm underneath the water surface. Such benchmark208

value is obtained by averaging over three repetitions. Due to impracticalities in209

using the current meter in the diverging segment of the stream, benchmark velocity210

is obtained by manually tracking floating objects in images captured from the fixed-211

inclined configuration. Specifically, average velocities equal to 1.5−1.8m/s are found212

for the central portion of the diverging segment.213

To investigate the performance of drone-based and fixed LSPIV, several parame-214

ters are introduced and estimated for each experiment. Specifically, the parameters215

aim at assessing: i) effect of tracers’ visibility during the experiments; ii) impact of216

eventual vibrations of the experimental platforms; iii) consistency among experimen-217

tal replicates; iv) accuracy of velocity estimates; and v) accuracy in reconstructing218

the cross-sectional surface flow profile. The effect of tracers’ visibility is assessed219

through the index Z = N0/Ntot, where N0 indicates the number of nodes presenting220

velocity values less or equal to 10% the average velocity in the entire time-averaged221

map, and Ntot is the total number of nodes in the map. In the computation, only222

nodes pertaining to the stream are retained. Low velocity values captured by the223

parameter N0 are in general not representative of the actual flow condition; rather,224

they are typically due to adverse visibility and tracer scarcity.225

The stability of the experimental platform is assessed through the index D =226

Nd/Ntot, where Nd refers to the number of nodes presenting negative velocity values,227
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that is, vectors in the opposite direction of flow. In case of fixed configurations, the228

index D is found to be equal to zero for all experimental replicates and, therefore,229

in the following, only data captured from the drone are presented. Consistency230

among experimental replicates is computed through the structural similarity index231

(SSIM) (Wang et al., 2004). This index is largely used in image analysis to quantify232

differences between images in terms of luminance, contrast, and structure. In this233

work, the SSIM is computed on the time-averaged velocity maps obtained for each234

experimental replicate. The index is estimated by setting the exponents to 0, 0, and235

1 to capture only the maps’ structural differences (Wang et al., 2004).236

The accuracy of LSPIV-based velocity estimates is assayed by comparing the237

maximum velocity value obtained in subareas captured in each experiment. Indeed,238

as showed in (Tauro et al., 2014), high percentiles are found to be closer to actual239

velocity values in natural streams. Maximum velocity values are computed from the240

time-averaged maps. Further, to evaluate the efficiency of the experimental config-241

urations at detecting the cross-sectional surface flow profile, the range of selected242

cross-sections laying in the subareas is computed. The range is estimated by gener-243

ating time-averaged surface flow velocity maps and then selecting nodes pertaining244

to three cross-sections.245

The variability of the performance evaluation parameters with respect to different246

tracers and the observation time lengths is assessed through one-way analysis of vari-247

ance. Specifically, the variability of the data sets with regards to tracers is assessed248

by estimating the p-values on measurements with and without tracers for each config-249

uration. Dependence on the observation time lengths is computed on measurements250

evaluated for 30%, 60%, and 100% of the image sequences for each experimental con-251

figuration. In the following, p values are only reported when statistically significant.252

Specifically, weak statistical significance is defined when 0.01 < p < 0.05, and strong253

statistical significance is set for p < 0.01.254

3 Results255

3.1 Artificial channel256

Figure 3.1 reports representative time-averaged velocity maps obtained from the257

drone (a) and (b), the fixed-ortho (c), and the fixed-inclined (d) configurations.258

Next to each map, time-averaged profiles are reported for three cross-sections laying259

in the subarea shared by all configurations, see black rectangle in maps in Figure 3.1.260

While the maps depict slightly varying fields of view, all of them present similar261

features, such as the high velocity region enclosed in the shared subarea. To provide262
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Figure 3.1: Representative surface flow observations for experiments conducted in the
artificial channel. (a) Time-averaged surface flow velocity map and cross-sectional
profiles generated from drone data and in case of artificial beads as tracers. (b)
Time-averaged surface flow velocity map and cross-sectional profiles generated from
drone data and in case of natural debris as tracer. (c) Time-averaged surface flow
velocity map and cross-sectional profiles generated from the fixed-ortho configuration
data and in case of artificial beads as tracers. (d) Time-averaged surface flow velocity
map and cross-sectional profiles generated from the fixed-inclined configuration data
and in case of natural debris as tracer. Black boxes indicate the subarea shared by
all experimental configurations. 11



a thorough assessment of the tested methodologies, in the following, performance263

evaluation criteria established in Section 2.5 are computed and presented.264

3.1.1 Sensitivity to tracers’ transit265

Figure 3.2 depicts the index Z for each experimental configuration and type of tracing266

material. To assess the effect of tracers’ visibility on image quality, in Figure 3.2,267

the index Z is also reported for experiments performed with and without tracers.268

Black, blue, and red bars correspond to values computed using 30%, 60% and 100%269

of the total number of images for each experimental replicate. On average, low270

velocity nodes tend to be more abundant in case of videos from the drone with271

artificial beads. Further, in case of experiments with the drone, maps based on 30%272

of the total number of images in the relative sequence present a higher number of273

low velocities. However, the variability of Z with respect to the observation time274

length is not statistically significant neither for experiments with the drone nor with275

fixed configurations. Significant variability is found in case of experiments with the276

drone with respect to tracers. Specifically, the variability in drone experiments with277

artificial beads, debris, and without tracers is found strongly statistically significant278

for each observation time length (p = 0.0022, 0.0025, and 0.0023 for 30%, 60%,279

and 100% of the image sequences, respectively). Indeed, the number of low velocity280

nodes in the drone configuration without tracers (see first row in Figure 3.2) is much281

higher than with tracers. In addition, the variability in experiments with the fixed-282

ortho configuration with respect to tracers is found strongly statistically significant283

for each observation time length (p = 0.0021, 0.0073, and 0.0029 for 30%, 60%,284

and 100% of the image sequences, respectively). Conversely, variability of data from285

the fixed-inclined configuration is not found statistically significant with regards to286

tracers.287

3.1.2 Impact of platform’s stability288

Limitations in the station-keeping capability of the aerial platform are illustrated in289

Figure 3.3, where the index D is reported for each experimental replicate with the290

drone. Notably, velocity vectors in the opposite direction of the flow tend to be lower291

than 20% of the total number of nodes, and are generally smaller upon increasing292

the observation time. This is due to the fact that the effect of the irregular motion293

of the drone is averaged in time in case of longer observations. Based on one-way294

analysis of variance, the variability with respect to the observation time length and295

tracers is not found statistically significant.296

12



Figure 3.2: Artificial channel: Z values for each experimental condition. In the top
row, drone data (Drone) are reported in case of beads, debris, and without tracers.
In the central row, data are illustrated for the fixed-ortho configuration (Ortho) in
case of beads and without tracers. In the bottom row, data are reported for the
fixed-inclined configuration (Incl.) in case of debris and without tracers. For each
replicate, Z values are computed considering 30% (black bars), 60% (blue bars), and
100% (red bars) of the image sequences.
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Figure 3.3: Artificial channel: D values for drone-based experiments. For each
replicate, D values are computed considering 30% (black bars), 60% (blue bars), and
100% (red bars) of the image sequences.

3.1.3 Experiment repeatability297

The similarity index among time-averaged velocity maps is reported in Figure 3.4,298

whereby the first velocity map is used as reference. Notably, all configurations result299

in values of the SSIM greater or equal to zero, thus demonstrating that the structure300

of the maps does not radically vary among different replicates. However, in case of301

the fixed-inclined configuration and debris, all values of the SSIM are greater than302

0.5, thus indicating that maps are highly consistent among replicates. Interestingly,303

while the structure of the maps generated from drone data (top row in Figure 3.4)304

do not sensibly vary with respect to the observation time length, a different behavior305

is found for fixed configurations. Specifically, the SSIM tends to increase with longer306

observations in case of fixed LSPIV (central and bottom rows in Figure 3.4). Indeed,307

strong statistical significance (p = 0.0017) is found for the inclined-debris data with308

respect to the observation time length (see bottom left graph in Figure 3.4). Weak309

statistical significance (p = 0.0195) is also observed in the variability of the inclined310

configuration data (100% of the image sequence) with respect to tracers.311

3.1.4 Measurement accuracy312

In Figure 3.5, maximum velocity values are reported for subareas indicated in Fig-313

ure 3.1. For each configuration, the marker indicates the median computed over the314

experimental replicates. The edges of the box indicate the 25th and 75th percentiles,315

and the whiskers extend to extreme data points that are not outliers. Interestingly,316

estimates obtained from drone-beads data tend to be higher than values from alter-317

native experimental settings. Median values from all configurations tend to decrease318

with longer image sequences (from the top graph to the bottom graph in Figure 3.5).319

14



Figure 3.4: Artificial channel: SSIM values for each experimental condition. In the
top row, SSIM values are displayed for drone data (Drone) in case of beads, debris,
and without tracers. In the central row, SSIM values are reported for the fixed-ortho
configuration (Ortho) in case of beads and without tracers. In the bottom row,
SSIM values are showed for the fixed-inclined configuration (Incl.) in case of debris
and without tracers. For each replicate, SSIM values are computed considering 30%
(black markers), 60% (blue markers), and 100% (red markers) of the image sequences.
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However, only the ortho-beads data show weakly statistically significant variability320

(p = 0.0441) with respect to the observation time length. High standard deviation321

is found in the drone-debris data. Such behavior may be attributed to the fact that322

the large quantities of debris deployed in the stream require longer observations (av-323

erage observation time equal to 1.1 s in Table 2) with respect to alternative settings.324

Notably, such behavior is not observed in case of the inclined configuration, whereby325

long observation times do not correspond to high standard deviations in maximum326

velocities.327

Among all the considered configurations with tracers, median values from inclined-328

debris data are found to be the lowest. Further, medians obtained in the absence329

of tracers (that is, drone, ortho, and incl. in Figure 3.5) tend to be lower than val-330

ues computed on videos with tracers, with the only exception of the drone-debris331

configuration. The standard deviations of the maxima also tend to decrease in the332

absence of added material. Analysis of variance with respect to tracers results in333

generally statistically significant variability. Specifically, drone data variability is334

weakly statistically significant when 30% (p = 0.0225) and 60% (p = 0.0471) of the335

image sequences are considered. Variability of data from the fixed-ortho configura-336

tion is found strongly statistically significant when 30% (p = 5.6× 10−5) and 100%337

(p = 4.2 × 10−4) of the image sequences are considered, and weakly statistically338

significant when 60% (p = 0.011) of the image sequences are analyzed. In addition,339

the fixed-ortho configuration is the most highly affected by the absence of tracing340

material, with medians for the ortho data equal to 75−81% the corresponding values341

obtained in case of bead deployment (ortho-beads in Figure 3.5). The variability of342

data from the inclined configuration with respect to tracers is consistently strongly343

statistically significant (p = 7 × 10−6, 0.0042, and 1.5 × 10−4 when 30%, 60%, and344

100% of the image sequences are analyzed, respectively).345

3.1.5 Cross-sectional surface profile reconstruction346

Range values of three cross-sectional profiles lying in the shared subarea of the stream347

are reported in Figure 3.6. On average, ranges pertaining to drone data are higher348

than values from the fixed configurations. Specifically, average values of 2.05m/s and349

1.76m/s are found for the drone-beads and drone-debris data, respectively, against350

1.56m/s and 1.65m/s for the ortho-beads and inclined-debris configurations, respec-351

tively. On the other hand, all configurations with tracers present similar standard352

deviations (minimum equal to 0.24m/s in case of drone-bead data and 100% of the353

image sequence, and maximum equal to 0.37m/s in case of drone-debris data and354

100% of the image sequence). Similar to maximum velocity values, in the absence of355
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Figure 3.5: Artificial channel: maximum velocity values in the shared subarea for
each experimental condition. Markers indicate medians computed over the experi-
mental replicates. The edges of the box indicate the 25th and 75th percentiles, and
the whiskers extend to extreme data points that are not outliers. For each replicate,
maximum velocity values are computed considering 30% (top graph), 60% (central
graph), and 100% (bottom graph) of the image sequences.
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tracers, median values tend to be lower, with the only exception of the drone-debris356

configuration. On the other hand, the standard deviation from data without tracers357

sensibly increases with respect to experiments with tracers (see, for instance, data358

for the inclined configuration without tracers in Figure 3.6).359

The variability of all data sets with respect to the observation time length is360

not found statistically significant. However, strong statistical significance is found361

for drone data with regards to tracers (p = 0.0069, 0.0048, and 0.0015 when 30%,362

60%, and 100% of the image sequences were analyzed). Similarly, strong statistical363

significance is observed for the fixed configurations with respect to tracers. Specif-364

ically, p values for data from the fixed-ortho configuration are equal to 9.6 × 10−9,365

5.3 × 10−9, and 2.3 × 10−9 when 30%, 60%, and 100% of the image sequences are366

considered, respectively. For the inclined configuration, p values are equal to 0.0021,367

2.1×10−4, and 0.002 when 30%, 60%, and 100% of the image sequences are analyzed,368

respectively.369

3.2 Diverging segment370

Time-averaged surface flow velocity maps for the diverging segment of the stream are371

presented in Figure 3.7, where the profiles for three representative cross-sections in372

the shared subarea are also illustrated. In this location, the water level is very shallow373

and the appearance of the stream bed is rather bright. In addition, challenges in374

seeding the large water surface and directly incident sunlight contribute to reduce the375

visibility of tracers in captured images. As depicted in Figure 3.7, these factors are376

particularly detrimental for the generation of accurate velocity maps. For instance,377

in Figure 3.7(a), a large number of low velocity nodes are found, whereas higher378

values are only exhibited in the shared subarea.379

3.2.1 Sensitivity to tracers’ transit380

In the diverging segment, experiments with the drone are performed at a greater381

height from the ground to capture a more extended field of view, see Section 2.3.382

The lower quality of images taken from such a height is evident in Figure 3.8, where383

most of the replicates in the drone configuration (top row) present more than 60% of384

low velocity nodes out of the total number. Conversely, in replicates from the fixed-385

inclined configuration (bottom row), low velocity nodes are a meagre percentage.386

Without tracers, the number of low velocity nodes either remains considerable, see387

the drone configuration, or slightly increases, see the fixed-inclined configuration.388

None of the configurations presents statistically significant variability with respect389

to the observation time length. However, the variability of data from the inclined390
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Figure 3.6: Artificial channel: velocity range values for cross-sections in the shared
subarea for each experimental condition. Markers indicate medians computed over
the experimental replicates. The edges of the box indicate the 25th and 75th per-
centiles, and the whiskers extend to extreme data points that are not outliers. For
each replicate, velocity range values are computed considering 30% (top graph), 60%
(central graph), and 100% (bottom graph) of the image sequences.
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Figure 3.7: Representative surface flow observations for experiments conducted in the
diverging segment. (a) Time-averaged surface flow velocity map and cross-sectional
profiles generated from drone data in case of natural debris as tracer. (b) Time-
averaged surface flow velocity map and cross-sectional profiles generated from data
captured through the fixed-inclined configuration in case of natural debris as tracer.
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configuration with respect to tracers is strongly statistically significant (p = 9.6 ×391

10−7, 8.3×10−6, and 4.1×10−5 when 30%, 60%, and 100% of the image sequences were392

analyzed, respectively). A behavior similar to observations in the artificial channel393

is also found for the index D, not reported for the diverging segment, whereby the394

drone configuration presents percentages of negative nodes ranging from 57% to 66%.395

396

3.2.2 Experiment repeatability397

Similar to Figure 3.4, in Figure 3.9, time-averaged velocity maps are consistent among398

different replicates. In particular, maps from the fixed-inclined configuration (bottom399

row) present values of the SSIM proximal to one. In the absence of tracers, drone400

data show a dependence on the observation time length, whereas data from the fixed401

configuration are mostly identical to one. However, data sets variabilities are not402

found statistically significant with respect to the observation time length nor with403

regards to tracers.404

3.2.3 Measurement accuracy405

In Figure 3.10, the maximum velocity values estimated in the shared subarea and over406

the selected image sequences are reported. Median velocities are slightly higher in407

drone-debris data. Further, median values tend to decrease with longer observation408

times for both configurations with tracers (drone-debris and inclined-debris). With409

regards to standard deviations, similar values are also obtained in both configurations410

with tracers. The absence of tracers strongly impacts both sets of data, with lower411

values observed in the drone configuration. None of the data sets exhibits statistically412

significant variability with respect to the observation time length. However, the413

variability with respect to tracers is strongly statistically significant for both the414

drone and the fixed configuration (p = 7.7× 10−7, 3.4× 10−6, and 1.6× 10−6 when415

30%, 60%, and 100% of the image sequences are analyzed, respectively, for the drone416

data, and p = 4.2 × 10−4, 1.1 × 10−4, and 4.7 × 10−5 when 30%, 60%, and 100% of417

the image sequences are analyzed, respectively, for the fixed inclined data).418

3.2.4 Cross-sectional surface profile reconstruction419

In Figure 3.11, range values for three representative cross-sectional profiles in the420

shared subarea are presented. Both configurations present high variability (standard421

deviation from a minimum of 0.24m/s to a maximum of 0.38m/s for the drone-debris422
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Figure 3.8: Diverging segment: Z values for each experimental condition. In the top
row, drone data (Drone) are reported in case of debris and without tracers. In the
bottom row, data are showed for the fixed-inclined configuration (Incl.) in case of
debris and without tracers. For each replicate, Z values are computed considering
30% (black bars), 60% (blue bars), and 100% (red bars) of the image sequences.
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Figure 3.9: Diverging segment: SSIM values for each experimental condition. In
the top row, SSIM values are displayed for drone data (Drone) in case of debris and
without tracers. In the bottom row, SSIM values are showed for the fixed-inclined
configuration (Incl.) in case of debris and without tracers. For each replicate, SSIM
values are computed considering 30% (black markers), 60% (blue markers), and 100%
(red markers) of the image sequences.
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Figure 3.10: Diverging segment: maximum velocity values in the shared subarea for
each experimental condition. Markers indicate medians computed over the experi-
mental replicates. The edges of the box indicate the 25th and 75th percentiles, and
the whiskers extend to extreme data points that are not outliers. For each replicate,
maximum velocity values are computed considering 30% (top graph), 60% (central
graph), and 100% (bottom graph) of the image sequences.
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data, and from a minimum of 0.35m/s to a maximum of 0.37m/s for the inclined-423

debris data). In the inclined-debris data, the average range is equal to 0.94m/s,424

whereas the average range is 0.75m/s for the drone-debris data. Interestingly, the425

variability of drone-debris data is strongly statistically significant (p = 0.0089) with426

respect to the observation time length, whereas the variability of inclined-debris427

data with regards to time is weakly statistically significant (p = 0.0225). Similar to428

maximum velocities, all data are highly affected by the absence of added material429

(see, for instance, the low values for drone data in Figure 3.11). Specifically, for430

all observation time lengths, data from both configurations are strongly statistically431

significant (p = 8.2×10−11, 1.4×10−13, and 1.9×10−12 when 30%, 60%, and 100% of432

the image sequences are analyzed, respectively, for the drone data, and p = 6.1×10−4,433

3.6 × 10−7, and 2.0 × 10−8 when 30%, 60%, and 100% of the image sequences are434

analyzed, respectively, for the fixed inclined data).435

4 Discussion436

As illustrated in Section 2, observations are achieved in challenging outdoor settings437

from a traditional LSPIV installation, a modified orthogonal LSPIV configuration,438

and an aerial platform. Despite practical challenges, spatially distributed surface ve-439

locity measurements are obtained at limited costs in areas that are generally difficult440

or impossible to access with alternative measurement techniques. Even if proximal,441

the selected experimental locations present radically different characteristics that im-442

pact image quality and, therefore, surface flow velocity measurements. On the one443

hand, the artificially channelled stream reach features high flow regime and a dark444

stream bed, and the high concrete banks block reflections due to direct sunlight. On445

the other hand, the diverging segment of the stream is characterized by very shallow446

depths and incident sunlight, that severely affects tracer visibility. An overview of447

the experimental results is presented in Figure 4.1.448

Based on Figures 3.2 and 3.8, maps obtained from drone data tend to present449

larger regions at low velocity. In case of the diverging segment of the stream and450

the drone configuration, the number of low velocity nodes is very significant. While451

this may suggest that the drone elevation from the water surface is very high, this452

result also hints at the challenging experimental conditions and, in particular, at453

the severe illumination settings that limit tracer visibility. In the same location,454

in case of the fixed-inclined configuration, low velocities nodes are very few and,455

according to Z values, experimental conditions can not be deemed critical. In the456

absence of tracing material, see Figure 3.2 for the artificial channel, the number of457

low velocity nodes increases in all configurations but it is much more appreciable458
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Figure 3.11: Diverging segment: velocity range values for cross-sections in the shared
subarea for each experimental condition. Markers indicate medians computed over
the experimental replicates. The edges of the box indicate the 25th and 75th per-
centiles, and the whiskers extend to extreme data points that are not outliers. For
each replicate, velocity range values are computed considering 30% (top graph), 60%
(central graph), and 100% (bottom graph) of the image sequences.
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Figure 4.1: Synoptic table of the experimental results for experiments in the artificial
channel and the diverging segment of the stream. The acronym n.a. stands for not
applicable.
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in case of the drone. Therefore, a change in the experimental conditions is more459

clearly captured from the aerial rather than the fixed setups. This suggests that460

the aerial configuration is more sensitive to the transit of tracers. However, in the461

diverging segment in Figure 3.8, the variability to tracers of data from the fixed462

configuration is statistically significant. With regards to the stability of the aerial463

platform, Figure 3.3 shows that the number of velocity vectors opposing the flow is464

around 20% of the total nodes. Since this result is not affected by different types of465

tracers, it could be addressed by either designing more sophisticated techniques for466

drone-vibration removal in images or improving the onboard GPS.467

As presented in Figures 3.4 and 3.9, generated maps are generally repeatable468

and the SSIM is constant among different replicates. Specifically, the SSIM index469

should capture the similarity in the structure of the maps (that is, for instance, if470

high velocity regions are found at consistent locations among different experimental471

replicates). Given the stationarity of the observed phenomena (experiments are472

performed on the same day and at few hours difference), this finding demonstrates the473

repeatability of the measurements. It is commented that in the computation of the474

SSIM index, the first time-averaged map is used as reference and, therefore, SSIM= 1475

for the first experimental replicate. Interestingly, maps from drone data are slightly476

affected by the observation time length, whereas the similarity increases for longer477

experiments in case of fixed configurations. In data for the fixed-ortho configuration478

Figure 3.4, the variability is higher than in the alternative configurations. This479

behavior can be attributed to the fact that this configuration captures the smallest480

field of view and, therefore, it is the most highly influenced by small variations in481

illumination and reflections. On the other hand, in data relative to the fixed-inclined482

configuration in Figure 3.4, the similarity among different replicates is very high483

and probably due to the fact that a large field of view is captured at a relatively484

low resolution. This finding hints that accurate drone-based measurements may485

be collected through short-time observations. Further, different from alternative486

configurations, the medium distance of the aerial camera from the the study area487

enables to capture tracers’ transit while guaranteeing experiment repeatability.488

Figures 3.5 and 3.10 show that drone-based estimates tend to be higher and,489

therefore, closer to actual velocities, than estimates from fixed configurations. In490

case of the artificially channelled stream, measurements from the current meter re-491

sult in an average velocity of 2.54m/s in the center of the stream (corresponding492

to the location of the shared subarea). While lower velocity is expected on the493

stream surface due to wind effects, all LSPIV estimates are lower than benchmark494

measurements, thus suggesting that optical measurements can be severely impacted495

by illumination and tracers’ visibility. However, in this work, experiments are per-496
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formed during an entire day and, therefore, in case of varying illumination conditions.497

Hence, it is expected that improvements in seeding the water surface and the con-498

tinuous deployment of tracers may lead to more accurate velocity estimates. With499

regards to the diverging segment, benchmark measurements from manual tracking500

result in average velocities equal to 1.5 − 1.8m/s, approximately 60% higher than501

medians obtained from drone-debris data considering 30% of the image sequences,502

see Figure 3.10. Therefore, in this location, tracer visibility also plays a crucial role503

and it highly affects data from the fixed-inclined configuration. These results show504

that optical measurements still mandate considerable improvement for accurate hy-505

drological measurements; however, the medium-ranged fields of view captured with506

aerial platform offer diffused rather direct illumination, thus leading to flow velocity507

estimates closer to actual values.508

The effect of the absence of tracers results in different scenarios in the two lo-509

cations. In the artificially channelled stream, see Figure 3.5, maximum velocity510

estimates from the drone without tracers are similar to drone-beads data. On the511

other hand, the fixed-ortho configuration is highly affected by the absence of tracers512

and maximum velocities considerably decrease. With regards to the fixed-inclined513

configuration, maximum velocities are also impacted. In the diverging segment, see514

Figure 3.10, drone-based estimates tend to be slightly higher than measurement from515

the fixed configuration for all the considered observation time lengths. In addition,516

both configurations, and in particular the drone, are highly impacted by the absence517

of tracers, regardless the length of the image sequences.518

In the artificially channelled location, drone-based ranges are on average higher519

than in case of fixed configurations, see Figure 3.6. The lowest values are obtained520

in case of the fixed-ortho configuration, whereas highest variability is found for the521

drone-debris data. In the absence of tracers, the fixed-ortho configuration is very522

highly affected. In the diverging segment, see Figure 3.11, average range values from523

drone data are lower than average data from the inclined-debris configuration. In524

the absence of tracers, maps from the drone result in ranges proximal to zero, see525

Figure 3.11.526

The influence of the observation time length also leads to different results for527

the analyzed parameters. In particular, indices Z, D, and the range are not highly528

affected by the time length of the experiment. Conversely, the fixed configurations529

demonstrate a dependence, even if not always statistically significant, on the length530

of the observations in the SSIM index computed in the artificially channelled stream,531

see Figure 3.4. Drone-based SSIM values are instead unaffected by time, with the532

exception of experiments without tracers in Figure 3.9. Maximum velocities com-533

puted for all configurations are affected, though not statistically significantly, by the534
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observation time length. Specifically, mean values and standard deviations tend to535

decrease with longer image sequences. This finding suggests that longer observations536

do not necessarily lead to more accurate surface flow observations, as regions without537

visible tracers are considered in the time-averaging process.538

Finally, the effect of the different type of tracer is evaluated in the artificially539

channelled location in experiments performed with the drone configuration. The in-540

dex Z and the maximum velocities in the subarea result sensitive to different tracers,541

whereby a smaller number of low velocity nodes and lower maximum velocities are542

found for debris. This finding suggests that the good visibility of the beads may543

lead to accurate velocity estimations (high maxima). Finally, while all configura-544

tions are impacted by the absence of tracers, more relevant differences are found in545

drone-based data, whereas the fixed-inclined configuration is the least effected.546

Based on the high sensitivity to the transit of tracers and on the fact that max-547

imum velocity estimates are closer to benchmark values, airborne observations are548

found promising for hydrological surface flow measurements. Notably, we remark549

that a low-cost ready-to-fly aerial platform and a sport camera are here utilized550

for surface flow measurements. Future technological advancements are expected to551

highly improve the platform stability and image quality, thus offering accurate mea-552

surements at competitive costs. We also emphasize that airborne observations offer553

several practical advantages with respect to traditional fixed implementations. In-554

deed, several acquisition parameters can be adjusted to improve data quality. Such555

parameters include: the platform’s elevation, the size of the field of view with re-556

spect to image resolution, and the selection of the measurement area. With regards557

to the study area, we expect airborne observations to be beneficial for diverse com-558

partments of hydrological catchments, spanning from ephemeral rills to floodplain559

environments, where traditional ground-measurement systems are impractical. How-560

ever, the slope of the water surface should be accounted for in case of observations561

over rather extended areas.562

5 Conclusions563

In this work, an assessment of drone-based LSPIV is presented by comparing ex-564

periments executed with a commercial drone to measurements with fixed LSPIV565

configurations and independent benchmark surface flow velocity measurements. Ex-566

periments are conducted at two different locations on a mountainous stream in the567

Italian Alps using high-visibility beads and debris as tracers. To estimate the per-568

formance of the experimental configurations, LSPIV analyses are also performed on569

videos of the water surface recorded without any added tracing material. The tested570
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locations present radically different settings, whereby shadowy surfaces and high flow571

rates are observed in the artificially channelled stream reach and direct sunlight and572

lower velocities are found in the diverging stream reach.573

Based on experimental findings, drone-based data lead to maps comparable to574

LSPIV traditional configurations. However, experiments executed with the drone575

result in maximum velocities closer to benchmark values as compared to the alterna-576

tive LSPIV configurations. Drone-based data are sensitive to the presence of tracing577

material and the different type of tracer. On the other hand, traditional fixed LSPIV578

implementations (fixed-inclined) are not highly influenced by the observation time579

length and the absence of tracers. The modified fixed configuration (fixed-ortho) cap-580

tures smaller fields of view and, therefore, presents higher variability with regards to581

varying experimental conditions.582

Experimental findings support the use of drones for hydrological surface flow583

measurements. Nonetheless, the following factors should be considered to obtain584

accurate results: i) height of the vehicle with respect to the water surface: larger585

heights may be detrimental for measurement accuracy due to decreased visibility;586

ii) illumination conditions: direct sunlight may decrease the visibility of tracing587

material; iii) presence of tracers: the effect of homogeneously distributed floaters588

highly improves the generation of velocity maps. An important issue that should be589

addressed in the future entails the stability of the drone. Advanced image analysis590

and/or integration of high-precision GPS in the system should be explored to mitigate591

limitations in the drone’s hovering capability, that may result in velocity vectors in592

the opposite direction of the flow.593

Traditional fixed-inclined LSPIV implementations also present several issues.594

While not sensibly affected by the time length of the observation, measurements595

are consistently underestimated with respect to drone-based data and benchmark596

values. In addition, the low sensitivity of the methodology to the type or absence597

of tracers in the traditional fixed-inclined configurations raises several questions on598

the validity of the technique in challenging settings. On the one hand, selecting low599

image resolutions with respect to the actual fields of view may help mitigating the600

scarcity of tracers. On the other hand, the high distance of the apparatus from the601

water surface also results in lower velocity values and less accurate maps.602

Besides ascertaining the potential of aerial platforms for noninvasive surface flow603

measurements, experimental findings point out several inherent limitations in LSPIV604

practice. Specifically, the sensitivity of the approach to the quantity and spatial dis-605

tribution of tracing material severely constrains the applicability of the methodology606

in natural environments. According to results presented in this work, all configura-607

tions suffer from tracer-related factors, especially in case of the adversely illuminated608
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water surface in the diverging segment of the stream. Toward future enhancements609

of remote surface flow observations, alternative algorithms, such as particle track-610

ing velocimetry, should be taken into account to determine the flow velocity field in611

natural water bodies.612
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