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Abstract: An efficient in vitro morphogenesis, specifically through somatic embryogenesis, is consid-
ered to be a crucial step for the application of modern biotechnological tools for genetic improvement
in olive (Olea europaea L.). The effects of different ethylene inhibitors, i.e., cobalt chloride (CoCl2),
salicylic acid (SA), and silver nitrate (AgNO3), were reported in the cyclic somatic embryogenesis of
olive. Embryogenic callus derived from the olive immature zygotic embryos of the cultivar Leccino,
was transferred to the expression ECO medium, supplemented with the ethylene inhibitors at 20 and
40 µM concentrations. Among these, the maximum number of somatic embryos (18.6) was obtained
in media containing silver nitrate (40 µM), followed by cobalt chloride (12.2 somatic embryos @
40 µM) and salicylic acid (40 µM), which produced 8.5 somatic embryos. These compounds interfered
on callus traits: white friable embryogenic calli were formed in a medium supplemented with 40 µM
cobalt chloride and salicylic acid; in addition, a yellow-compact embryogenic callus appeared at
20 µM of all the tested ethylene inhibitors. The resulting stimulatory action of silver nitrate among all
the tested ethylene inhibitors on somatic embryogenesis, clearly demonstrates that our approach can
efficiently contribute to the improvement of the current SE protocols for olive.

Keywords: cobalt chloride; de novo organogenesis; Olea europaea L.; salicylic acid; silver nitrate

1. Introduction

Olive (Olea europaea L.) plants belong to the family Oleaceae, and are one of the most
popular species of the genus Olea, which is commonly grown in the Mediterranean region
and used for food purposes [1]. Furthermore, more than 750 million olive trees are culti-
vated worldwide. Among the more than one thousand known varieties, of which there are
about 600 in Italy, very few are suitable for modern cultivation systems, and the develop-
ment of novel cultivars is often hampered by the most commonly used breeding techniques
that are time-consuming [2]. Although olive, in general, is difficult to be manipulated,
in vitro, many cultivars have been established in vitro and micro propagated [3]. More-
over, in vitro culture has always been an excellent tool to support the various laboratory
techniques used for genetic, microbiological, physiological, and biochemical studies [4],
including biotechnological approaches.

In vitro morphogenesis through somatic embryogenesis is considered as the fun-
damental step for the application of different biotechnological tools for unconventional
breeding in many fruit species, including olives [1]. Previously, somatic embryogenesis
has been successfully achieved from zygotic embryos [5,6], radicle and cotyledon seg-
ments derived from mature embryos [7–10]. Furthermore, somatic embryogenesis has
also been achieved from mature tissues [1,11–15]. The induction and regeneration of so-
matic embryos are highly sensitive to culture conditions, such as the medium composition,
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physical environment of the culture, and the genotype and explant source, especially in
olives [1,2,15,16].

There are various factors that influence the somatic embryogenesis response in dif-
ferent plant species. Among them, ethylene is known to inhibit in vitro morphogenetic
responses in a genotype-specific manner [17]. Ethylene is recognized as a ubiquitous plant
hormone, which has a wide variety of effects on the growth and development of intact
plants [18]. It is one of the compounds produced during in vitro culture vessels up to
a physiological threshold [19]. The involvement of ethylene in plant tissue growth and
differentiation has been widely investigated [20]. Previous studies have demonstrated
that ethylene could influence in vitro morphogenetic response in plants [21–23]. There-
fore, regulation of ethylene perception or ethylene biosynthesis seems to be a promising
approach for increasing the efficiency of tissue culture protocols in plant systems. Among
these ethylene inhibitors, silver nitrate has been known to inhibit ethylene action [24],
and cobaltous ions inhibit ethylene biosynthesis [25], whereas salicylic acid has also been
proven to be a potent inhibitor of ethylene biosynthesis [26].

Plant regeneration systems, such as organogenesis and somatic embryogenesis (SE),
are eminent micropropagation processes that are based on plant cell totipotency. In organo-
genesis, plant organs, such as shoots, roots, and even flowers, can be formed from cultured
explants. However, for micropropagation purposes, the most interesting factor is de novo
shoot meristem formation followed by shoot growth and rooting [27], whereas SE is a
more complex developmental pathway, by which the bipolar structures identical to zygotic
embryos are developed from the somatic cells through a complex dedifferentiation process,
followed by totipotency acquisition and the formation of somatic embryos [28,29]. Since the
production of ethylene is directly involved in explant browning and plant morphogenesis
under in vivo and in vitro conditions, the inclusion of the compounds that inhibit ethylene
biosynthesis are a good alternative to modulate morphogenesis in plant cell and tissue
culture. Although different ethylene inhibitors are reported to promote in vitro shoot
organogenesis in various economically important plant species [30], the mechanism of their
stimulatory effect in olive has not yet been exercised. In the present study, we establish a
more efficient and reliable protocol for the induction of somatic embryogenesis in olives,
by studying the involvement of different ethylene inhibitors in the culture media.

2. Results and Discussion

The control of biotic contamination is one of the major concerns in the in vitro estab-
lishment of olive material. However, the establishment of callus culture starting from the
immature zygotic embryos was very easy due to the absence of endogenous contaminants
inside the seeds, and because the olive stones, more susceptible to contaminants, can be
strongly surface disinfected (Figure 1a), without compromising the viability of the well
protected embryos (Table 1) (Figure 1b,c).

Table 1. The contamination rates of the different explant sources (immature embryos of cv. Leccino
and uni-nodal explants of the cultivars CS-3T and F7P3) and the bud development from the aseptic
nodal explants of both cultivars. Data have been shown as the mean ± standard deviation. The mean
denoted by different letters are significantly different (Duncan’s test, p < 0.05).

Explant Source Contamination Rate (%) Explants Forming Shoots (%)

Zygotic Embryo of Leccino 2.1 ± 0.7 -

Nodes of CS-3T 56.4 ± 3.8 a 78.4 ± 8.8

Nodes of F7P3 33.2 ± 2.9 b 68.9 ± 10.2

For the in vitro establishment of the cultivars F7P3 and CS-3T, the disinfection proce-
dure used was very efficient, with more than 40% of aseptic explants, with greater success
in the “F7P3”, as confirmed by the statistical analysis (Table 1). The differences observed
among the cultivars are in line with the literature, and confirm that olive micropropagation,
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including the phase of in vitro establishment, are genotype dependent [2]. Subsequently,
the buds of the aseptic nodal explants were able to convert into normal shoots in both
cultivars, CS-3T and F7P3 (78.4 and 69.8%, respectively) (Figure 1e,f). These differences
observed between the cultivars are in line with the literature, and confirm that olive mi-
cropropagation, including the phase of in vitro establishment, are genotype dependent [2];
only a few shoots were hyperhydrated (Figure 1d), which rapidly became necrotic.
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shoots originated from the buds of the nodal explants of the cultivars F7P3 (e), and CS-3T (f). (Scale 
bar = 1 cm). 
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Figure 1. Lignified endocarp containing immature seeds (a), seeds released from the sclerified
endocarp (b), naked embryos after endocarp, and seed coat and endosperm removed (c). Nodal
explant producing hyperhydrated shoots, usually unable to convert into normal ones (d), normal
shoots originated from the buds of the nodal explants of the cultivars F7P3 (e), and CS-3T (f). (Scale
bar = 1 cm).

In the induction medium, the callus formation from both the immature zygotic em-
bryos and from the shoot apex (leaf primordia) of the cultivars F7P3 and CS-3T, has been
observed after 3–4 weeks of culture. The putative embryogenic calli derived from the
immature zygotic embryos showed a higher callus proliferation rate than those from the
cultivars F7P3 and CS-3T (Table 2); in particular, the calli derived from the embryos were
white and friable (Figure 2a), while most of the calli derived from cultivars F7P3 and CS-3T
appeared heterogeneous, yellowish and compact (Table 2 and Figure 2b). Surprisingly, by
the end of the 4th week of culture on the induction medium, some embryo-like structures
(Figure 2c) or embryos (Figure 2d) appeared on the three genotypes.
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Table 2. The callus formation of the different explant sources of the immature embryos of cv. Leccino,
and the leaflets of growing shoots from the varieties CS-3T and F7P3, after 4 weeks on the induction
medium. Data are reported as the mean ± standard deviation. The mean denoted by different
letters are significantly different (Duncan’s test, p < 0.05). The amount of callus formation has been
estimated by an arbitrary scale (0 no callus, 1: < 40%, 2: 40–80%, and 3: 80–100%) on visual criteria, as
recommended by [15].

Explant Source Explant Forming
Callus (%) Amount of Callus Callus Traits

Zygotic Embryo
Leccino 100 2.8 ± 0.3 a White and friable

Variety CS-3T 90 ± 5 2.2 ± 0.3 b White/yellowish
compact

Variety F7P3 95 ± 3 1.9 ± 0.2 b Yellowish and
compact/friable
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Figure 2. White callus derived from the zygotic embryos of open-pollinated cv. Leccino (a) and the
yellowish callus derived from the shoot apex of the cultivar CS-3T (b). Embryo-like structures in
CS-3T (c) and the aggregation of well-formed embryos on the callus surface of cultivar F7P3 (d).
(Scale bar = 1 mm).

On the expression medium, callus growth was observed in all the media containing
different combinations of ethylene inhibitors and in the control medium (lacking ethylene
inhibitors). In medium supplemented with 40 µM of AgNO3, after the third week of culture,
the callus showed a higher percentage of embryogenic callus formation (68.71%), followed
by 40 µM of SA treatment with 60.4% of embryogenic callus. As expected, the lowest
percentage of embryogenic callus (15.3%) was observed in medium without any ethylene
inhibitors (control) and, furthermore, failed to turn into somatic embryos in most cases,
allowing to the recovery of only a few normal embryos (Figure 3d). Statistical analysis
showed that the rates of callogenesis were not significantly different among the media
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containing the ethylene inhibitors AgNO3 and SA at concentrations of 20 µM, compared to
CoCl2, which produced a statistically lower percentage at 20 µM. Silver nitrate (AgNO3)
tested at all concentrations (20 and 40 µM) induced markedly higher numbers (9.2 and 18.6,
respectively) of the somatic embryos per explant. However, the somatic embryos obtained
from 20 µM of AgNO3 turned a deep brown color and could not convert into complete
somatic embryos. Among all these ethylene inhibitors, the maximum number of somatic
embryos was produced in media containing 40 µM (AgNO3) (Figure 3d), followed by
40 µM (CoCl2), 20 µM (AgNO3), and then SA (40 µM) (Figure 3a,e,f). The embryogenic calli
growing on 40 µM of cobalt chloride (CoCl2) and salicylic acid produced compact somatic
embryo-like structures, but they were unable to develop into a complete cotyledonary
structure. Concerning the appearance of callus, friable calli were produced on medium
supplemented with 20 µM of cobalt chloride (Figure 3c), and off-white-to-yellow colored
calli were observed at 20 µM of SA. The globular embryos obtained from the different
treatments have been able to convert into plants without any difference attributable to the
type of ethylene inhibitor used.

The results presented in this experiment confirm that the use of ethylene inhibitors in
culture media can enhance the ability of olive tissue cultures to produce a higher number
of somatic embryos per explant. The highest number of somatic embryos was achieved
on media supplemented with 40 µM of AgNO3. This result agrees with the previously
reported findings demonstrating the stimulative role of AgNO3 on shoot organogenesis
in many plant species, such as banana [30], Coffea [31], strawberry [32], sweet potato [33],
sesame [34], tomato [35], and turmeric [36]. For CoCl2 and SA treatments, a lower number
of somatic embryos were achieved, compared to the AgNO3 treatment. It is well known
that AgNO3 is a potent inhibitor of ethylene action [37], whereas CoCl2 and SA are known
to inhibit the enzymes aminocyclopropane-1-carboxylic acid (ACC) synthase and ACC
oxidase involved in ethylene biosynthesis [38,39].

There are several reports in literature that clearly show that ethylene influences callus
growth, shoot regeneration, and somatic embryogenesis in other plant species [40,41], but
not in olive. However, in the present study, the treatment with silver nitrate significantly
increased the SE production. Therefore, it can be suggested that silver nitrate is an ethylene
action inhibitor, which affects somatic embryogenesis by increasing or decreasing the
in vitro response of explants, depending on the species [42,43].

The precise mechanism of ethylene inhibitor action on plants is still uncertain. How-
ever, few existing evidences suggest their interference in the ethylene perception mecha-
nism. Recently, AgNO3 has been employed in plant tissue culture studies for inhibiting
ethylene action due to its water solubility and lack of phytotoxicity at certain concentra-
tions [44]. To summarize, the findings of this study demonstrate that ethylene inhibitors,
particularly AgNO3 and to a lesser extent CoCl2 and SA, enhanced the somatic embryo-
genic ability in olive explants (Table 3). Therefore, the effect of silver nitrate on somatic
embryogenesis can be carefully evaluated for each species. In our study, the resulting
stimulatory action of silver nitrate among other ethylene inhibitors tested on somatic
embryogenesis, clearly demonstrated its effective contribution to improve the somatic
embryogenesis protocols for olive.
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Figure 3. Effect of the ethylene inhibitors on somatic embryogenesis from callus derived from zygotic
embryos at different concentrations of AgNO3 20 µM (a), salicylic acid 20 µM (b), CoCl2 20 µM (c),
AgNO3 40 µM (d), salicylic acid 40 µM (e), and CoCl2 40 µM (f), after four weeks in culture. (Scale
bar = 1 mm). White arrows show the well-formed embryos.

Table 3. The effect of ethylene inhibitors on the percentage of embryogenic callus formation and the
number of somatic embryos recovered. The data are reported as the mean ± standard deviation. The
mean denoted by different letters are significantly different (Duncan’s test, p < 0.05).

Ethylene Inhibitors Embryogenic Callus (%) Number of Somatic Embryos per Callus

Control 15.3 ± 2.1 cd 3.8 ± 0.3 d

AgNO3 20 µM 23.8 ± 4.2 c 9.2 ± 0.3 bc

AgNO3 40 µM 68.7 ± 8.1 a 18.6 ± 0.2 a

SA 20 µM y 26.0 ± 4.5 bc 6.0 ± 0.3 cd

SA 40 µM 60.4 ± 4.1 b 8.5 ± 0.2 bc

CoCl2 20 µM 12.2 ± 1.5 d 7.3 ± 0.3 c

CoCl2 40 µM 28.1 ± 4.0 bc 12.2 ± 0.2 b
y SA (salicylic acid).
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3. Materials and Methods
3.1. Plant Material

Immature zygotic embryos were taken from adult and healthy, and open-pollinated
olive trees in cv. Leccino, sixty days after full bloom. The pulp of the immature fruits has
been eliminated (Figure 1a) and the endocarp (stone) was washed in running tap water,
then submerged in a solution of commercial bleach 20% v/v and a few drops of Tween-80 for
20 min. Finally, the olive stones were washed again with sterilized autoclaved water and
dried in a laminar flow hood under aseptic conditions. The disinfected stones were opened
by using a nutcracker, and the seeds were removed (Figure 1b) and used immediately or
stored in Petri dishes in a refrigerator (10 ◦C) for a week to extract the embryos using a
knife. Immature zygotic embryos (Figure 1c) were cultured in half-strength MS medium
(including vitamins) supplemented with 0.44 mg L−1 BAP. Callus produced after 4 weeks
was then used as the plant material for our study.

Regarding the adult material, two cultivars have been used. The clone F7P3 an CS-3T
have been established in vitro from potted plants grown in a greenhouse. Briefly, the
distal portion of the twigs of the potted plants were cut and the plants were sprayed with
fungicides, 7 days and 24 h prior to harvesting the explants to be used for the in vitro
establishment. The nodal explants were rinsed in running tap water, then immersed for
30 s in ethanol 70% (v/v), and then soaked for 15–30 min in an aqueous solution of ascorbic
acid 250 mg L−1 and PPM® (Plant Preservative Mixture) 0.1% (v/v). Decontamination was
performed with a solution of commercial bleach 20% and a few drops of Tween-80 for
20 min. The explants were rinsed three times in sterile deionized water and placed in 15 mL
tubes containing medium consisting of OM medium, including vitamins [33] supplemented
with mannitol 3.6%, L-Glutamine 2.2 g L−1, zeatin (4.56 µM), and GA3 1.44 µM (added
filter sterilized after autoclaving). The aseptic neo-formed shoots have been dissected and
transferred to a new proliferation medium [3].

3.2. Somatic Embryogenesis Induction

Putative embryogenic lines were initiated from the radicles and cotyledons of imma-
ture zygotic embryos (the immature zygotic embryos were obtained with the procedure
explained in Section 3.1), and cultured for three weeks on half-strength MS medium sup-
plemented with Thidiazuron (TDZ) 22.7 µM, 6-benzylaminopurine (BAP) 4.44 µM, and 2%
of sucrose. (All the chemicals used in this study were procured from Duchefa Biochemie,
Haarlem, Netherlands)

To induce embryogenic calli from the adult material of the studied cultivars, the shoot
apex with emerging leaf primordia with or without the first pair of developing leaves in
mature wild olive, as suggested by Narvaez et al. [15], have been cut from 21-day-old micro-
shoots, and the protocol adopted by [12] has been followed. Briefly, the above-described
explants have been cultured in liquid medium consisting of half-strength MS medium,
full strength of MS vitamins, 100 mg L−1 of myo-inositol, 30 µM of TDZ, and 0.54 µM of
NAA, and maintained in a 50 mL Falcon tube for 4 days in dark conditions at 24 ± 1 ◦C,
on an orbital shaker at 100 rpm. The amount of callus formation has been estimated by an
arbitrary scale (0 no callus, 1: <40%, 2: 40–80%, and 3: 80–100%) for the visual criteria (as
recommended by [15]).

3.3. Expression Phase and Maturation

After 4 weeks, calli derived from the immature zygotic embryos and from adult
material were transferred to a modified expression ECO medium [1] containing 1/4 macro-
OM; 1/4 micro-MS; 1

2 NN vitamins [45]; 1g L−1 casein hydrolysate; 0.55g L−1 L-glutamine;
and 2% sucrose; supplemented with 0.4 µM of benzylaminopurine (BAP), 0.49 of µM 6-(γ,
γ-dimethylallylamino) purine (2iP), 0.25 µM indole-3-butyric acid (IBA), and cefotaxime
(200mg L−1). The medium was supplemented with three different ethylene inhibitors:
silver nitrate (AgNO3), salicylic acid (SA), and cobalt chloride (CoCl2) at two concentrations
(20 µM and 40 µM). a survey on somatic embryogenesis has been carried out after four
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weeks in culture. The globular somatic embryos derived from the embryogenic calli of
the zygotic embryos from Leccino have been subjected to maturation and conversion,
as described by [9]. Briefly, embryos were placed in multiwells with an ECO medium
supplemented with 1g L−1 activated charcoal; after 6 weeks the mature embryos were
transferred to half-strength OM medium containing mannitol (3.6%).

3.4. Culture Conditions

All culture media were adjusted to pH 5.8 with 1M NaOH or HCl, before adding
the gelling agent. Both the induction and expression media were solidified with gelrite
at 3 g L−1, while other maintenance and regeneration media were solidified with plant
agar at 5.8 g L−1. All media were autoclaved at 121 ◦C for 20 min. The induction and
expression cultures were incubated in the dark with controlled conditions in a growth
chamber at 24 ± 1 ◦C, while the proliferation of shoots was routinely carried out under
a 16 h photoperiod, 40 µMol m−2s−2 PPFD (white LED lights), and at a temperature of
23 ± 1 ◦C.

3.5. Statistical Analysis

All data was processed by XLSTAT integrated into Microsoft Excel. All the parameters
were comprised of three replicates each, and then subjected to analysis of variance (ANOVA)
and t-test. A Duncan post hoc multiple range test was used for the mean separation and to
provide homogeneous groups for the means (at p ≤ 0.05).

4. Conclusions

In this study, an efficient and rapid protocol was developed for a more efficient somatic
embryogenesis by using ethylene inhibitors, which has paved a path to overcome the
double regeneration technique that has been previously adopted for mature tissues of olive
cultivars [11]. In addition, this technique is still essential to maintain the morphogenetic
callus for many subcultures in several woody species, including olive [6]. Silver nitrate has
a stimulatory effect on the somatic embryogenesis of olives, depending on its concentration;
AgNO3 at 40 µM was the best treatment, producing the highest frequency of somatic
embryogenesis in olives, compared to other ethylene inhibitors tested, such as salicylic
acid and cobalt chloride. The AgNO3 supposedly inhibits ethylene action by competing
with ethylene for the binding sites, and the silver ion can replace the cofactor single
copper ion (Cu) present in the ethylene-binding site of the ethylene receptor and lock it
to continuously suppress the ethylene response [46]. The positive role of silver nitrate in
somatic embryogenesis can contribute to unraveling the recalcitrant nature of the olive
species. In future research, it would be advantageous to test the effectiveness of silver
nitrate in combination with other ethylene inhibitors for the efficient somatic embryogenesis
in olives, particularly cobalt chloride, which also appears as a very promising molecule to
be tested in higher concentrations.
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