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Valorization of winery and distillery 
by‑products by hydrothermal 
carbonization
Marco Barbanera1*, Alessandro Cardarelli1, Eleonora Carota2, Marco Castellini1, 
Tommaso Giannoni3 & Stefano Ubertini1

This work aims at finding an alternative strategy to manage the waste generated by the winemaking 
industry to obtain a solid biofuel and phenolic compounds. The effect of temperature (180–260 °C), 
residence time (1–7 h), and biomass‑to‑liquid ratio (0.05–0.25) on the co‑hydrothermal carbonization 
of vine pruning and exhausted grape pomace, by using vinasse as moisture source, is studied. The 
effect of the variables is investigated and optimized using the Box–Behnken design of response 
surface methodology to maximize mass yield, fuel ratio, energy densification yield and phenols 
extraction yield and to minimize energy consumption. The statistical analysis shows that the 
carbonization temperature is a crucial parameter of the process, decreasing the product yield on one 
hand and improving the quality of hydrochar on the other. At the optimal conditions (246.3 °C, 1.6 h, 
0.066), an hydrochar yield of 52.64% and a calorific value of 24.1 MJ/kg were obtained. Moreover, 
the analysis of the H/C and O/C ratios of hydrochars demonstrates that carbonisation significantly 
improves the fuel properties of solid biofuel. Liquid by‑products obtained from the HTC process 
are found to contain high concentrations of organic matter but the BOD/COD ratios suggest their 
potential valorization by biological methods.

Abbreviations
BOD  Biochemical oxygen demand
COD  Chemical oxygen demand
EGM  Exhausted Grape Marc
HTC  Hydrothermal carbonization
HHV  Higher heating value
LHV  Lower heating value
RSM  Response surface methodology
TOC  Total organic carbon
BBD  Box–Behnken design
MY  Hydrochar yield
MH  Dry solid mass of hydrochar
MF  Dry solid mass of initial feedtostock
EDY  Energy densification yield
FR  Fuel ratio
VM  Volatile matter
FC  Fixed carbon
PEY  Phenols extraction yield
TPC  Total phenols content
ANOVA  Analysis of variance
EI  Energy input
Hwater  Enthalpy of water
cp  Specific heat capacity
As  Surface area of the reactor
k  Thermal conductivity of the insulation material
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s  Thickness of the insulation material
LOF  Lack of fit
GAE  Gallic acid equivalent

Winemaking industry produces a huge amount of waste, both in the form of liquid and solid materials, the 
management of which causes economic and environmental problems. These waste, with no economic value, are 
produced by viticulture, wine industry and alcohol distilleries activities and their inadequate management or 
disposal can cause environmental  burdens1.

Viticulture generates vine pruning, which is the main solid by-product of the in-field interventions; typically 
vine pruning is left or open-burned in the agricultural fields with significant emissions of pollutants, in both gas 
and particulate  phases2. Wine industry is responsible for the production of fresh grape marc biomass, mainly 
constituted by grape skins, seeds, pulp and stalks and obtained from grape pressing after the wine  production3. 
In Europe, according to the European Council Regulation (EC) 491/2009, grape marc biomass should be sent 
to alcohol distilleries to recover ethanol, tartrates and to produce spirit  liquors4. However, this process produces 
other waste, such as a solid fraction, the exhausted grape marc (EGM), and vinasse, which is a liquid stream 
whose disposal and recycling represent a serious environmental problem. Actually a large fraction of EGM is 
simply disposed of, and then dumped or settled in ponds constituting a relevant environmental issue due to its 
high organic carbon content (31–54%)5. Otherwise, EGM is also employed as compost or animal feed, or simply 
discarded as natural waste in landfills. Recent studies have demonstrated that EGM can be fruitfully employed 
to extract high-added polyphenols, contributing to the development of the bioeconomy in the wine  industry6. 
Grape phenolic compounds are of great interest for use as antioxidants, antimicrobials, and enzyme  modulators7. 
The inadequate disposal of vinasse can cause salinization, sodification, and acidification of soil, due to its low 
pH, high biochemical oxygen demand (BOD), high chemical oxygen demand (COD) and high solid  content8.

Italy is one of the major wine producers with an area dedicated to vine cultivation of 657.700 hectares in 
 20189. The wine industry produces approximately 3.0 t/ha of vine pruning, with an average moisture content of 
45%, and about 2.7 t/ha of fresh grape marc, with a moisture content of 60%10,11. Considering also that about 
10–15 L of vinasse are obtained per 1 L of ethanol  produced12, the efficient disposal of winery waste is a serious 
problem from an economic and environmental point of view.

However, the main drawback to the recovery of winery and distillery waste is their high moisture content 
which leads to an increase of transport costs and consuion of energy needed for drying before use. In this context, 
the hydrothermal carbonization (HTC) process could be a valuable and profitable option to produce renewable 
energy from winery and distillery waste. Unlike other thermochemical conversion technologies (such as pyroly-
sis, gasification, and combustion), HTC allows to treat the wet feedstock without prior dewatering and drying.

HTC is a promising thermal conversion process able to convert biomass into two main streams, a coal-like 
material with a higher carbon content and a liquid product (process water), rich in readily biodegradable organics 
(e.g. organic acids, furfurals, sugars, phenols), and a small amount of gaseous products, mainly containing  CO2

13. 
The HTC is conducted in a pressure vessel by applying mild temperatures (generally between 180 and 270 °C) and 
high pressures (approximately 2–6 MPa) to biomass in aqueous phase with reaction time from minutes to few 
 days14,15. Under these conditions, wet biomass with a low calorific value is upgraded through a series of complex 
reactions (hydrolysis, dehydration, decarboxylation, aromatization and condensation polymerization) into a 
solid product, called hydrochar, with similar characteristics to natural coal in regard to elemental composition 
(C, H, O and N) and lower heating value (LHV), increasing thus the energetic use of the  biowaste16.

Only few studies on hydrothermal carbonization of waste from winemaking industry are availble in literature. 
Basso et al.17 conducted several HTC tests at different temperatures and residence times on fresh grape marc, 
obtaining an increase of higher heating value (HHV) of the hydrochar from 43 to 54%, at 250 °C depending on 
residence time. Basso et al.18 analyzed the behaviour of grape marc constituents (seeds, skins) during HTC at 
several process conditions (temperature: 180, 220 and 250 °C; reaction time: 0.5, 1, 3 and 8 h). Duman et al.19 
analyzed the effects of HTC process on fuel characteristics and combustion behavior of hydrochar obtained from 
vine pruning. In all these investigations distilled water is used as reaction media in order to reach the useful 
moisture content of the substrate.

However, the use of pure water as the liquid source cannot be considered as an environmentally sustainable 
practice in light of the global water scarcity. Venna et al.20 and Li et al.21 used landfill leachate as liquid source 
during HTC of yard waste and food waste, highlighting that it had minimal impact on the fuel characteristics of 
the hydrochars than distilled water. Also, Weiner et al.22 demonstrated that the use of organosolv wastewater had 
no negative effects on the HTC process of chaff and hydrochar properties. In this way, liquid waste effluents, such 
as vinasse, could be an interesting option which should be explored to analyze its influence on the carbonization 
rate and the physical and chemical properties of the hydrochar.

This study aims at evaluating the efficiency of vinasse as moisture source for the co-hydrothermal conversion 
of vine pruning and EGM, recovering all the winery and distillery waste. An experimental design is defined, 
applying statistical response surface methodology (RSM), in order to determine the optimum values of the 
operating conditions for four response variables, mass yield, energy densification yield, fuel ratio and phenols 
extraction yield. Then an optimization study is carried out to find the best process conditions that lead to the 
maximization of all response variables and to the minimization of the energy consumption of the HTC process. 
The results obtained at the best process conditions are compared with those obtained using distilled water as 
reaction medium.
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Materials and methods
Raw materials. Vine pruning used for the experiments is obtained from a local farm in Umbria, located 
in the Center of Italy, while EGM and vinasse are collected from the Bonollo distillery (Italy) after ethanol and 
tartaric acid extraction by distillation process. Vine pruning (moisture content as received: 42 wt%) and EGM 
(moisture content as received: 71 wt%) are dried at 105 °C for 24 h to remove residual moisture and obtain reli-
able and comparable results by tracking the exact amount of feedstock used in each HTC test. Subsequently, 
dried biomass are milled to a final particle size smaller than 500 μm to obtain uniform size distribution of the 
particles. Vinasse is also filtered with a 3 μm filter paper before its use in the HTC experiments, in order to prop-
erly evaluate the mass balance of the process.

Table 1 reports the chemical and physical characterization of vine pruning and EGM. We observe that the 
ultimate and proximate analysis shows a higher nitrogen and ash content in EGM compared to vine pruning. 
Since the nitrogen and ash removal after the HTC process is  negligible23, the idea of combining EGM with woody 
biomass is reinforced in order to obtain a solid biofuel with better combustion properties. On the other hand, 
the high calorific value of EGM and its availability make this waste a promising feedstock for the HTC process. 
Table 1 summarises also the physicochemical characteristics of the vinasse.

Hydrothermal carbonization. HTC tests are carried out in a 600 mL Teflon lined stainless steel Parr reac-
tor (reactor series 4560, Moline, IL) under autogenic pressure. Before each trial, a blend consisted of a 50 wt% 
vine pruning to 50 wt% EGM is prepared. For each experimental run, the blend is directly mixed with vinasse 
according to the solid to liquid ratio by weight set by the experimental design (S:L) and loads into the vessel of 
the reactor.

Then, the system is sealed and the vessel is purged with nitrogen gas to remove air from the reactor. The loaded 
reactor is heated to the desired temperature with a heating rate of 3 °C/min and kept at that temperature for the 
required time. The stirring rate of the agitator is set to 200 rpm. The residence time is referred to the holding 
time of reactor after reaching the set temperature. The pressure within the reactor, only due to feedwater at the 
reaction temperature, is kept autogenic and is not monitored. Then, the reactor is quenched in the cold water up 
to room temperature and the slurry is filtered by a Büchner filtering system with a filter paper (Whatman filter 
paper, 8 μm). Hydrochars are washed with distilled water for several times and oven-dried at 105 °C for 24 h to 
remove residual moisture.

Dried hydrochars are weighted to calculate the mass yield of the HTC process and sealed in drying vessels 
until further use. The filtrate is bottled and maintains at + 4 °C until further analyses.

Experimental design and process parameters. The optimum HTC conditions for hydrochar produc-
tion and phenols extraction is determined through the Response Surface Methodology (RSM) which also allows 

Table 1.  Physicochemical characteristics of vine pruning, EGM and vinasse (the values represent average of 
triplicates).

Vine pruning EGM Vinasse

Ultimate analysis (wt%, db)

C 44.52 46.71

H 6.97 6.84

N 0.84 2.33

S 0.05 0.12

O 44.10 36.54

Proximate analysis (wt%, db)

Volatile matter 76.07 71.03

Ash 3.52 7.46

Fixed carbon 20.41 21.51

Lower heating value (MJ/kg, db) 17.59 19.20

Compositional analysis (wt%, db)

Cellulose 31.46 11.50

Hemicellulose 12.37 7.31

Lignin 30.29 43.14

Extractives 6.27 11.83

pH 5.18

COD (mg/L) 23,304

BOD (mg/L) 10,440

TOC (mg/L) 9710

Total N (mg/L) 231

Total Phenols (mg GAE/L) 781
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to analyze the interactions between and amongst all the  variables24. The Box–Behnken design (BBD) method 
with three factors and three levels is employed to optimize the independent process  variables25.

Temperature (A), residence time (B), and S:L ratio (C) in the range of 180–260 °C, 1–7 h, and 0.05–0.25, 
respectively, are assumed as independent variables and coded at three levels (− 1, 0 and + 1), corresponding to 
low, mid and high level. The BBD experimental design includes a total of 15 tests, with 3 replicates at the central 
point useful to evaluate the experimental error (Table 2). Four dependent variables are selected as response 
variables (mass yield, energy densification yield, fuel ratio, and phenols extraction yield) which are calculated 
using the following equations:

where MY is the hydrochar yield (%), defined as the dry solid mass ratio of hydrochar (MH) to that of the initial 
feedstock (MF), EDY is the energy densification yield, obtained by the ratio between lower heating value of 
hydrochar  (LHVh) and feedstock  (LHVf), FR is the fuel ratio, determined by dividing fixed carbon content of the 
sample (FC) by its volatile matter content (VM), and PEY is the phenols extraction yield, obtained considering 
the total phenols content (TPC) in the liquid fraction (expressed as mg of gallic acid equivalents per mL), the 
volume of the liquid fraction  (Vl, expressed in mL), the total phenols content  (TPCw) in the feedwater (expressed 
as mg of gallic acid equivalents per mL), and the volume of the feedwater  (Vw, expressed in mL).

A second order polynomial equation (Eq. (5)) is used to establish a mathematical relationship between the 
independent variables and the responses:

where Y is the predicted response and β0, βi, βii, and βij are regression coefficients for intercept, linear, quadratic 
and interaction terms, respectively.

The analysis of variance (ANOVA) for the determination of significance of models and process parameters 
are conducted using the Minitab 17 statistical  software26. Model validation and numerical optimization by desir-
ability function are also performed. The goal for response in the desirability function approach is at the the same 
time reaching a maximum for all the selected response variables. Each variable is transformed to a dimensionless 

(1)MY(%) =

(

MH

MF

)

× 100,

(2)EDY =
LHVh

LHVf
,

(3)FR =
FC

VM
,

(4)PEY

(

mgGAE

g

)

=
((TPC × Vl)− (TPCw × Vw))

MF
,

(5)Y = β0 +

3
∑

i=1

βiXi +

3
∑

i=1

βiiX
2
i +

3
∑

i=1

3
∑

j=i+1

βijXiXj ,

Table 2 .  Experimental design with actual and codified levels and output variables of the process optimization 
experiments. MY hydrochar yield, EDY energy densification yield, FR fuel ratio, PEY phenols extraction yield, 
EI energy input.

Run Temperature (°C) Time (h) S:L ratio MY (%) EDY FR PEY (mg GAE/g) EI (kJ)

1 260 (+ 1) 1 (− 1) 0.15 (0) 51.11 1.27 0.68 11.52 304.53

2 220 (0) 1 (− 1) 0.05 (− 1) 59.33 1.08 0.43 22.03 261.25

3 220 (0) 4 (0) 0.15 (0) 60.22 1.15 0.59 7.40 296.45

4 220 (0) 4 (0) 0.15 (0) 62.13 1.15 0.56 7.61 296.45

5 180 (− 1) 4 (0) 0.25 (+ 1) 75.73 0.99 0.40 2.22 223.65

6 220 (0) 7 (+ 1) 0.05 (− 1) 50.34 1.22 0.67 21.89 356.82

7 220 (0) 4 (0) 0.15 (0) 59.98 1.16 0.58 9.35 296.45

8 260 (+ 1) 4 (0) 0.25 (+ 1) 50.53 1.29 0.78 11.80 346.44

9 180 (− 1) 7 (+ 1) 0.15 (0) 70.44 1.09 0.43 5.90 271.43

10 260 (+ 1) 7 (+ 1) 0.15 (0) 46.67 1.35 0.80 12.92 419.70

11 260 (+ 1) 4 (0) 0.05 (− 1) 45.33 1.33 0.76 27.90 377.79

12 220 (0) 7 (+ 1) 0.25 (+ 1) 61.60 1.18 0.61 6.32 331.65

13 220 (0) 1 (− 1) 0.25 (+ 1) 65.23 1.08 0.48 8.34 236.09

14 180 (− 1) 4 (0) 0.05 (− 1) 66.05 1.03 0.39 15.80 243.24

15 180 (− 1) 1 (− 1) 0.15 (0) 70.13 0.98 0.38 3.94 195.47
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desirability value, d, in the range 0 ≤ d ≤ 1 and if d is equal to 0 than the response is completely unacceptable while 
if d is equal to 1 the response is at its  goal27.

Energy consumption of the process. A simplified calculation of the energy input for the thermal treat-
ments is performed considering the energy required to heat water and biomass in a closed batch system and the 
heat loss from the reactor. The initial temperature in the reactor system is assumed to be 25 °C and heat released 
and absorbed by chemical reactions is neglected because HTC reactions are net exothermic based on external 
energy input to work at ideal  temperatures28. The energy input (EI) at different operating conditions is calculated 
as follows:

being  mwater (kg) and  mfeedstock (kg) the water and biomass weight of the mixture, respectively. In Eq. (6)  Hwater,HTC 
and  Hwater,25 are the enthalpy of water at the HTC temperature and at 25 °C, respectively,  As is the surface area 
of the reactor (0.041  m2), k and s are the thermal conductivity of the insulation material (0.042 W/mK) and 
the thickness of the insulation (0.075 m), respectively. The specific heat capacity of the biomass,  cp,feedstock (J/kg 
K), is, calculated through Eq. (7) by assuming a mean temperature between the HTC temperature and 25 °C:

Such a calculation does not account for water vaporization enthalpy because phase change is avoided in the 
HTC process and for drying the produced hydrochar.

Analytical methods. Analysis of solid samples. The untreated and carbonized biomass are analyzed 
through chemical and physical characterization. Proximate analysis is performed to determine the moisture con-
tent, ash content and volatile matter according to the UNI EN ISO 18134-2:2017, the UNI EN ISO 18122:2016, 
and the UNI EN ISO 18123:2016 methods, respectively, through thermogravimetric analyzer (TGA-701, LECO 
Corporation). Fixed carbon (FC) content is obtained by subtracting the sum of moisture, ash and volatile matter 
from 100 wt%. Elemental analyser (TruSpec CHN, LECO Corporation) is used to analyze the carbon, hydrogen, 
and nitrogen contents of the samples, according to the UNI EN ISO 16948:2015. Total content of sulphur is 
determined following the UNI EN 15289 (method A) by using the inductively coupled plasma emission spec-
trometer (Optima2000DV, Perkin Elmer). The oxygen content is calculated by difference as O = 100 − (C + N + 
H + S + ash). HHV of samples is measured according to the UNI EN ISO 18125:2018 by means of a isoperibolic 
calorimeter (AC-350, LECO Corporation). Then, the lower heating value (LHV) was calculated from the higher 
heating value, depending on the hydrogen content. Compositional analysis, in terms of hemicellulose, cellulose, 
lignin, and extractives contents is performed according to the National Renewable Energy Laboratory (NREL) 
 protocols29, as described  in30.

Analysis of liquid samples. Feedwater and aqueous phase are characterized in terms of pH, total organic car-
bon (TOC), total nitrogen (TN), chemical and biological oxygen demand (COD, BOD), and TPC. pH is deter-
mined using a pH-meter (HI 2221-02, Hanna instruments). COD, BOD and TOC are determined according 
to Standard  Methods31.  Total nitrogen is determined by a modified  Kjeldahl method  32 through microwave 
digestion (CEM Mars Xpress, Matthews) with a mixture of 37% HCl (Carlo Erba Reagenti, Italy) and 30% 
 H2O2 (Merck KGaA, Germany) and the following spectrophotometric determination of ammonium using the 
nitroprusside  method30. Total phenols content is determined by means of a spectrophotometer at 750 nm wave-
lenght with Folin–Ciocalteu  reagent33. The results are expressed as mg of gallic acid per L of liquid fraction.

Results and discussion
Effects of process parameters. Effects of process parameters on mass yield. As shown in Table 2, HTC 
operating conditions have a significant impact on the mass yield, dispersing widely from 45.33 (260–4–0.05) to 
75.73% (180–4–0.25), which suggests that the hydrochar yield depended on the choice of hydrothermal condi-
tions.

Figure 1 shows the contour plots of MY and highlights the interaction effects of the independent variables. 
We note that temperature has a high influence on hydrochar yield. In fact, as a decrease in the hydrochar yield 
from 70.59 to 48.41% is observed with the HTC temperature increases from 180 to 260 °C, keeping constant the 
other variables. This is in agreement with other studies available in  literature34,35, which show that a temperature 
rise increases the decomposition of biomass, mostly due to the degradation of cellulose and hemicellulose, and 
the potential for the release of volatile matters. Furthermore, the decomposition of biomass could be facilitated at 
higher temperatures by decreasing the dielectric constant of water (i.e. by increasing the reaction temperature), 
making the water behaving similarly to a polar organic  solvent36.

A negative correlation with the hydrochar yield is observed also for the residence time, although the effect 
is milder than that produce by the HTC temperature. This is probably ascribable to the slow heating rate which 
ensures sufficient time for biomass decomposition and for the cross-reaction of intermediate products, as also 
observed by Chen et al.35. Moreover, the further mass loss during the residence time, which is to say after heat-
ing up to the desired reaction temperature, may be related to the formation of lighter organic compounds and 
permanents gases. An opposite trend is observed for the S:L ratio, whose growth from 0.05 to 0.25 increases 
the mass yield from 55.26% to 63.27%, thanks to the grater ability of the liquid phase to dissolve and maintain 
solubilised chemical species deriving from  biomass37.

(6)
EI(kJ) =

[

mwater ×
(

Hwater,HTC −Hwater,25

)]

+
[

mfeedstock × cp,feedstock × (THTC − 25)
]

+

[

As ×
k
/

s × (THTC − 25)× t
]

,

(7)cp,feedstock = 2300− 1150× e−0.0055T .
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Based on the BBD results showed in Table 2, an empirical relationship that relates the response (mass yield) 
and selected variables is obtained, as described by Eq. (8).

The significance and suitability of the quadratic model is evaluated by ANOVA at 95% confidence (p < 0.05), 
and the results are shown in Table S1 (Supplementary Materials). The p-values and F-values are applied to 

(8)
MY(%) = 86.2−0.071A+1.470B+1.112C−0.0003A2

−0.082B2−0.009C2
−0.010AB−0.003AC+0.045BC.

Figure 1.  Contour plot of MY (Hydrochar Yield) with interaction between (a) S:L ratio and time, (b) S:L ratio 
and temperature, (c) time and temperature. Hold values: Temperature: 220 °C, time: 4 h, and S:L ratio: 0.15.
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evaluate the significance of the coefficients. In particular, the terms with a p-value lower than 0.050 denote a 
higher significance of coefficient. It is interesting to note that only the linear terms are found to be statistically 
significant (p > 0.05) meaning that the hydrochar yield depends more upon the individual change of the inde-
pendent variables, rather than their interactions.

According to these results, the model F-value of 47.61 indicates that the model is statistically significant. The 
adequacy of the model is further confirmed by an adjusted determination coefficient  (R2) of 0.9677 and a lack of 
fit (LOF) test 2.62. The  R2 obtained for the regression model is 0.9885, meaning that the model explains 98.85% 
of the variation around the mean. However,  R2 is sensitive to the degree of freedom and, thus, adjusted  R2 is 
more reliable to be used for model evaluation, decreasing the number of insignificant terms in the model when 
the model factors increases. Its value higher than 0.95 proves the adequacy of the model. Furthermore, the good 
agreement between predicted  R2 value of 0.8477 and adjusted  R2 value of 0.9677 (being within 0.2 of each other) 
suggests that there is a linear relationship between the experimental and calculated mass  yield38. In addition, the 
lack of fit test is carried out to determine the adequacy of the regression model in describing the observed data 
or if significant terms are excluded from the model. The lack-of-fit should be not significant (p-value > 0.05) for 
a suitable fitting of response surface models. The “Lack of Fit F-value” of 2.62 implies there is a 28.9% chance 
that a “Lack of Fit F-value” this large could occur due to noise.

Effects of process parameters on energy densification yield. The observed EDY values higher than 1 clearly indi-
cate that the HTC treatment improves the energy density of the hydrochar. The increased calorific value of hydro-
char EDY values is observed at all tested conditions, except for the hydrochar obtained at 180 °C—4 h—0.25 and 
at 180 °C—1 h—0.05. Anyway, in these cases, the EDY reduction is always below 2%, thus confirming that a 
good energy densification is obtained at most operating conditions.

We also note that EDY is strongly affected by the processing variables, with experimental values ranging 
from EDY = 0.98, at 180 °C—1 h—0.05, to EDY = 1.35, at 260 °C—7 h—0.15. Similar energy densification ratios 
are obtained for hydrochars produced from paper mill sludge residue (EDY = 1–1.639) and spent coffee grounds 
(EDY = 1.16 to 1.4540). In contrast to the hydrochar yield trend, the energy densification yield of hydrochar grows 
by increasing the HTC temperature and the residence time.

The influence of the S:L ratio on EDY, shown in Fig. 2, is less significant with a slight EDY decrease detected 
at high and low S:L ratios for an HTC temperature below 210 °C and only at high S:L ratios in the rest of the 
temperature observation range.

Similar effects of temperature and residence time upon energy densification yield have been observed in 
literature with sunflower  stalk41,  miscanthus42, and almond-tree  pruning43. In fact, under severe conditions, 
the increase of EDY is mainly due to the decarboxylation of biomass components that causes a reduction of the 
oxygen content in the  hydrochar39.

The following equation represents the quadratic response surface regression model generated by ANOVA:

Equation (9) allows to predict the EDY in terms of the actual factors. The F and p values, summarised in 
Table S1 (Supplementary Materials), demonstrate that the model is statistically significant as well as the linear 
coefficients (A, B, C) and a quadratic term coefficient  (A2), and indicate a nonlinear relationship between the 
hydrochar yield and the reaction temperature.

The high value of regression coefficient (0.9959) suggests that the model could be accepted with satisfac-
tory accuracy. The value of adjusted  R2 (0.9885) confirms that the model is highly significant. In addition, high 
predicted  R2 (0.9365) indicates that the model could be used to predict response for a given set of independent 
variables. The “Lack of Fit F-value” of 16.72 implies the Lack of Fit is not significant relative to the pure error. 
There is a 5.70% chance that a “Lack of Fit F-value” this large could occur due to noise.

Effects of process parameters on fuel ratio. The fuel ratio is used to understand the combustibility of the solid 
fuel; high values of the fuel ratio indicate a more stable combustion and a less violent flame, while low values 
suggest incomplete combustion with a higher smoke emission  tendency44.

Figure 3 shows the effect of temperature, residence time and S:L ratio on the fuel ratio. We note that the fuel 
ratio is influenced by the HTC temperature and the residence time while the effect of the S:L ratio is negligible. 
Fuel ratio is found to rise steeply with the temperature increasing from 0.40 to 0.76 (keeping constant the other 
variables), obtaining a maximum increase of about 121% when compared with raw feedstock. This result is mainly 
due to the rapid decrease of volatile matter content at a higher temperature, which accelerates the deoxygenation 
reaction of the biowaste. Similar trend and values have been observed for other biomass in previous  studies35,40,45 
while slightly different values have been obtained for the HTC process of the single winery and distillery by-
products using distilled water as process water. Petrovic et al.46 obtained a fuel ratio of 0.41 from hydrothermal 
carbonization of grape pomace at 220 °C for 1 h, while Duman et al.19 reported that FR varied from 0.68 (at 
220 °C for 120 min) to 1.91 (at 260 °C for 30 min) for vine pruning. The effect of the holding time on the fuel 
ratio is less significant than the effect of temperature.

However, it can be observed that the fuel ratio significantly increases (from 0.49 to 0.58) when the residence 
time rises from 1 to 4 h, while, for a residence time up to 7 h, the fuel ratio slightly increases only up to 0.63.

Regression model for fuel ratio derived from ANOVA analysis is given below:

(9)
EDY = 0.873−0.002A+0.042B+0.004C+0.00001A2

−0.0004B2−0.0001C2
−0.00007AB−0.000001AC−0.0004BC.

(10)
FR = −0.013−0.0003A+0.028B+0.004C+0.000009A2

−0.002B2−0.00009C2
+0.0001AB+0.00001AC−0.0009BC.
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ANOVA results, presented in Table S1 (Supplementary materials), show that only the linear terms of reaction 
temperature and residence time of the regression model are significant. There is only a 0.1% chance that Model 
F-Value could occur due to noise and confirms the validity of the predicted model. The lack of fit F-value of 8.86 
implies the lack of fit is not significant, as there is 10.3% chance that the lack of fit F-value occurs due to noise. 
The closeness of  R2 (0.9804) and adj-R2 (0.9452) values shows also that there is a good relationship between the 
experimental and predicted value.

Effects of process parameters on phenols extraction yield. Vine pruning and EGM are composed by various 
non-volatile and volatile phenolic compounds that could be interesting to extract to be used in pharmaceutical, 
cosmetics, and food industries. In particular, the high amount of phenolic compounds in the grape pomace is 

Figure 2.  Contour plot of EDY (Energy Densification Yield) with interaction between (a) S:L ratio and time, 
(b) S:L ratio and temperature, (c) time and temperature. Hold values: Temperature: 220 °C, time: 4 h, and S:L 
ratio: 0.15.
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due to their partial extraction during the winemaking process; however, the TPC content is significantly reduced 
in the exhausted grape marc due to the thermal degradation of polyphenols during the distillation process at 
high  temperatures6. Figure 4 shows that PEY is mostly influenced by S:L ratio and temperature while reaction 
time plays a negligible role in the polyphenols extraction. Atallah et al.47 obtained the same result during the 
hydrothermal carbonization of olive mill wastewater. Biomass-water ratio has the main influence on the PEY, 
resulting in a steep reduction of the PEY, with the increase of ratio from 0.05 (21.91 mg GAE/g) to 0.15 (8.38 mg 
GAE/g), followed by a more gradual decrease (7.17 mg GAE/g, at S:L ratio: 0.25). On the other hand, HTC 
temperature has a more linear effect on the EPY, causing an increase of the phenols extraction from 6.96 mg 
GAE/g to 16.04 mg GAE/g, when temperature raises from 180 to 260 °C. This trend could be explained by con-
sidering that phenolic compounds in biomass are both present in a soluble form (free or conjugated to soluble 
carbohydrates by ester/ether bonds) or in an insoluble form bound by ester/ether bonds to  lignin48. Thus, an 

Figure 3.  Contour plot of FR (Fuel Ratio) with interaction between (a) S:L ratio and time, (b) S:L ratio and 
temperature, (c) time and temperature. Hold values: Temperature: 220 °C, time: 4 h, and S:L ratio: 0.15.



10

Vol:.(1234567890)

Scientific Reports |        (2021) 11:23973  | https://doi.org/10.1038/s41598-021-03501-7

www.nature.com/scientificreports/

high water content in the HTC process allows to ease the solubilization of the free polyphenols and, under high 
temperature, it plays the role of reactant hydrolyzing lignocellulosic structure. In fact, lignin starts to decompose 
at 200 °C due to the dissociation of β-O-4 linkages by hydrolysis to produce phenol, aldehyde, and ketones, 
which are polar compounds diffusing into the liquid  phase49. To obtain the maximum phenols extraction yield 
(27.78 mg GAE/g), time and temperature should be kept at the maximum level while solid-to-liquid ratio should 
be at the minimum value. This result is interesting if compared with the most common methods for recovery 
of polyphenols from grape pomace. Drevelegka and  Goula50 obtained a maximum yield of 33.88 mg GAE/g by 

Figure 4 .  Contour plot of PEY (Phenols Extraction Yield) with interaction between (a) S:L ratio and time, (b) 
S:L ratio and temperature, (c) time and temperature. Hold values: Temperature: 220 °C, time: 4 h, and S:L ratio: 
0.15.
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direct ultrasound-assisted extraction, Da Porto and  Natolino51 found an optimum value of 24.14 mg GAE/g dry 
pomace by employing the solid–liquid extraction technique, while according to Aliakbarian et al.52 a yield of 
31.69 mg GAE/g dry pomace was obtained by subcritical water extraction.

The regression equation of the PEY response in terms of the actual variables is as follows:

The analysis of variance confirms S:L ratio as having the most significant enhancement effect on phenols 
extraction given by its very large F value (436.116). The analysis reveals that the linear terms A, C are significant 
model terms, as well as the squared term  C2. The statistical analysis of the response reveals that the regression 
coefficient  (R2) was 0.9836, whereas the predicted  R2 is 0.8898 and the adjusted  R2 is 0.9541.

The probability of F function for the model term is less than 0.05 which confirms the significance of the model, 
while the probability of F function for the lack of fit is greater than 0.05 which proves the non-significance of 
error. Furthermore, the lack of fit F-value of 2.91 shows that the lack of fit is not significant relative to pure error.

Hydrochar properties: proximate and elemental composition. Table 3 shows the elemental com-
position of the hydrochar obtained under different HTC conditions. It can be noted that the carbon content 
significantly increases with increasing carbonisation temperature while residence time and solid-to-liquid ratio 
do not have a prominent effect on the C content. In addition, the HTC conditions has not statistically significant 
effect on the hydrogen, nitrogen and sulphur content of the hydrochar. Similar results are obtained by Tag et al.41 
during the hydrothermal carbonization of poultry litter, sunflower stalks, and algal biomass.

The increase of C content is mainly due to the degradation of organic constituents, hemicellulose and cel-
lulose, and the deposition of dissolved  compounds53. Furthermore, with the increase of the HTC temperature 
the dehydration and decarboxylation reactions of the coalification process are more intense, resulting in the 
decrease of H/C and O/C atomic ratios and, thus, in the increase of LHV and energy density of the hydrochar. In 
particular, the decomposition and cracking of biomass lead to the reduction of oxygen content in the hydrochar 
which is reduced by a maximum of 61.8% (for the sample 260–4–0.05) from the original feedstock (40.32 wt%, 
db, calculated as the mean value of O content of vine pruning and EGM).

The Van Krevelen diagram (Fig. 5) is used to analyzed the coalification degree of the produced hydrochar 
during the HTC process. In this plot, the dashed lines represent the dehydration, decarboxylation, and demetha-
nation processes and other H/C–O/C atomic  ratios54 are reported for other feedstock (anthracite, lignite, sub-
bituminous coal) in order to perform a comparison with the hydrochar samples. It is clear that the predominant 
reaction pathways are dehydration (production of water) and decarboxylation (formation of carbonyls including 
carboxylic acids) while demathanation (production of methane) has a negligible influence on the HTC process. 
When the coalification degree of the hydrochar is compared with other typical fossil fuels, it is observed that 
at higher temperatures the hydrochar shows greater carbonaceous similarity with coal and lignite structure.

In particular, lower atomic ratios of the hydrochar than the raw material demonstrates the enhancement of 
the fuel properties of hydrochars because of the less smoke and water vapor release. The important upgrading 
of the fuel quality of the hydrochars is also confirmed by the LHV values which increases with increasing HTC 
temperature. In particular, the maximum values 23.36–24.84 MJ/kg obtained at 260 °C are comparable to that of 

(11)
PEY

(

mgGAE
/

g

)

= 4.900+0.109A+0.240B−2.185C+0.00007A2
+0.037B2+0.062C2

−0.001AB−0.002AC−0.016BC.

Table 3.  Proximate analysis, ultimate analysis and heating value of hydrochars. VM volatile matter, FC fixed 
carbon, LHV lower heating value.

Sample

Elemental analysis (wt%, db)
Proximate analysis 
(wt%, db)

LHV (MJ/kg, db)C H N S O H/C O/C VM Ash FC

180–1–0.15 49.25 6.53 1.47 0.15 39.36 1.59 0.60 70.41 3.25 26.45 18.03

180–4–0.05 51.97 7.60 2.18 0.09 34.96 1.75 0.50 69.52 3.20 27.29 18.95

180–4–0.25 50.24 7.02 2.07 0.23 36.21 1.68 0.54 68.94 3.24 27.63 18.21

180–7–0.15 53.50 7.27 2.13 0.21 33.54 1.63 0.47 67.37 3.36 29.28 20.05

220–1–0.05 55.11 7.58 2.13 0.11 31.32 1.65 0.43 67.18 3.75 29.08 19.88

220–1–0.25 55.03 6.46 1.53 0.04 33.43 1.41 0.46 65.08 3.51 31.42 19.87

220–4–0.15 60.30 6.32 1.81 0.19 26.99 1.26 0.34 61.11 4.39 34.50 21.16

220–4–0.15 59.12 6.44 1.87 0.14 28.91 1.31 0.37 60.55 3.53 35.93 21.17

220–4–0.15 59.55 6.38 1.83 0.20 28.65 1.29 0.36 61.30 3.40 35.31 21.34

220–7–0.05 60.96 7.53 2.75 0.21 23.61 1.48 0.29 56.81 4.95 38.25 22.44

220–7–0.25 60.53 7.29 2.45 0.12 25.82 1.45 0.32 59.92 3.79 36.30 21.71

260–1–0.15 66.61 6.60 2.15 0.31 20.56 1.19 0.23 57.25 3.77 38.98 23.36

260–4–0.05 65.65 7.75 3.06 0.22 16.88 1.42 0.19 53.04 5.44 41.52 24.47

260–4–0.25 69.01 6.82 2.28 0.12 18.11 1.19 0.20 53.99 3.66 42.36 23.73

260–7–0.15 69.18 6.66 2.32 0.19 17.30 1.15 0.19 53.04 4.36 42.39 24.84
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bituminous coal, demonstrating the effectiveness of the HTC treatment of the winery and distillery by-products 
to produce coal substitutes.

Table 3 shows also the proximate analysis of hydrochars, from which it can be observed that reaction tem-
perature has the main effect on the volatile matter and fixed carbon contents. The increase of HTC temperature 
causes a reduction of the volatile matter and an accumulation of fixed carbon, confirming that dehydration, 
decarboxylation as well as carbonization reactions occur during HTC treatment.

In particular, the volatiles decreases significantly starting from the temperature of 220 °C, mainly due to the 
fact that cellulose starts to decompose at this  temperature35. It should be also pointed out that hydrothermal 
carbonization at 260 °C with residence time above 4 h allows to obtain hydrochars having volatiles in the range 
53.09–53.99%, which are similar to that of coal. When the HTC temperature and residence time increase, the 
cross-linking reaction happens, obtaining hydrochars with higher carbon content by the elimination of  H2O and 
 CO2. As regards the ash content, the HTC treatment allows its decrease from 5.49 wt% (calculated as the mean 
value of ash content of vine pruning and EGM) in the raw material to 3.20–3.36 wt% at 180 °C, mainly due to the 
dissolution of organic and inorganic elements (especially Na+ and K+) into subcritical water, favoured by acid 
solvation via the acetic acid produced during the HTC  process55. However, with the increase of the severity of 
the process, the ash content slightly increases maybe due to the re-precipitation of some inorganics components 
onto the  hydrochar16.

Aqueous phase composition. HTC temperature, residence time, and S:L ratio has also an essential role 
in the physical–chemical properties of the liquid fraction product as shown in Table 4. To understand the effects 
of the operating parameters on the spent liquor, the main effects plots are shown in Figs. S1–S5 (Supplementary 
Materials), indicating the relative strength of effects of various factors. A main effect is present when the mean 
response changes across the level of a factor.

The hydrothermal carbonization treatment involves a decrease in pH value of the liquid phase at all condi-
tions in the range of 3.69–4.49, mainly due to the production of organic acids (acetic, lactic, propionic, levulinic 
and formic acids) from the thermal decomposition of hemicellulosic  sugars16. As observed by Hoekman et al.56 
for the HTC liquor from HTC treatment of different woody and herbaceous biomass, the pH slightly decreases 
with increasing temperature. The same trend is obtained for the S:L ratio, due to the dilution effect of the water 
content, while the effect of residence time is not significant.

The analysis of the total organic carbon in the acqueous phase highlights that HTC treatment causes a sig-
nificant increase from 9.71 g/L of the vinasse to the range of 12.05–22.93 g/L, with the highest value obtained 
at 260 °C, 4 h, and S:L ratio of 25. No strong effect of HTC temperature is observed with an initial decrease in 
TOC values up to about 220 °C, followed by a gradual increase due to the degradation of intermediates, such as 
organic acids compounds and sugars, to gas products. On the other hand the solid to liquid ratio has a strong 
impact on TOC yield, with a clear increase of TOC values with increasing S:L ratio. Also carbonization time plays 
a significant role in the TOC content of the spent liquor, in fact longer residence time gives slightly higher TOC 
results, demonstrating higher concentration of intermediates. The comparison of the obtained results for TOC in 
spent liquor with Literature data is difficult because, as reported by Mihajlovic et al.57, the trends of TOC values 
may differ depending on the type of biomass and operating conditions. COD values shows the same dependence 
of the TOC values on the HTC operating conditions. A linear relationship can be identified with COD values 
being much more than TOC, demonstrating the presence of inorganics in the spent  liquor58. Moreover, the COD/

Figure 5.  Van Krevelen diagram for hydrochars under different conditions. 
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TOC ratio shows high values, ranging from 1.91 to 2.72, indicating that the liquid phase at all HTC conditions 
contained a high concentration of oxidizable organics (sugars, organic acids)59. It is also interesting to note that 
the BOD/COD ratios are in the range 0.37–0.54, suggesting that the dissolved organics in the spent liquors are 
adequately biodegradable to be treated and valorized by biological  methods39.

As regards the total nitrogen content in the liquid phase, a negligible effect of the residence time is observed, 
while the solid-to-liquid ratio and the temperature has a significant impact. In particular, it is interesting to 
analyze the effect of the HTC temperature; at the first temperature range (180–230 °C), the nitrogen yield in the 
spent liquor showed significant decrease, while during the second temperature range (230–260 °C), the total N 
shows slight increase, mostly due to the hydrothermal denitrification reaction and more inorganic nitrogen is 
 produced60.

Process optimization and validation. The desirability function  approach26 is employed to determine 
the optimal conditions of the co-hydrothermal carbonization of winery and distillery by-products. The aim of 
the optimization process is to find the values of the HTC temperature, residence time and solid-to-liquid ratio 
in order to achieve maximal mass yield, energy densification yield, fuel ratio and phenols extraction yield and 
minimum energy consumption, simultaneously.

At this regard, data about the energy input at different operating conditions are shown in Table 2; the most 
significant contribution is the heating of the water, accounting in the range from 57 and 91% of the HTC total 
energy input, confirming that water is essential for the HTC treatment but heating it consumes energy. By apply-
ing the RSM optimizer tool of the Minitab software, every response is converted to dimensionless desirability 
value, d, and its value ranged between 0 and 1. Desirability is 1 if the response variable is at its goal, while is 
zero if the it is outside the acceptable range. Then, the goals are combined into an overall desirability function. 
Equal weights and importance are assigned for all the output responses due to high significance for all the 
responses that contribute to the HTC process.

Figure S6 (Supplementary Materials) shows the RSM optimizer generated results by the Minitab software. The 
low value of the maximum composite desirability (D = 0.50) demonstrates that it is difficult to optimize all the 
response variables simultaneously. The values of individual desirability indicates that the optimum parameters 
settings is more effective for maximizing PEY, followed by EDY, FR, EI and MY. The best optimized conditions 
are found to be 246.3 °C, 1.6 h, and a liquid-to-solid ratio of 0.066, while the predicted PEY, EDY, FR, and MY 
at these conditions are 21.88 mg GAE/g, 1.21, 0.60, and 52.64%, respectively.

Confirmation tests are also conducted at the optimal conditions by running three replicates in order to 
validate the accuracy of the predictive model. The results are PEY = 21.01 ± 0.34 mg GAE/g, EDY = 1.24 ± 0.05, 
FR = 0.61 ± 0.03, and MY = 50.77 ± 0.43%. The results indicates that the developed models are in agreement with 
experimental test results and can predict the responses within a 5% error. Furthermore, in order to evaluate the 
influence of vinasse as the moisture source for HTC process of winery and distillery by-products, experimental 
test at the optimal conditions is carried out by using deionized water as the moisture source. Due to the increas-
ing water scarcity, it is essential to find alternative carbonization liquid sources. The experiments are conducted 
in triplicate and the mean values of the response variables are shown in Table 5.

It can be noted that hydrochar and spent liquor properties are substantially unaffected by carbonization in 
the presence of vinasse, according to the results obtained by Li et al.21, using landfill leachate and activated sludge 
as liquid source. The slight decrease in mass yield in the presence of vinasse, as compared to deionized water, 
could be attributed to the reactive constituents in the vinasse, such as organics, causing greater dissolution and 

Table 4.  Characterization of process waters at different HTC conditions.

Temperature 
(°C) Time (h) S:L ratio pH Total N (mg/L) TOC (g/L) COD (g/L) BOD (g/L) COD/TOC BOD/COD

180 1 0.15 3.80 352.27 12.71 27.72 14.91 2.18 0.54

180 4 0.05 4.10 339.39 12.63 29.28 11.96 2.32 0.41

180 4 0.25 3.47 549.53 20.82 47.98 21.61 2.30 0.45

180 7 0.15 3.83 455.90 17.51 38.57 19.42 2.20 0.50

220 1 0.05 4.08 368.36 12.06 28.43 8.87 2.36 0.31

220 1 0.25 3.83 603.54 21.66 52.75 22.33 2.44 0.42

220 4 0.15 4.13 331.42 13.89 27.38 6.31 1.97 0.23

220 4 0.15 4.03 356.58 14.01 30.18 7.55 2.15 0.25

220 4 0.15 4.33 350.07 13.56 29.54 7.34 2.18 0.25

220 7 0.05 4.09 394.36 16.91 28.00 14.77 1.66 0.53

220 7 0.25 4.28 366.35 23.69 56.02 11.99 2.36 0.21

260 1 0.15 4.52 452.65 12.72 24.99 15.41 1.96 0.62

260 4 0.05 4.40 323.73 13.42 32.97 13.92 2.46 0.42

260 4 0.25 3.96 681.47 24.06 50.78 23.43 2.11 0.46

260 7 0.15 4.24 374.79 15.12 32.46 13.48 2.15 0.42
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hydrolysis of the  biomass20. Therefore, the use of vinasse as liquid source does not have any negative impacts on 
the HTC process of winery and distillery by-products.

Conclusions
The optimal conditions for the hydrothermal carbonization of winery and distillery by-products (vine pruning, 
EGM and vinasse) are found with regard to temperature, residence time and biomass-to-liquid ratio, by using 
RSM design, in order to concurrently produce a high-quality hydrochar, a liquor enriched in bioactives, such 
as phenols, and minimizing the energy consumption of the process. At optimized conditions, the temperature, 
holding time, and biomass-to-liquid ratio are 246.3 °C, 1.6 h, and 0.066, respectively, with 52.64% mass yield, 0.60 
fuel ratio, 1.21 energy densification yield, and 21.88 mg GAE/g phenols extraction yield. Study results show that 
HTC temperature has the most influence in the physicochemical properties of hydrochar while the effects of S:L 
ratio and, in particular, residence time are less significant. In addition the use of vinasse, as moisture source, has 
no apparent negative impact on the HTC process efficiency both on the energy characteristics of the hydrochar 
and the phenols extraction efficiency. The results of this work demonstrate a circular and environmental-friendly 
approach for the waste management of the winemaking industry. The proposed value chain could have multiple 
advantages from the economic, environmental and social point of view. From the economic perspective, reduc-
tion costs of the management of winemaking and viticulture wastes could be achieved as well as their higher 
valorization in the energy and biochemical industries than the actual situation. On the environmental side, the 
opportunity to recover all wastes generated by the entire wine value chain could make winemaking industries 
more responsible for management aspects such as pollutant emissions, resource consumption and energy con-
sumption. Finally, from the social point of view, the activation of this value chain could both improve the qual-
ity of life and rural development, ensuring jobs, and encourage the population and local authorities regarding 
environmental protection and recovery of viticulture by-products.

Data availability
All data generated or analysed during this study are included in this published article (and its Supplementary 
Information files).
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