
OPEN ACCESS

ll
Tutorial

Ready, Steady, Go AI: A practical tutorial
on fundamentals of artificial intelligence
and its applications in phenomics image analysis
Farid Nakhle1 and Antoine L. Harfouche1,*
1Department for Innovation in Biological, Agro-food and Forest systems, University of Tuscia, Via S. Camillo de Lellis, Viterbo 01100, Italy
*Correspondence: aharfouche@unitus.it
https://doi.org/10.1016/j.patter.2021.100323
THE BIGGER PICTURE Advances in AI technologies have the potential to significantly increase our ability to
turn plant phenomics data into valuable insights. However, performing such analyses requires specialized
programming skills commonly reserved for computer scientists. We created an interactive tutorial with
free, open-source, and FAIR notebooks that can aid researchers to conduct such analyses without the
need for an extensive coding experience. We supplemented it with a practical guide on how to implement
AI and X-AI algorithms that augment and complement human experience in classifying tomato leaf diseases
and spider mites. Our tutorial is not only applicable to other stresses but also transferable to other plants and
research domains, making it possible for researchers from various scientific fields to generate insights into
their data.We expect our notebooks to be of high interest to thosewhowant to enhance the performance and
sustainability of our agricultural systems through phenomics.

Production Data science output is validated, understood,
and regularly used for multiple domains/platforms
SUMMARY

High-throughput image-based technologies are nowwidely used in the rapidly developing field of digital phe-
nomics and are generating ever-increasing amounts and diversity of data. Artificial intelligence (AI) is
becoming a game changer in turning the vast seas of data into valuable predictions and insights. However,
this requires specialized programming skills and an in-depth understanding of machine learning, deep
learning, and ensemble learning algorithms. Here, we attempt to methodically review the usage of different
tools, technologies, and services available to the phenomics data community and show how they can be
applied to selected problems in explainable AI-based image analysis. This tutorial provides practical and
useful resources for novices and experts to harness the potential of the phenomic data in explainable AI-
led breeding programs.
HELLO, WORLD!

In his tutorial memoranda introducing B and C programming

languages in 1972 and 1975, respectively, Brian Kernighan

wrote an example code that prints ‘‘hello, world!’’ on the com-

puter terminal.1,2 In 1978, he reused it in ‘‘The C Programming

Language’’ book, a worldwide bestseller, which he co-authored

with Dennis Ritchie, who originally designed and implemented

the language.3 Ever since, ‘‘hello, world!’’ has become the first

program taught when learning a programming language with a

purpose to illustrate its basic syntax and verify that the pro-

gramming environment is properly set up. Seeing these two

words on the screen means the code can compile and run

correctly.
This is an open access article under the CC BY-N
While this example is used as an illustration for almost every

programming language introduced after C, it is also being incor-

porated in tutorials for older programming languages, such as list

processor (LISP), the first high-level functional programming lan-

guage, designed by John McCarthy in 19584; LISP became pre-

dominant over the information processing language (IPL), the

first programming language tailored for artificial intelligence (AI)

programming, released in the style of low-level assembly lan-

guage in 1956.5,6

Although IPL was introduced in 1956, the roots of AI date back

to 1947 when Alan Turing delivered what is perhaps the earliest

public lecture on computer intelligence.7 In 1950, his paper dis-

cussed how to build intelligent machines and test their intelli-

gence.8 Five years later, Allen Newell, Clifford Shaw, and Herbert
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Figure 1. Ready, Steady, Go AI: A practical AI tutorial for the plant data science community
For a Figure360 author presentation of this figure, see https://doi.org/10.1016/j.patter.2021.100323.
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Simon wrote a theorem-proving program, known as the logic

theorist, designed to mimic human problem-solving skills.9 In

1956, their program, often cited as the first AI program,10 was

presented at the Dartmouth summer research project on AI con-

ference hosted by John McCarthy and Marvin Minsky11 during

which McCarthy coined the term AI.

AI continued to flourish until 1973, when the UK science

research council published a report, known as the Lighthill

report, criticizing AI research for not delivering impactful discov-

eries.12 This caused a loss of confidence and henceforth a

decline in resources for AI research,13,14 starting a period known

as the AI winter.15,16 In the 1980s, with Edward Feigenbaum

introducing expert systems,17,18 and the Japanese government

funding the fifth-generation computer project,19 the AI winter

ended. The success, however, did not last long as expert sys-

tems proved too expensive to maintain and difficult to update.18

Similarly, the Japanese project failed tomeet its goals,19marking

the second AI winter in the 1990s.18 Despite this, many re-

searchers continued working with AI under other discipline-spe-

cific names, including cognitive systems and intelligent sys-

tems.18 AI continued to advance with the rapid development of

computer architectures. Notably, in 1997, International Business

Machines (IBM)’s Deep Blue, a chess-playing computer pro-

gram, defeated world chess champion and grandmaster Gary

Kasparov for the first time.20 In 2012, the AI-based image anal-

ysis research marked a significant milestone when Alex Krizhev-

sky and colleagues published a highly influential paper intro-

ducing AlexNet, an AI algorithm that dramatically reduced

image analysis error rates and won the ImageNet Large Scale Vi-

sual Recognition Challenge with 10.8% fewer errors than that of

the runner-up.21 Next, in 2017, Google’s AlphaGo was able to

beat Chinese Go champion, Ke Jie.22 The program simulated

millions of Go games by playing against itself and progressively

learned the game, accumulating thousands of years of human

knowledge during a period of just a few days.23

Deep Blue and AlphaGo successfully illustrated how data can

contribute to the improvement of AI. As data and AI complement

each other, AI-based predictions become better themore quality

data the AI is given, but this makes AI programs computationally

heavy. In fact, some datasets are too large to fit in computers’

memories. Michael Cox and David Ellsworth first coined the

term ‘‘big data’’ in 1997 to describe such a scenario.24 Afterward,

big data gets more complex and challenging due not only to its

volume but also to field-specific attributes. In this context, Har-

fouche et al.25 expanded the dimensions of omics big data to

eight Vs: volume, velocity, variety, variability, visibility, value, ve-

racity, and vexing. Nowadays, graphical processing units (GPUs)

are accelerating AI with their ability to process multiple tasks

simultaneously due to their large number of processing units

and high memory bandwidth. With supercomputers breaking

the exascale barrier (performing a quintillion floating-point oper-

ations per second)26,27 and the ability of AI to analyze massive

amounts of data, researchers can take advantage of big data,

rather than relying on smaller representative samples, to extract

knowledge and insights without loss of information.

To this end, this tutorial aims to introduce the basic principles

for implementing AI and explainable AI (X-AI) algorithms in im-

age-based data analysis (Figure 1) using the PlantVillage dataset

as a case study to accurately identify and classify tomato leaf
diseases and spider mites, as well as to explain which visual

symptoms are used to make predictions. Tomato is the most

economically important vegetable crop grown all over the world,

but it is highly affected by devastating diseases that hinder its

production. This interactive online tutorial provides students

and early career researchers who seek an understanding of

this rapidly evolving field and want to effectively learn to extract

biologically meaningful information from imaging data and the

underlying explanation with an easy-to-follow four-step work-

flow by using existing AI algorithms (Figure 2). It is linked to mul-

tiple AI resources that are relevant for experts who are interested

in applying AI approaches in phenomics and wish tomake use of

our open computational notebooks to design and run their own

projects. Topics covered include (1) tools, technologies, and ser-

vices available to the plant data science community; (2) how to

automate leaf detection, cropping, and segmentation; (3) how

to balance a dataset by means of oversampling and undersam-

pling; (4) how to classify leaf images as healthy, diseased, or spi-

der mites damaged; (5) how to validate the model; and (6) how to

generate explanations. As with any newmethodology, it is advis-

able to seek expert assistance and advice before diving

too deep.

GETTING READY

Phenomics, the comprehensive large-scale study of high-

dimensional phenotypes, is essential to obtaining detailed data

of eachmajor aspect of the phenotype and to better understand-

ing plant biology and improve crops.28–30 However, learning how

to use such data more efficiently, easily, and on a large scale is a

key challenge to overcome if the implementation of phenomics

to improve on-farm response to climate change is to become a

reality.25,26

Digital phenomics is at the forefront of this tour-de-force effort.

Here, we define it as the use of phenome data and metadata to

guide decisions along the entire data analytics cycle. More

broadly, it cycles between data collection and/or selection, pre-

processing, analysis, and interpretation to produce new knowl-

edge and, consequently, societal benefits. Importantly, as imag-

ing is a promising source of phenotypic data, digital phenomics

is not restricted to image analysis but can span the environment-

to-phenotype map, which allowed the exploration of a wide

range of organisms’ phenotypic responses to environmental

conditions,31 as well as the genotype-to-phenotype map, which

describes how genetic variation affects phenotypes.32–34 These

aspects of digital phenomics are crucial to accelerate breeding.

Two of the main priorities for digital phenomics are (1) to

develop the tools and resources that facilitate the data analytics

cycle, and (2) to deploy digital platform technologies that provide

powerful solutions not just to researchers but, more importantly,

to breeders and farmers. The need for a bigger-science

approach is most apparent in the development of digital phe-

nomics approaches in which digitalization of phenotyping en-

ables, improves, and transforms research design, innovation

models, and entrepreneurship activities, by leveraging digital

technologies and data.

Data analytics is crucial for working with large-scale phenom-

ics data. Traditional statistical methods are limited in analyzing

high-dimensional data and are unable to capture complex
Patterns 2, September 10, 2021 3



Figure 2. Schematic overview of the proposed X-AI-based image analysis workflow for a typical digital phenomics experiment from
selection through preprocessing, analysis, and explanation
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relationships between the predictor (independent) and response

(dependent) variables.35 The advancement of computing tech-

nologies and power as well as AI-driven data analytics offer

the possibility that digitalization of phenomics can provide new

solutions to these complex challenges. Crucially, AI, in its various

techniques (e.g., machine learning [ML], deep learning [DL], and

ensemble learning [EL]), could be an alternative approach. For

example, AI has shown impressive results in plant stress pheno-

typing, as reviewed by Singh and coworkers,36,37 and in predict-

ing crop yield38,39 and plant phenotypes.40–42 However, complex

AI models typically operate as black boxes and require a leap of

faith to believe their predictions.25,43 Fortunately, efforts to

develop approaches that make their inner workings understand-

able to humans have improved our ability to explain their predic-

tions43 and introduced X-AI. With X-AI, models operating as

black boxes become transparent, establishing trust between hu-

mans and AI-based predictions. While a wide range of X-AI ap-

proaches and algorithms have been developed and covered

by Azodi et al.,43 Rudin et al.,44 and Barredo Arrieta et al.,45

this tutorial focuses on post hoc model-agnostic algorithms

such as local interpretable model-agnostic explanations

(LIME), which is the X-AI algorithm employed in this study.

Such algorithms are used to explain any black boxmodels by ex-

tracting the relationships between their input values and predic-

tions to approximate their predictive behavior. Post hoc algo-

rithms are commonly categorized by the scope of their

explanations, which can be global or local. While the former
4 Patterns 2, September 10, 2021
describe the overall extracted relationships based on the entire

model behavior, the latter, which LIME provides, reveal the ratio-

nale behind a specific prediction.43,45

Some basics
ML

ML traces back to 1943, when Warren McCulloch and Walter

Pitts modeled an electrical circuit to describe how neurons in

the brain might work.46 Their research inspired the design of

the artificial neural network (ANN) algorithm, in which layers of

connected nodes called artificial neurons mimic how human

brains process information.

ML is a multidisciplinary approach to data analysis that

makes use of probability theory, statistics, decision theory,

and mathematical optimization47 to learn from data in order to

extract important information, find hidden patterns, and make

associations and predictions.25 It can be classified into either

unsupervised, supervised, or semi-supervised learning. Unsu-

pervised learning algorithms find patterns and learn meaningful

relationships in unlabeled data to describe its underlying struc-

ture. They can be categorized into clustering, association, and

dimensionality reduction. On the other hand, supervised

learning algorithms learn from labeled data to assign a label

for previously unseen data. Supervised learning can be further

divided into classification, when predicting a class label, and

regression, when predicting a numerical value. For example,

if we were to write a classification program to distinguish
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between healthy and diseased tomato leaves, all we have to do

is to use a large number of leaf images, each labeled as healthy

or diseased, as input for a classification algorithm. From

labeled images, the algorithm being trained accumulates expe-

rience and creates its own set of rules to ultimately predict the

correct class of an unlabeled image. Semi-supervised learning

falls in between the two, where only part of the data needs to be

labeled.

Both Turing and McCarthy suggested that the combination of

human knowledge with ML is central to the development of AI

research.8,48 ML algorithms can integrate knowledge in the

form of equations and logic rules to enhance learning perfor-

mance.49 Consequently, methods such as logic-based ML

make use of inductive logic programming50 to integrate informa-

tion and patterns extracted from data with human knowledge in

order to make predictions.51,52

Various ML algorithms have been developed and used in plant

phenotyping, as reviewed by Singh et al.47 and van Dijk et al.53

While unsupervised, supervised, and semi-supervised learning

can be useful depending on the goal to be achieved, in this tuto-

rial, we focus on supervised learning, with an aim to provide re-

searchers with ways to identify and classify healthy, diseased,

and spider mite-damaged tomato leaf images.

DL

ANN has undergone significant improvements, mainly by

increasing its number of layers.54 This multilayered architecture

is known as deep neural networks (DNNs). DL is a class of ML

that extracts features from annotated data and trains algorithms

via DNNs to provide predictions based on discovered

patterns.25,55

Historically, the earliest efforts in developing DL algorithms

came from Alexey Ivakhnenko and Valentin Lapa in 1965,

when they created the group method of data handling (GMDH)

algorithm which gradually increments the number of layers of

an ANN based on evaluation of its performance.56 In 1979, Kuni-

hiko Fukushima designed an ANN with multiple data downsam-

pling (pooling) and filtering (convolutional) layers called Neocog-

nitron. It was capable of analyzing images57,58 and led to the

birth of deep convolutional neural networks (DCNNs). Slow prog-

ress was being made in this field until 2012 when AlexNet,

trained to classify 1.2 million high-resolution images, achieved

a top-five error rate of 15.3%, making a major jump in the accu-

racy of image analysis.21 Since then, DCNNs became the default

approach for most AI-based image analysis tasks.59 Various DL

algorithms have been developed and used in plant pheno-

typing.36,37

EL

EL is a technique where a set of algorithms are individually

trained to solve the same problem, having their output combined

to improve predictive performance and reduce error

variance.25,60

Tracing the origin of EL proved difficult as the idea of training

multiple algorithms and combining their predictions has been

used for a long time.61 However, EL research was highly influ-

enced by two main events in 1990.61 The first was when Robert

Schapire introduced boosting by theoretically proving that the

prediction accuracy of learners that are not highly accurate,

known as weak learners, can be boosted by their combination.62

The secondwaswhen Lars Hansen and Peter Salamon conduct-
ed applied research and found that combining the predictions of

a set of algorithms is often more accurate than using a single

one.63 Later, in 1996, Leo Breiman introduced bagging, which

stands for bootstrap aggregating, where the algorithms of an

ensemble are trained on different randomly sampled subsets

of data.64

The combination of algorithms to create an ensemble can be

homogeneous, by applying the same algorithm for all combined

estimators (e.g., decision trees), or heterogeneous, by

combining a variety of algorithms (e.g., support vector machines

with logistic regression). Notably, the combination of multiple DL

algorithms is sometimes referred to as deep EL.

The remarkable flexibility and adaptability of EL helped the

proliferation of its application in plant phenotyping where it has

been used for various tasks, including biotic stress identification

and classification,65,66 aboveground biomass estimation,67,68

and performance prediction of crosses in breeding.69,70

GETTING SET

At the end of his speech, on February 9, 1941, Winston Churchill

said ‘‘give us the tools, and we will finish the job’’ in an attempt to

raise the morale of the British public during World War II. While

the task of implementing AI algorithms is not to be compared

with war, choosing the right tools, technologies, and services

is paramount to its success. However, the number of available

programming languages, software frameworks, software li-

braries, and integrated development environments (IDEs) can

be daunting. Here, we guide researchers through the options

of making a suitable choice.

Programming languages and IDEs
Programming languages are tools used to write instructions

for computers to follow. They fall into two categories: low level

and high level. Low-level languages are close to binary; they

have the advantage of being faster to execute and use less

computer memory. In contrast, high-level programming lan-

guages are closer to how humans communicate; this makes

them easier to use compared with low-level languages. How-

ever, they are slower to run as, prior to execution, they get

translated into machine code through a compiler that scans

the entire program and translates it all at once, or an inter-

preter, which translates just one statement at a time. However,

as computing power continues to increase, the runtime differ-

ence between low-level and high-level languages becomes

negligible. Examples of high-level programming languages

include Python, C, and R.

A programming language is said to be Turing complete if it is

possible to implement any algorithm with it, regardless of its per-

formance.71 In this sense, any Turing complete programming

language can be used to implement any AI algorithm. Unfortu-

nately, a single ideal programming language does not exist.

Choosing one requires consideration of all of its aspects, bene-

fits, and shortcomings in respect to the task at hand. It is advis-

able to consider the ecosystem around it, such as its community,

contributors, and available software frameworks and libraries

(Table 1 and Table 2). It is also prudent to choose the language

that is adopted in the user’s professional environment, which in-

creases code reusability. Well-established, stable languages are
Patterns 2, September 10, 2021 5



Table 1. Representative list of available open-source software frameworks and programming languages for the implementation of AI algorithms

Software

framework

Programming

languages

Operating

systems

GPU computing

supporta
Distributed

training support

Availability of

pretrained

modelsb Software license Website

Deep ML frameworksc

Tensorflow &

Kerasd
Python,

JavaScript, C++,

Java, Go, Swift

(early release)

Linux,

Windows,

macOS

Linux, Windows multiple GPUs,

multiple

machines

yes Apache 2.0 www.

tensorflow.org

PyTorch Python,

C++, Java

Linux,

Windows,

macOS

Linux, Windows multiple GPUs,

multiple

machines

yes BSD-3 pytorch.org

Apache MXNet Python, C++,

Scala, Julia,

Clojure, Java,

R, Perl

Linux,

Windows,

macOS

Linux, Windows multiple GPUs,

multiple

machines

yes Apache 2.0 mxnet.

apache.org

H2O Python, Scala,

Java, R

Linux, Windows Linux, Windows multiple GPUs,

multiple

machines

no Apache 2.0 www.h2o.ai

Deeplearning4j Java, Groovy,

Scala, Kotlin,

Clojure

Linux, Windows,

macOS, Android

Linux, Windows multiple GPUs,

multiple

machines

yes Apache 2.0 deeplearning4j.

org

Chainer Python Linux Linux multiple GPUs,

multiple

machines

yes MIT chainer.org

PaddlePaddle Python Linux,

Windows,

macOS

Linux, Windows multiple GPUs,

multiple

machines

yes Apache 2.0 www.

paddlepaddle.

org

SINGA Python, C++ Linux,

Windows,

macOS

Linux, Windows multiple GPUs,

multiple

machines

noe Apache 2.0 singa.

apache.org

Flux Julia Linux Linux multiple GPUs no MIT fluxml.ai

OpenNN C++ Linux,

Windows,

macOS

Linux, Windows no no LGPLv3 www.opennn.net

Dlib Python, C++ Linux,

Windows,

macOS

Linux, Windows multiple GPUs no BSL-1.0 dlib.net

MLBox Python Linux,

Windows,

macOS

no no no BSD-3 github.com/

AxeldeRomblay/

MLBox

(Continued on next page)
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Table 1. Continued

Software

framework

Programming

languages

Operating

systems

GPU computing

supporta
Distributed

training support

Availability of

pretrained

modelsb Software license Website

ML frameworks

scikit-learn Python Linux,

Windows,

macOS

no no no BSD-3 scikit-learn.org

Apache Mahout Java, Scala Linux,

Windows,

macOS

Linux, Windows multiple GPUs,

multiple

machines

no Apache 2.0 mahout.

apache.org

xLearn Python, R Linux,

Windows,

macOS

no multiple

machines

no Apache 2.0 github.com/

aksnzhy/xlearn

Shogun Python, Octave,

R, Java, Scala,

Lua, C#, Ruby

Linux,

Windows,

macOS

no no no GPLv3 www.shogun-

toolbox.org

SystemDS Python, Java Linux,

Windows,

macOS

Linux, Windows multiple GPUs,

multiple

machines

no Apache 2.0 systemds.

apache.org

BSD, Berkeley Software Distribution; BSL, Boost Software License; GPL, GNU General Public License; LGPL, GNU Lesser General Public License; MIT, Massachusetts Institute of Technology.
aWhile all software frameworks support CPU-based analysis, some support GPU-based analysis, which can make key computations very fast, particularly convolution operations used in image

analysis.
bThe availability of pretrained models allows giving an AI model a warm start by applying information learned from another previously trained model using a process known as transfer learning. For

example, frameworks such as Tensorflow with Keras, PyTorch, and PaddlePaddle allow the transfer of a pretrained DenseNet-161 model to a DCNN model, and DarkNet-53 pretrained model to a

YOLO model (Figure 2).
cDeep ML frameworks can support both ML and DL AI algorithms.
dKeras is the high-level application programming interface (API) of TensorFlow, allowing users to train, evaluate, and use AI models in just a few lines of code.
eWhile SINGA does not provide pretrained AI models, it supports transferring models in Open Neural Network Exchange (ONNX) format, an open-representation format for AI models that enables

users to use them across different software frameworks.
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Table 2. Representative list of available open-source software libraries and IDEs to aid the implementation of AI algorithms

Software library/IDE Programming languages Description Website

Software libraries

OpenCV Python, R, C, C++,

Java, Julia, Closure

helps applying various image processing

operations such as image resizing, object

detection, and geometrical transformations

opencv.org

Plotly Python, R, Julia enables plotting charts such as histograms,

bar charts, line charts, and boxplots

plotly.com

NumPya Python provides multidimensional arrays and

various mathematical functions and

statistical operations to operate on these

arrays

numpy.org

pandas Python offers data structures and operations that

enable the analysis and manipulation of

different kinds of data, such as tabular, time

series, and arbitrary matrix data

pandas.pydata.org

Matplotlibb Python helps generating different types of charts

such as line charts, scatterplots, heatmaps,

and bar charts

matplotlib.org

Seaborn Python based on Matplotlib, it enables data

visualizations by providing a simpler API

seaborn.pydata.org

Bokeh Python allows creating web-based data

visualizations and charts ranging from

simple plots to complex data dashboards

bokeh.org

split-foldersc Python allows splitting a dataset into training,

validation, and test sets

github.com/jfilter/split-folders

Augmentord Python oversamples an image dataset by applying

transformations to image geometries

augmentor.readthedocs.io/en/master

DataExplorer R automates the descriptive data analysis

process by generating basic statistics for a

dataset (e.g., types of variables, missing

values) and plotting distributions of

variables and their correlation matrices

cran.r-project.org/web/packages/

DataExplorer

ggplot2 R helps plotting charts such as line charts,

histograms, scatterplots, density plots,

boxplots, and bar charts

ggplot2.tidyverse.org

tidyr R provides table data structures and

organizes variables in columns and values

in rows

tidyr.tidyverse.org

magick R helps editing and converting image data

from and to a variety of formats, including

PNG, JPEG, and TIFF. Enables resizing and

applying geometric transformation to

images

cran.r-project.org/web/packages/magick

(Continued on next page)
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Table 2. Continued

Software library/IDE Programming languages Description Website

Magick++ C++ a C++ API for the magick library imagemagick.org/Magick++

accuracy-evaluation-cpp C++ helps calculating performance metrics for

classification algorithms, including

accuracy, error rate, precision, recall, and

F score

github.com/ashokpant/accuracy-

evaluation-cpp

matplotlib-cpp C++ a C++ API for the Matplotlib library github.com/lava/matplotlib-cpp

Armadillo C++ provides data structures and linear algebra

operations for vectors, matrices, and cubes

arma.sourceforge.net

ND4J Java provides multidimensional arrays and

various linear algebra functions to operate

on them

github.com/deeplearning4j/nd4j

matplotlib4j Java a Java API for the Matplotlib library github.com/sh0nk/matplotlib4j

cv4j Java, Android allows the application of various image

filtering techniques, including the median

filter for image denoising, sharp filter for

image sharpening, and Laplacian filter for

edge detection

github.com/imageprocessor/cv4j

Tables.jl Julia offers data structures and operations that

enable the analysis and manipulation of

tabular data

github.com/JuliaData/Tables.jl

Plots Julia brings plotting functionalities to Julia from

several plotting libraries, including Pyplot

from the Python Matplotlib library

docs.juliaplots.org/latest

Augmentor.jl Julia a Julia API for the Augmentor library github.com/Evizero/Augmentor.jl

Vegas Scala helps generating different types of charts,

such as line charts, scatterplots, heatmaps,

and bar charts

github.com/vegas-viz/Vegas

Breeze Scala provides data structures for vectors and

matrices, and statistical functions to

calculate descriptive statistics, such as

mean, variance, and standard deviation

www.scalanlp.org

kixi.stats Closure generates descriptive statistics such as

mean, variance, and standard deviation,

and provides functions for performing

statistical tests, such as t test, z test, and

chi-square test

cljdoc.xyz/d/kixi/stats

Neanderthal Closure provides data structures for vectors and

matrices in addition to a variety of functions

that support their manipulation

neanderthal.uncomplicate.org/

Hanami Closure helps plotting charts such as bar charts,

contour plots, and tree layouts using the

declarative languages Vega and Vega-Lite

github.com/jsa-aerial/hanami

(Continued on next page)
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Table 2. Continued

Software library/IDE Programming languages Description Website

panthera Closure an API that imports NumPy and pandas

functionalities from Python to Closure

github.com/alanmarazzi/panthera

IDEs

Visual Studio Code Python, R, C, C++, C#, Julia, Java is a cross-platform code editore offering

code syntax highlighting, smart completion,

and debugging. It helps reviewing

differences in code versions and integrates

with SCM services. It is extensible,

providing the possibility to add new

languages, themes, and debuggers

code.visualstudio.com

Eclipse Python, R, C, C++, Java, C#, Clojure,

Julia, Scala

is composed of plugins and designed to be

extensible using additional plugins. It is

customizable, cross-platform, and offers

code syntax highlighting, code debugging,

and the ability to review differences in code

versions

www.eclipse.org/ide

NetBeans C, C++, Java provides code syntax highlighting,

templates, and a range of tools for code

debugging and refactoring, and integration

with SCM services. It is cross-platform and

is able to identify and fix common problems

in Java code

netbeans.org

PyCharm Community Edition Python provides smart code completion, error

highlighting, and code debugging

capabilities. It is cross-platform and

customizable, providing various code editor

color templates

www.jetbrains.com/pycharm/

IDLE Python offers an interactive cross-platform Python

interpreter with code syntax highlighting,

smart indentations, and code debugging

docs.python.org/3/library/idle.html

IntelliJ IDEA Community Edition Java, Scala, Android provides code syntax highlighting,

debugging, tools for code refactoring, and a

unified interface for integration with SCM

services. It is customizable, cross-platform,

and allows reviewing differences in code

versions

www.jetbrains.com/idea

Code::Blocks C, C++, Fortran is composed of plugins and designed to be

extensible using additional plugins. It is

cross-platform and provides code syntax

highlighting, smart indentations, and code

debugging

www.codeblocks.org

(Continued on next page)
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OPEN ACCESSTutorial
often a convenient choice. For example, Julia combines the in-

teractivity of scripting languages, such as Python and R, with

the speed of compiled languages such as C.72 It was originally

designed for high-performance scientific computing and data

analysis.73 However, being in early-stage development, Julia

has a limited amount of software frameworks and libraries.73

Its influence is far less than that of other popular programming

languages such as Python and R, which are considered the stan-

dard tools of the trade in research and industry, with Python be-

ing amore popular choice among biologists74; they both have an

easy-to-learn syntax and have no major speed differences when

it comes to typical data operations.74

The choice of a programming language is often comple-

mented by the choice of an IDE. IDEs allow researchers to write

codes quickly and increase their productivity by combining

code editing, compiling, and debugging into a single applica-

tion. The choice of IDEs is personal. The reason to pick one

over the others depends on the tasks required to be performed.

Common features to look for are code autocompletion, syntax

highlighting, code refactoring, and more that could increase

productivity (Table 2). For example, while PyCharm provides

smart code completion, error highlighting, and code debugging

capabilities for Python, Visual Studio Code supports various

programming languages and can help review differences in

code versions and integrate with source code management

(SCM) services.
Software frameworks
Software frameworks are a working environment that helps re-

searchers quickly implement or design algorithms without

compromising quality. They provide generic codes that are

tested and optimized for others to reuse, extend, and

customize to their needs. Additionally, they include functions

that can be used to process input, manage devices, and

interact with system software. For example, using a software

framework can remove the burden of writing a code that loads

images from a disk drive. Instead, a pre-written code provided

by the framework can be used. Various software frameworks

are available to help the implementation of AI algorithms

(Table 1).
Software libraries
Similar to software frameworks, software libraries consist of pre-

written codes. They can be used to import a specific functionality

without writing a code for it. For example, when implementing an

AI algorithm with Python, importing NumPy provides multidi-

mensional arrays and various mathematical functions to operate

on them, eliminating the need to code such complex func-

tionality.

Unlike software frameworks, libraries typically focus on a nar-

row scope where they perform a set of specific, well-defined op-

erations. Technically, the key difference between them is known

as the inversion of control (IoC), meaning that, with software li-

braries, researchers are in control of the code as they use library

functions whenever they see fit. However, software frameworks

require them to follow specific workflow and software design

patterns. Table 2 provides a list of software libraries that can

come in handy for implementing AI algorithms.
Patterns 2, September 10, 2021 11
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GOING AI

AI can potentially revolutionize many aspects of image analysis in

phenomics, but it would have a greater impactwhen everyone can

access it, including not only computer scientists but also re-

searchers across disciplines. While the emergence of freely avail-

able and open-source AI resources is opening the way toward

wider AI accessibility, the substantial expertise required for its

adoption remains a hurdle. Adopters do not need to have exten-

sive experience in programming, but, in addition to their domain

knowledge, they should be open to learning a programming lan-

guage and writing some codes for their experiments. Going AI is

set to avoid exposing tutees to heavy jargon and tedious defini-

tions, but, instead, to tutor them on the concepts behind AI algo-

rithms relevant to the task at hand and equip them with the right

skills that make them comfortable using those resources. This

would enable them to gain the practical know-how needed to

address new problems in phenomics image analysis. When they

complete this tutorial experience, they should be in a position to

ask biological questions, analyze available resources, and

approach several types of plant image datasets using various AI

algorithms. Although a single workflow cannot be considered

the best choice as different algorithms are to be assessed for

different tasks and objectives, our approach is in agreement

with common image-based analytical methods, along the lines

of those described elsewhere,36,37,75 as essential key steps in

the workflow of image analysis. The four steps of this workflow

are illustrated in Figure 2. For each of the eight algorithms used,

we created an interactive notebook runnable on Google Colab,

or any other platform supporting Jupyter notebooks, and made

it available on our public GitHub repository (see section ‘‘data

and code availability’’). The repository includes the notebooks

and correspondingReadMefiles that instruct researchers through

the process of running our code either to reproduce the results or

to run the implemented algorithms with a new dataset. A contin-

uous integration (CI) framework using the Travis CI service

(https://travis-ci.org) was added so that unit tests, implemented

using pytest (https://pytest.org), can run automatically when

code updates are introduced. This provides a safeguard against

updates that can break existing functionality by generating a

report showing which tests have passed or failed. The coverage

of the test is measured using the Coverage.py software library

(https://coverage.readthedocs.io/en/coverage-5.5), which re-

ports the amount (percentage) of code covered by existing unit

tests. In addition, we have created a set of self-test quizzes and

hands-on practices and exercises to provide researchers with op-

portunities to augment their learning by testing the knowledge

they have acquired and by practically applying the concepts ex-

plained. For the quizzes, two Google Forms of multiple-choice

questions (MCQs) were developed. The first asks questions about

the basics covered in this paper, while the second, intended for

the more experienced researchers, includes more advanced

questions and is based on real-life scenarios that we have faced

while developing this tutorial. This will help researchers identify

good practices and develop troubleshooting skills that can be

useful when performing AI-based image analysis.

For the practices and exercises, three computational note-

books were developed to get researchers involved in coding.

The first, intended for beginners, asks users to complete simple
12 Patterns 2, September 10, 2021
parts of a provided code in order to run the tasks included in our

workflow; the second, intended for intermediates, involves users

in writingmore codes for the same tasks andmodifying parts of it

to help them practice; the third notebook is intended for themore

experienced users where they are asked to write codes that

reuse previously learned models to preprocess images of apple

leaves included in the PlantVillage dataset and containing four

classes of diseases (apple scab, black rot, cedar apple rust,

and healthy). Next, the notebook requires them to train a new

model that is able to identify and classify apple diseases and

explain its decisions. All three notebooks contain the solutions

stored in hidden code cells after each task and are available

on our public repository along with links to the MCQs.

Step 1: Image dataset selection
Initially, it is important to frame the biological question at hand.

This helps researchers identify what task their AI algorithm

should perform and guide the choice of the input data. For

example, red-green-blue (RGB) imaging data can be used to

monitor plant stress,76 while light detection and ranging (LiDAR)

data allow measurement of plant architecture, canopy height,

and growth rates.25,77

Publicly available plant phenotyping datasets have a 2-fold

advantage: on the one hand, the phenomics data science com-

munity is given access to valuable data whose collection can be

both time consuming and expensive, thus providing the founda-

tion for practical AI-based image analysis applications; on the

other hand, freely available benchmarking datasets can serve

as a basis to compare the performance of AI algorithms under

reproducible settings.

In this tutorial, we performed our analysis using the publicly

available PlantVillage tomato dataset (Pennsylvania State Uni-

versity, United States).78 The dataset includes a total of ntomato

= 18,160 individually labeled and non-overlapped RGB images

divided into 10 classes (Figure 3): class 0 (healthy, nh = 1,591),

class 1 (bacterial spot, nbs = 2,127), class 2 (leaf mold, nlm =

952), class 3 (Septoria leaf spot, nsls = 1,771), class 4 (target

spot, nts = 1,404), class 5 (early blight, neb = 1,000), class 6

(late blight, nlb = 1,909), class 7 (mosaic virus, nmv = 373), class

8 (yellow leaf curl virus, nylcv = 5,357), and class 9 (spider mites,

nsm = 1,676). All images were in joint photographic expert group

(JPEG) format and had a standard size of 256 3 256 pixels.

Step 2: Data preprocessing
Data preprocessing aims to eliminate noisy (e.g., blurred im-

ages), incomplete (e.g., unannotated images), and duplicate

data from a dataset to help AI algorithms learn relevant features

that ultimately enhance their accuracy. This step starts with

data cleaning, which is the process of inspecting data to re-

move irrelevant (e.g., images that do not contain a leaf) or

wrongly annotated (e.g., diseased images labeled as healthy)

images. In case images were not annotated, adding corre-

sponding annotations to images would then be necessary.

Both processes are often done manually, preferably with the

help of domain experts (e.g., a plant pathologist). Indeed, the

tomato dataset has been cleaned and provided with image-

level annotations (i.e., assigning a class to each image) by plant

pathology experts.78 Next, a descriptive data analysis must

be performed to have a better understanding of data

https://travis-ci.org
https://pytest.org
https://coverage.readthedocs.io/en/coverage-5.5
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characteristics, such as its frequency distribution (i.e., the num-

ber of images in each class). A simple Python code was devel-

oped to iterate over the directories of the 10 classes, counting

the number of images in each. This analysis showed that clas-

ses of tomato images are imbalanced (Figure 3). This calls for

data balancing, done by either oversampling the minority or

undersampling the majority classes. However, prior to

balancing, the dataset must be split into training, validation,

and testing sets to prevent overlap of oversampled images

across them. While the training set is used to fit the model,

the validation set evaluates it during hyperparameters tuning,

and the test set serves to provide an unbiased evaluation of

the final model. Here, we randomly allocated 80% of images

for training (ntrain = 14,523), 10% for validation (nval = 1,812),

and 10% for testing (ntest = 1,825), using the split-folders Py-

thon software library. Then, we applied both oversampling

and undersampling to balance the dataset. We used two tech-

niques for oversampling: first, by creating random transforma-

tions to image geometries using the Augmentor Python soft-

ware library, and second, by synthesizing leaf images using a

deep convolutional generative adversarial network (DCGAN)

as suggested by Perez and Wang,79 concluding that the likely

best strategy for oversampling would be to combine the

geometrically transformed data with synthesized data. Under-

sampling was performed using the k-nearest neighbors (KNN)

algorithm.

It is worth noting that datasets in public repositories may

include images that contain more than one object, typically

belonging to background objects (e.g., stem, overlapping

leaves) that are not of interest for an AI algorithm to learn. This

could negatively affect its training, but it can be solved by image

cropping and/or segmentation. However, this process can take a

considerable amount of time and effort. Many types of plant im-

age processing software, such as plant computer vision

(PlantCV),80,81 Image Harvest, and HTPheno,82 can help with

these tasks and extract features from images by automating

complex techniques such as histogram thresholding and color

analysis.83 In this regard, Lobet et al.84 developed an online data-

base (http://plant-image-analysis.org) indexing both commercial

and open-source plant image processing software. While such

software makes it easy for researchers to get started, more

advanced use cases still require them to develop their own.

Here, we showed how cropping and segmentation can be auto-

mated using the you only look once (YOLO) and SegNet AI algo-

rithms, respectively.

Finally, before diving into image preprocessing and analysis

algorithms, it is fundamental to understand how computers pro-

cess an RGB image. Computers denote every pixel in an image

as a 13 3 matrix, representing the three colors R, G, and B with

each being an 8-bit integer leading to 256 (28) possible states for

every color. These states represent the brightness of each color,

with 0 being the darkest and 255 being the brightest. For

example, a matrix with values R = 255, G = 255, and B = 255

would lead to a white pixel.

Algorithm 1: YOLO

YOLO was first introduced in 2016 to perform object detection

and localization in images and videos.85 In 2017 and 2018,

improved versions of the algorithm were released, namely YO-

LOv286 and YOLOv3,87 respectively. YOLO starts by dividing
14 Patterns 2, September 10, 2021
the input image into an S 3 S grid, forming S2 cells (Figure 3).

For every object in the image, for example a leaf, the grid cell

associated with its center is responsible for detecting it. This is

done by having the cell predict a number of rectangles that

enclose the object, known as bounding boxes. These predic-

tions have five components: x, y, w, h, and confidence. While x

and y are the coordinates representing the center of the bound-

ing box, w and h represent the width and height measures that

describe its dimensions. Finally, the confidence score is equal

to the intersection over union (IOU) between the predicted and

the ground truth (manually annotated) bounding box (Figure 3).

When tested on the Microsoft common objects in context

(COCO) large-scale object detection dataset,88 YOLOv3 was

able to detect objects faster andmore accurately than other rele-

vant object detection algorithms, including faster region-CNN

(Faster R-CNN), single shot multibox detector (SSD), and Retina-

Net, scoring the highest mean average precision (mAP) in the

shortest time.87

We used YOLOv3 to automatically detect, localize, and crop

the leaves. We randomly selected 1,000 images from all 10 clas-

ses and manually annotated them by drawing bounding boxes

around the leaves using the MakeSense annotation tool

(https://makesense.ai). These images were then used to train

YOLOv3, which uses a DCNN architecture (see algorithm 7)

named DarkNet-53, pretrained on the ImageNet dataset. An

example architecture of YOLO is illustrated in Figure 2. After

the algorithm has completed 300 training epochs (iterated over

the annotated images 300 times), the learned model was used

to detect and localize leaves for the rest of the dataset. Once a

final detection and a class probability map were generated for

each image (Figure 3), a custom code was used to crop it, keep-

ing only the leaf.

Algorithm 2: SegNet

SegNet is a DCNN-based algorithm (see algorithm 7) that uses a

modified visual geometry group (VGG)-16 architecture to

perform pixel-wise image segmentation,89 which involves as-

signing a class to every pixel in an image. SegNet is composed

of encoders and decoders where the encoder network consists

of 13 convolutional layers followed by their corresponding de-

coding layers forming the decoder network. The encoder-

decoder network is finally followed by a classification layer that

uses the softmax activation function. While the encoder network

performs convolutions with various filters to produce a set of

feature maps, the corresponding decoders upsample them

and generate a segmentation mask for the image. Finally, the

softmax classifier assigns a class to each pixel. The described

SegNet architecture is illustrated in Figure 2.

Quantitative comparison of deep networks for semantic pixel-

wise image segmentation using the Cambridge-driving labeled

video database (CamVid)90 showed that SegNet learned to

perform better in a shorter time than competing algorithms

such as DeepLab, fully convolutional network (FCN), and decon-

volution network (DeconvNet).89

In this tutorial, 150 images, chosen randomly from the 10 clas-

ses, were annotated with segmentation masks using the com-

puter vision annotation tool (https://cvat.org) to train SegNet

on leaf segmentation (Figure 3). The trained model was then

used to segment the remaining images by deleting the back-

ground around the leaves (Figure 3).

http://plant-image-analysis.org
https://makesense.ai
https://cvat.org


ll
OPEN ACCESSTutorial
Algorithm 3: DCGAN

DCGAN is an extension of the generative adversarial network

(GAN) that was designed in 2014 to generate new data instances

that resemble training data.91 The idea of GAN was to pair two

learning models, typically two ANNs, named generator and

discriminator, where the former learns to produce synthetic

data and the latter learns to distinguish true data from the output

of the generator. During training, the generator tries to deceive

the discriminator by synthesizing better data, while the discrim-

inator becomes a better classifier. The equilibrium of this zero-

sum game is reached when the discriminator can no longer

distinguish real images from synthetic ones.

DCGAN, released in 2016, is very similar to GAN, except that it

uses convolutional and convolutional-transpose layers in the

discriminator and generator, respectively, making it more suit-

able for synthesizing imaging data.92 While there exist other al-

gorithms to synthesize data, such as the synthetic minority over-

sampling technique (SMOTE)93 and adaptive synthetic sampling

(ADASYN),94 they are mostly suitable for tabular data, which re-

stricts their application in high-dimensional complex image

data.95 DCGAN instead can generate synthetic images with

high visual fidelity. When it was first introduced, Radford

et al.92 identified an architecture that allows training the algo-

rithm to generate higher-resolution images. We adopted this ar-

chitecture by (1) using stride convolutions instead of pooling

layers (see algorithm 7); (2) using batch normalization in both

the generator and discriminator; (3) refraining from using hidden

layers in the fully connected network in both the generator and

discriminator; (4) using the rectified linear unit (ReLU) activation

function in the generator for all layers except for the output,

which uses the hyperbolic tangent (Tanh) activation function;

and (5) using LeakyReLU activation function in the discriminator

for all layers. Finally, the binary cross entropy was employed as a

loss function.

Figure 2 shows an example architecture of DCGAN. Here, we

providedDCGANwith the healthy class images of the training set

(nh 3 train = 1,272) to train it on generating synthetic leaves, and,

thus, oversampling the set to 1,500 images after 500 training

epochs (Figure 3), on a learning rate of 0.0002 as suggested by

Radford et al.92

Algorithm 4: Augmentor

Another approach to oversampling is using geometric transfor-

mations to generate new images. This helps models learn pat-

terns invariant to different geometric perturbations. Augmentor

automates this task by building an oversampling pipeline defined

by a series of operations, such as rotating and flipping, to

perform on a set of images. This approach allows chaining trans-

formation operations together to create new images96 and

makes Augmentor a popular choice.97–99

Our Augmentor pipeline included rotations (�15�–15�),
shearing (�15�–15�), skewing (0%–20%), and horizontal flips.

Figure 2 displays an illustration of the output of each operation.

The pipeline was used to oversample class 2 (nlm 3 train = 761),

class 3 (nsls 3 train = 1,416), class 4 (nts 3 train = 1,123), class 5

(neb 3 train = 800), class 7 (nmv 3 train = 298), and class 9 (nsm 3

train = 1,340) of the training set to 1,500 images each (Figure 3).

Algorithm 5: KNN

In contrast to oversampling, undersampling techniques remove

data from the majority class to balance data distribution. While
the easiest technique involves randomly undersampling the ma-

jority class, it does not show any concern for the importance of

the data being removed, so that useful information can be lost.

An alternative approach is to be more selective with the in-

stances being removed by involving learning models that can

identify redundant data such as the KNNML algorithm. KNN cal-

culates feature similarity between its training data to predict

values for new, previously unseen data. When given a new input,

KNN finds k (a user-predefined number) most resembling data

(nearest neighbors) using similarity metrics, such as the

Euclidean distance. Based on the majority class of those similar

data, the algorithm classifies the input. Despite its simplicity,

KNN is considered one of the top 10 data-mining algorithms.100

When used for undersampling on 33 different datasets, KNN out-

performed the results of the edited NN (ENN), neighbor cleaning

rule (NCL), and random undersampling algorithms.101

Figure 2 shows an example of KNN circling three detected

neighbors with similar features belonging to the same class.

Here, KNN was used to discover similarities of leaves in class

8 of the training set (nylcv 3 train = 4,285), removing images with

redundant features, ultimately undersampling this majority class

to 1,500 images (Figure 3). The input images were first converted

to three dimensional arrays with values ranging from 0 to 255

(representing the brightness of each color in the RGB channels).

Following Beckmann et al.,101 for each image, the algorithm

deleted the nearest k neighbors (here k = 3). The process repeats

until the number of images reaches the undersampling goal

(1,500 images).

Step 3: Data analysis
Algorithm 6: Random forest

Random forest (RF) is an EL algorithm introduced in 2001.102 RF

employs multiple decision trees (a forest) to create an ensemble

(Figure 2). A decision tree is an ML algorithm used for both clas-

sification and regression tasks. It has a tree-like structure with

two types of nodes: decision and leaf nodes. Decision nodes

represent a test that is applied on the input data, where a deci-

sion will be made based on its result. Leaf nodes are the final

output of those decisions. They represent the final prediction

and do not contain any further branches.

In RF, each decision tree in the ensemble is generated from a

random subset of the training set, with replacement (i.e., the

same data can be sampled more than once), called the boot-

strap sample. Lastly, RF determines the prediction by averaging

the outputs of all decision trees for regression tasks, or by using

majority voting for classification tasks. When evaluated on 121

different datasets against 17 algorithms, including discriminant

analysis, support vector machines, and decision trees, RF

proved to be the best classifier among them.103 Although Wain-

berg et al.104 questioned this conclusion, arguing that the results

are biased by the lack of a held-out test set, RF is still possibly

one of the most famous EL algorithms because of its effective-

ness and simplicity.105

We used the preprocessed training set to train an RF classifier

with 1,000 decision trees to classify tomato leaf diseases and

spider mites. We extracted three features from the training data-

set to be used as input: (1) Haralick texture106 to identify texture

characteristics of leaves; (2) Hu moments, also known as image

moments,107 to characterize the shape of leaves, including
Patterns 2, September 10, 2021 15
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information such as their area, centroid, and orientation; and (3)

color histograms108 to calculate the distribution of pixel color in-

tensities, which improves classification on the assumption that

images from the same classwill have similar histograms. Figure 3

shows the resulting confusion matrix for the 10-class classifica-

tion task.

Algorithm 7: DCNN

Similar to DNNs, DCNNs are made up of layers of artificial neu-

rons that have learnable weights and biases. However, they use

convolution operations instead of matrix multiplications be-

tween layers, making themmore effective in processing imaging

data. A DCNN is commonly composed of three main types of

layers. The network starts with a convolutional layer, which

can be followed by additional convolutional or pooling layers

and ends with the fully connected layer. The convolutional layer

employs a feature detector, known as a filter or kernel, that

moves across an input image and checks for the presence of

important features. This operation is known as convolution. A

dot product is calculated between the input pixels and the filter,

storing the output in a newmatrix. Afterward, the filter shifts by a

predefined number of pixels, known as stride, repeating the pro-

cess until it has swept the entire image. The final output is known

as feature map or activation map. After each convolution, a

nonlinear activation function is applied to the feature map,

such as ReLU transformation, which simply outputs the input

value directly if it is positive, and outputs zero for all negative in-

puts. The pooling layer reduces the number of features in repre-

sentations captured by convolutional layers. Similarly, it sweeps

a filter across the entire input, applying an aggregation function

that chooses the maximum (maximum pooling) or the average

(average pooling) value of the input to populate an output matrix.

Finally, the fully connected layer, typically a DNN, performs clas-

sification on the features extracted by the series of convolutional

and pooling layers. An example architecture of DCNN is illus-

trated in Figure 2. Features learned at different layers of DCNN

correspond to different levels of abstractions. For example,

initial layers detect edges and extract color information, and

the following layers encode shapes and textures.109 Such

learned features can be transferred from one model to another

in a process called transfer learning. Transferring knowledge

from previously trained models can be more efficient than

training a DCNN from scratch. Among various DL algorithms,

DCNNs are the most extensively studied.110 They have made

a series of breakthroughs in image-based analysis21,54,110 and

became the default choice for image classification tasks.54,111

We trained a standard DCNN using the preprocessed training

set. Then, we repeated the process with another DCNN that

transfers a densely connected convolutional network (Dense-

Net)-161 model pretrained on the ImageNet dataset. Both net-

works followed the architecture of DenseNet-161 described by

Huang et al.,112 used Adam optimizer, and had a learning rate

of 0.0001 and a batch size of 20. These hyperparameters can

be tuned based on the performance of the validation set. After

100 epochs of training, the best-performing model on the valida-

tion set for the standard DCNN was generated at epoch 93,

compared with 83 for the pretrained model. Figure 3 shows

the confusion matrix for both models generated using the test

set, suggesting that the pretrained model not only trained faster

but is also a better classifier.
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Step 4: Performance analysis and explanation
Once an algorithm is trained, it generates a model that can be

used tomake new predictions on data that it has not seen before.

The test set is therefore used to evaluate the model predictions;

they can either be correct or wrong. The ratio of correct predic-

tions to total number of predictions shows how accurate is the

model. Intuitively, a good classifier should generate a higher

number of correct predictions and thus is expected to have a

higher accuracy. However, the accuracy measure does not

inform whether classes are being predicted equally well or

some classes are performing better than others. Moreover, in

the case of imbalanced data, a classifier may achieve an

extremely high accuracy by correctly predicting the majority

class only.

Alternatively, a confusion matrix describes the complete per-

formance of the model. It summarizes predictions in four cate-

gories: true-positive, true-negative, false-positive, and false-

negative. It also forms the basis for the other types of metrics,

including precision, recall, and F1 score. Figure 3 depicts the

confusion matrix for each of the three trained models, cross-

tabulating the true labels against the predicted ones. The

matrices revealed that, out of the three models, the pretrained

DenseNet-161 DCNN had the highest prediction accuracy for

all 10 classes.

Algorithm 8: LIME

LIME was released in 2016 with the purpose of opening any ML

or DL black box models, making their predictions explainable to

humans.113 To explain imaging data, LIME starts by partitioning

an image into multiple segments that share common character-

istics such as pixel intensity, known as superpixels (Figure 3). It

then generates perturbations by deleting some superpixels in

the image and monitors how they affect the prediction of the

black box model. Finally, it identifies which areas of the image

have been important for classification and, thus, generates the

explanation by highlighting them (Figure 3). This shows how

crucial the superpixels segmentation is for LIME to generate ex-

planations. By default, LIME uses the quickshift algorithm to

segment images. However, there are other approaches that

have been tested to improve the quality of explanations. For

example, Schallner et al.114 studied the effects of using different

superpixel segmentation algorithms on LIME explanations. Their

results suggested that the Compact-Watershed algorithm

yielded the best results, introducing an improvement of

45.58% over the default quickshift algorithm. LIME is one of

the most popular X-AI post hoc algorithms that can generate ex-

planations for predictions produced by any AI black box

models.115 Its performance turned out to be the best one when

compared with Shapley additive explanations (SHAP)116 and

model agnostic supervised local explanations (MAPLE)117 to

explain image-based classifications.118We used LIME to explain

our three trained models, RF, the standard DCNN, and the pre-

trained DCNN. Both quickshift and Compact-Watershed algo-

rithms were implemented. Figure 3 shows the explanation of

the results of the pretrained DCNN, comparing the two algo-

rithms. Our results are in agreement with findings in Schallner

et al.,114 highlighting more precise coverage of the late blight-

diseased area on the tomato leaf using Compact-Watershed.

Late blight disease remains one of the most significant threats

to tomato agriculture, raising global food security concerns
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and causing economic hardship to farmers. While it is often mis-

diagnosed at its first encounter or not managed timely, its real-

time, AI-driven detection and interpretation by researchers and

farmers become of paramount importance.

MOVING TO THE CLOUD

Large-scale high-throughput plant phenotyping experiments

can produce images in the order of gigabytes,119 making it

crucial to have access to greater computing power. GPUs can

dramatically increase training speed thanks to their processing

cores initially designed to process visual data such as videos

and images. GPUs have thousands of these cores that process

data in parallel.120 Some academic supercomputers offer ac-

cess to GPUs, but, because of the rapid progress in their tech-

nology, they are at risk of becoming outdated.55

Cloud computing services offer up-to-date hardware infra-

structure that can be accessed over the Internet, eliminating

the need for researchers or organizations to set up their own.

Commercial services such as Amazon Web Services, Google

Cloud Platform, and Microsoft Azure enable the quick setup of

a single or a group of servers connected to each other, known

as a cluster. Importantly, these servers can be easily upgraded

or downgraded based on the need.

Further, emerging services such as Google Colab, originally

developed to help disseminate AI education and research,

enable code development in a web browser, requiring almost

no software to be set up. Colab gives its users the ability to write

and execute codes (on central processing units [CPUs] or

GPUs), take notes, and upload media such as images all in

one place, called notebook, for free, but with varying usage

limits. These notebooks are ideal to share well-documented,

reproducible data analysis pipelines, promoting transparency

and reusability.121

The increasing availability of cloud computing has led to an

overuse of large amounts of data in a compute-centric para-

digm, where data are analyzed by clusters in data centers.

This approach requires high amount of data transfer, especially

with the increased usage of Internet of Things (IoT) devices in

agriculture,122 which can introduce high latency. Although

next-generation wireless network technologies such as 5G

aspire to provide higher bandwidth and lower latency,25,123

further concerns arise from the compute-centric approach,

including (1) energy efficiency where data transmission is en-

ergy intensive,124 (2) potential privacy violations caused by

insecure data transmission and storage on cloud com-

puters,125 and (3) inefficient use of storage due to unnecessary

data transmission.126 This is leading to the adoption of a data-

centric paradigm, where data processing takes place at the

origin of data. However, because data generators such as IoT

devices are resource constrained in terms of computational

power, and because AI algorithms require large computational

resources, a new field known as tiny AI or tiny ML (TinyML) has

emerged. TinyML aims to compress AI models to fit on hard-

ware with low computational power so that they can process

data locally, reducing the need for data transmission. In a

typical TinyML workflow, AI algorithms are trained on normal

computers or in the cloud. Then, generated models are

compressed using compression techniques such as network
pruning, low-rank approximation, weight quantization, and

network architecture transform127 to allow for their deployment

in devices with low computational resources, without signifi-

cant decrease in their performance.128 This ability empowers

IoT and resource-constrained devices with AI capabilities,

opening up doors to many new possibilities.

LESSONS AND THE WAY FORWARD

As AI becomes more and more integrated into agriculture, we

envisage a new green revolution with digital phenomics at the

helm. Digital phenomics is enormously important for devel-

oping novel disease control strategies and accelerating

breeding of tomato, widely considered one of our most impor-

tant vegetable crops. We used an existing expert-curated

open dataset and publicly available image processing re-

sources to identify and classify nine biologically and econom-

ically important diseases and spider mites that can infect

leaves of tomato fruit-bearing crops, resulting in yield losses

worldwide, and threatening our food supply and safety. In ef-

forts toward embracing open science, the contextualized pro-

gramming codes and computational notebooks are open

source and ready for use immediately in image-based ana-

lyses. We believe that code, notebooks, and data sharing

along with the availability of open-source programming lan-

guages, software frameworks, software libraries, and IDEs

are bringing us closer to democratized AI research. Crucially,

though, to support this, it is essential to promote an open

research culture and to nurture talents for long-term progress

of digital phenomics. Thinking across disciplinary boundaries

in a time of health and climate crisis, this could better support

the many ways in which our research community can

contribute to the UN’s Sustainable Development Goals

(SDGs) and promote ethically responsible research and inno-

vation.129 However, to make global agriculture more sustain-

able, smaller farms in developing countries must have free ac-

cess to these resources and tools as well. Ready, Steady, Go

AI is more than just a training and learning tool for driving

ongoing and likely future biotechnology innovations; it is

also useful for motivating graduate students and early-career

researchers to engage in co-produced research studies that

create space to work together with people with a shared inter-

est. We advocate for creating perforations in the funnel of

learning so that exposure to such skills and insights can be in-

tegrated into a full mainstream educational program to in-

crease students’ and early career researchers’ own confi-

dence and ability to undertake complex phenomics

procedures using AI. We have a responsibility to our students

to ensure they develop the awareness and skills to engage

with experts outside plant sciences, recognizing complemen-

tary transferable skills and ways of creative and critical

thinking.

EXPERIMENTAL PROCEDURES

Resource availability
Lead contact
Further information and requests for digital resources should be directed to
and will be fulfilled by the lead contact, Antoine Harfouche (aharfouche@
unitus.it).
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Materials availability
This study did not generate new materials.
Data and code availability
The code of this tutorial is available in interactive notebooks runnable on Goo-
gle Colab and hosted on GitHub at https://github.com/HarfoucheLab/Ready-
Steady-Go-AI.
The original PlantVillage dataset is available at https://doi.org/10.17632/

tywbtsjrjv.
Our processed data, including cropped and segmented images, and the

trained AI models are available on Mendeley Data at https://doi.org/10.
17632/4g7k9wptyd.

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.
patter.2021.100323.
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