
1	Introduction
The	links	between	ecosystem	functioning	and	levels	of	soil	biodiversity	have	been	the	focus	of	the	recent	scientific	literature	(Delgado-Baquerizo	et	al.,	2016;	Creamer	et	al.,	2016b;	Griffiths	et	al.,	2016;	Nannipieri	et	al.,	2003).	The	first	authors	provided	evidence

that	loss	in	microbial	diversity	will	likely	reduce	multiple	ecosystem	functions	thus	negatively	impacting	the	provision	of	ecosystem	services.	Adhikari	and	Hartemink	(2016)	claimed	for	new	insights	into	soil	microbial	diversity	and	their	role	in	soil	functional	variability.	Since

up	to	80/90%	of	soil	functions,	from	humification	to	mineralization,	is	microbially-mediated,	the	diversification	of	soil	microrganisms	in	terms	of	structure	and/or	activity	is	essential	to	maintain	functioning	of	terrestrial	ecosystems	(Pereira	Silva	et	al.,	2013).

Microbial	functional	diversity	 is	defined	as	“the	sum	of	the	ecological	processes,	and/or	capacity	to	use	different	substrates	developed	by	the	organisms	of	a	community”	(Insam	et	al.,	1989).	Emmerling	et	al.	(2002)	and	Wellington	et	al.	(2003)	report	that	 if

microbial	genetic	diversity	assesses	a	 latent	diversity,	which	may	not	be	expressed,	 functional	diversity	 is	 related	 to	 the	actual	activities	 resulting	 from	 that	potential	 so	 that	 “functional	 rather	 than	 taxonomic	diversity	may	provide	greater	 insight	 to	microbial	 roles	 in

ecosystems”	(Zak	et	al.,	1994).

Over	the	last	10	years,	the	scientific	literature	provided	a	great	number	of	papers	aimed	to	assess	microbial	functional	diversity	as	an	important	ecological	indicator	to	monitor	and	assess	soil	quality	changes	in	different	pedoclimatic	conditions,	land	uses	and
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Abstract

The	assessment	of	microbial	functional	diversity	is	an	important	indicator	of	soil	quality.	Different	methodological	approaches	are	currently	used;	among	them	are	enzyme	activities	(EA)	and	CLPP	(community	level	physiological	profile)	techniques	(e.g.

MicroResp™,	MR).	The	aims	of	the	study	were:	i)	to	assess	the	efficacy	of	both	methods	in	capturing	differences	among	various	land	use	categories	when	different	levels	of	selected	explanatory	variables	such	as	land	use	category,	total	organic	carbon	(TOC)

and	pH	are	considered,	and	 ii)	to	explore,	through	a	quantile	regression	approach,	the	possible	relationships	between	each	of	the	two	methods	with	land	use	category,	TOC	and	pH.	The	Shannon	diversity	index	(H’),	calculated	from	EA	and	MR	data,	was

chosen	as	a	synthetic	index	deriving	from	the	same	mathematical	model.	The	quantile	regression	model	(QRM),	the	Kruskal-Wallis	and	Spearman	rank	correlation	tests	were	performed.

Enzyme	activities	and	MicroResp	were	 reliable	ecological	 indicators	 to	assess	soil	microbial	 functional	diversity.	No	correlation	was	 found	between	 the	diversity	 indexes,	H’EA	and	H’MR;	 it	was	 therefore	supposed	 that	 the	 two	methods	may	 target

complementary	components	of	microbial	functional	diversity.	Both	methods	were	effective	in	capturing	differences	among	various	land	use	categories,	in	particular	H’MR	in	soils	with	low	TOC	content	(<1.5%).	Moreover,	the	QRM	approach	allowed	a	more

detailed	analysis	along	the	distribution	of	the	diversity	indexes	(H’EA	and	H’MR)	indicating	that	H’EA	was	more	dependent	on	the	selected	variables.
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human	pressure	levels	(e.g.	management	practices)	(Bardgett	and	van	der	Putten,	2014;	Griffiths	et	al.,	2016).

To	measure	the	activity	and	diversity	of	the	microbial	community	a	number	of	methods	can	be	applied,	to	cite	few	of	the	most	common	approaches:	(i)	catabolic	activity	investigated	by	Biolog™-plates	(Garland	and	Mills,	1991;	Rutgers	et	al.,	2016),	(ii)	respiration

of	different	substrates	as	investigated	by	the	MicroResp™	method	(Campbell	et	al.,	2003;	Chapman	et	al.,	2007;	Creamer	et	al.,	2016a)	and	(iii)	enzyme	activities	(Nannipieri	et	al.,	2012;	Hendriksen	et	al.,	2016).

Although	all	methodological	approaches	are	reliable	and	sensitive,	few	studies	have	aimed	to	understand	their	effectiveness	to	discriminate	microbial	functional	diversity	in	relation	to	soil	organic	C	and	pH	as	the	main	properties	being	affected	by	land	use	and

management	practices,	anthropic	impact	and	other	pedogenic	factors.	To	achieve	this	goal,	a	large	number	of	case	studies	covering	different	land	use	categories	is	necessary.	In	this	study,	about	200	measurements	of	microbial	functional	diversity	obtained	over	a	broad

spectrum	of	key	soil	properties	and	across	different	land	uses	and	management,	were	selected.	Furthermore,	microbial	functional	diversity	obtained	through	enzyme	activities	(EA)	and	CLPP-MicroResp	(MR),	was	synthetically	represented	by	the	Shannon	index	(H’)	that

transforms	the	obtained	results	to	a	comparable	range	of	values	deriving	from	the	same	mathematical	model.	The	Shannon	index	is	a	comprehensive	indicator	of	microbial	species,	individual	numbers	and	evenness,	or	distribution	of	the	enzyme	activities	and	is	influenced

by	richness	of	community	species	(Bending	et	al.,	2002;	Li	et	al.,	2007).

The	aim	of	the	present	study	was	therefore	to:	i)	assess	the	efficacy	of	both	methods	in	capturing	differences	among	the	different	land	use	categories	when	different	levels	of	pH	and	TOC	are	considered,	ii)	explore,	through	a	quantile	regression	approach,	the

possible	relationships	between	each	of	the	two	methods	and	selected	explanatory	variables	(TOC,	land	use	category,	pH).

2	Materials	and	methods
2.1	Experimental	design,	sites	and	soil	categories

The	results	presented	in	this	paper	have	been	obtained	performing	additional	statistical	analyses	on	data	collected	in	the	Laboratory	of	Chemistry	and	Biochemistry,	University	of	Tuscia,	Viterbo,	Italy	during	the	last	6	years	(2010–2016).	Microbial	functional

diversity	was	measured,	by	means	of	enzyme	activities	and	CLPP-MicroResp™	technique,	in	a	wide	range	of	soils	analysed	within	different	research	projects.	Most	of	the	sampling	sites	are	located	within	the	Mediterranean	climatic	area.	Other	climatic	areas	are	the

monsoon	one	for	the	Bangladesh	case	study,	the	temperate	one	for	Switzerland,	oceanic	for	United	Kingdom	and	boreal	for	Sweden.	All	soils	represent	a	broad	spectrum	of	key	soil	properties	across	different	land	use	categories,	wide	range	of	soil	pH	and	soil	organic

carbon	content	(TOC)	(Table	1).

Table	1	Description	of	all	data	sources.	All	soils	are	grouped	into	three	categories:	F	(Forest	soils),	A	(agricultural	soils)	and	EC	(extreme	conditions	soils).	For	each	case	study	the	following	data	are	reported:	factors	of	variation	analysed,	soil	texture,

total	organic	carbon	(TOC),	pHH2O,	standardized	Shannon	diversity	index	(H’)	measured	by	means	of	enzyme	activities	(H’EA)	and	MicroResp	(H’MR),	total	number	of	samples,	reference	to	data	source.	Org/conv/biodyn:	organic,	conventional	or
biodynamic	management,	n = number	of	samples.	When	reference	was	not	available,	a	specific	acknowledgement	to	research	funds	was	added.	Average	data	are	reported	with	standard	errors.	n.p. = data	not	published.
alt-text:	Table	1

Soil	category Factor	of	variation Soil	texture TOC	(%) pH H’	EA H’	MR n Location Reference	or
acknowledgement

Forest	(F) Management	(coppiced/aged	coppice) Loam 5.9 ± 0.5 6.4 ± 0.1 0.61 ± 0.01 1.11 ± 0.01 12 Central	Italy	–	Umbria	region Pignataro	et	al.	(2012)

Lithological	substrate Loam 4.2 ± 0.7 5.8 ± 0.2 0.78 ± 0.02 1.07 ± 0.04 10 Central	Italy	–	Lazio/Umbria	region Pignataro	et	al.	(2011)

Afforestation	(Beech	and	Douglas-fir) Sandy-clay-loam,	Loamy
sand

3.1 ± 0.8 5.6 ± 0.2 0.64 ± 0.01 1.12 ± 0.01 8 Central	Italy	–	Emilia	Romagna	region Papp	(2016)

Chronosequence	(Douglas-fir) Sandy-loam,	Loam 4.5 ± 0.5 4.8 ± 0.1 0.67 ± 0.01 1.09 ± 0.03 7 Central	Italy	–	Tuscany	region Papp	(2016)

Agricultural	(A) Management	(org/conv) Sandy-loam,	Loam 1.5 ± 0.0 7.2 ± 0.0 0.59 ± 0.01 1.14 ± 0.00 30 Central	Italy,	Lazio	region Brunetti	(2014)

Management	(tillage	level) Loam,	Silt	loam,	Clay 1.9 ± 0.2 7.2 ± 0.3 0.55 ± 0.02 1.08 ± 0.01 12 North	Morocco,	Central	Italy,	Switzerland,	United	Kingdom,
Sweden

Papp	(2016)

Vineyard	(natural	green	cover/no
cover)

Silty-loam 1.5 ± 0.1 8.1 ± 0.0 0.70 ± 0.01 1.01 ± 0.02 19 Northern	Italy,	Piemonte	region n.p.

Management	tomato	crop
(organic/conv)

Clay-loam 1.4 ± 0.1 6.6 ± 0.1 0.58 ± 0.01 1.13 ± 0.01 5 Central	Italy,	Lazio	region n.p.

Vineyard	(biodyn/conv) Clay 1.3 ± 0.1 6.7 ± 0.2 0.59 ± 0.01 0.97 ± 0.09 4 Central	Italy,	Lazio	region n.p.

Extreme	conditions Thallium	contamination Loam 6.3 ± 0.8 6.4 ± 0.6 0.67 ± 0.03 1.08 ± 0.02 8 Central	Italy,	Emilia	Romagna	region n.p.



(EC)
Arsenic	contamination Sandy-loam,Loam 2.7 ± 0.3 5.7 ± 0.2 0.61 ± 0.01 1.02 ± 0.03 14 Northern	Italy,	Piemonte	region Stazi	et	al.	(2017)

Highly	calcareous,	different	plant
cover

Sandy-loam 1.2 ± 0.1 8.0 ± 0.0 0.47 ± 0.02 1.10 ± 0.01 12 Central	Italy,	Lazio	region Italian	PRIN
20082FC352_002

Hydromorphous	and	subaqueous Sandy 2.2 ± 0.6 8.2 ± 0.2 0.40 ± 0.03 1.04 ± 0.03 16 Central	Italy,	Emilia	Romagna	region Papp	et	al.	(2015)

Waterlogged	rice	paddies	and	arsenic Silty-loam,	Clay-loam 1.2 ± 0.1 7.3 ± 0.1 0.69 ± 0.02 0.84 ± 0.03 20 Bangladesh Italian	PRIN
2010JBNLJ7_006

Phytoremediation	(heavy	metals) Clay-loam 1.4 ± 0.0 7.9 ± 0.2 0.76 ± 0.01 1.10 ± 0.00 19 Central	Italy,	Tuscany	region Emili	(2013)

The	soils	were	related	to	15	case	studies,	each	one	including	different	treatments,	with	the	aim	to	separate	diverse	land	uses	and/or	specific	conditions.	For	this	purpose,	three	groups	were	identified:	F	(forest	soils,	4	case	studies),	A	(agricultural	soils,	5	case

studies)	and	EC	(extreme	conditions,	6	case	studies).	The	case	studies	related	to	forest	soils	(F)	included	different	management	practices,	lithological	substrates,	afforestation	and	chronosequences.	The	soils	under	agricultural	land	use	(A)	were	characterized	by	different

managements	and/or	agricultural	practices	such	as:	organic,	biodynamic,	conventional	cropping	systems,	tillage/no	tillage	and	natural	green	cover/no	cover.	The	third	category	(EC)	included	soils	with	peculiar	characteristics	due	to	either	pedo-climatic	conditions	(saline

environments,	natural	arsenic	contamination	in	rice	paddies	and	highly	calcareous	soils)	or	to	heavy	anthropic	impact	(thallium	contamination,	a	multi-element	contaminated	dump,	arsenic	contaminated	mine)	(Table	1).

2.2	Soil	sampling
All	soils	were	sampled	at	0–20 cm	depth	during	the	dry	season	(spring/summer),	air	dried,	sieved	at	2–mm	mesh	and	preserved	at	room	temperature.	Then,	prior	to	biochemical	analyses,	soil	moisture	content	of	air	dried	samples	was	adjusted	to	60%	of	their

water	holding	capacity	and	soils	were	re-conditioned	for	10 days.

2.3	Soil	analyses	and	methodologies
The	total	organic	carbon	(TOC)	was	determined	by	combustion	of	sample	in	an	oxygen-enriched	atmosphere	and	detection	and	quantification	of	CO2	evolved	by	infrared	detector	using	the	Shimadzu	TOC	VCSH	analyzer	while	soil	pH	was	measured	on	sieved

soil	suspended	in	a	solution	of	deionised	water	in	1:2.5	ratio	(w/v).	The	pH	was	measured	in	the	supernatant	with	a	pH	meter	(pH	211,	Hanna	Instruments).

A	total	of	196	values	of	microbial	functional	diversity,	assessed	by	means	of	enzyme	activities	and	CLPP-MicroResp,	were	used	for	this	study	(Table	1).	Enzymes	were	measured	following	Marx	et	al.	(2001)	using	fluorogenic	methylumbelliferyl	(MUF)-substrates.

Soils	were	analysed	 for	cellobiohydrolase,	β-1,4-glucosidase,	α-1,4-glucosidase,	β-N-acetyl-glucosaminidase,	β-1,4-xylosidase,	 acid-phosphatase,	 arylsulphatases	 and	butyrate	 esterase	which	 is	 considered	 a	 proxy	 of	 endocellular	 activity	 (Wittmann	 et	 al.,	 2004).	 The

relative	 fluorogenic	 substrates,	 prepared	with	 acetate	 buffer	 0.5 M	pH	5.5,	were:	 4-MUF-β-D-cellobioside,	 4-MUF-β-D-glucoside,	 4-MUF-N-acetyl-β-glucosaminide,	 4-MUF-α-D-glucoside,	 4-MUF-phosphate,	 4-MUF-7-β-D-xyloside,	 4-MUF-sulphate	 and	 4-MUF-butyrate.

Fluorescence	(excitation	360 nm,	emission	450 nm)	was	measured	with	an	automatic	fluorimetric	plate-reader	(Fluoroskan	Ascent)	and	readings	were	performed	after	0,	30,	60,	120	and	180 min	of	incubation	at	30 °C.	The	results	were	expressed	as	nmoles	of	product

(MUF)	of	each	enzymatic	reaction	released	per	g	of	soil	per	unit	of	time	in	relation	to	a	standard	curve	prepared	with	increasing	MUF	concentrations	and	incubated	at	the	same	experimental	conditions.

The	community	level	physiological	profile	(CLPP)	was	determined	using	the	MicroResp™	soil	respiration	system	(James	Hutton	Ltd,	Aberdeen,	UK)	according	to	Campbell	et	al.	(2003).

The	15	substrates	used	for	MicroResp	were:	α-D-glucose,	D-Galactose,	D-fructose,	L-arabinose,	L-leucine,	L-arginine,	Glycine,	L-aspartic	acid,	γ-amino-butyric	and	glutamic	acid,	three	carboxylic	acids:	citric	acid,	oxalic	acid	and	L-ascorbic	acid,	and	two	phenolic

acids:	vanillic	and	syringic	acid.	The	emission	of	CO2	by	the	microbial	biomass	was	estimated	using	a	colorimetric	method	(microplate	spectrophotometer)	before	and	after	6 h	of	incubation	at	28 °C.	The	absorbance	was	read	at	595 nm.	At	the	end	the	absorbance	was

normalised	for	any	difference	recorded	at	time	zero	and	then	converted	to%	CO2	using	the	formula	y = A + B/(1 + D × Ai)	where	Ai	is	the	normalised	6hr	data.	The	formula	is	for	a	linear-to-linear	(rectangular	hyperbola)	standard	curve	fit	obtained	by	means	of	a	calibration

procedure	taking	into	account	the	spectrophotometer	used,	the	different	soils	and	incubation	conditions	as	reported	in	the	MicroResp	technical	manual.	In	our	experimental	conditions	the	constants	of	the	equation	were:	A:	−1,62,	B:	−4,85	and	D:	−8,1.	The%	CO2	was

converted	to	μg	C-CO2	g−1 h−1	production	rate	using	gas	constant,	T	°C,	headspace	volume,	soil	dry	weight	(d.w.)	and	incubation	time.	The	SEI	(Synthetic	Enzymatic	Index)	and	SIR	(Substrate	Induced	Respiration)	for	all	soils	within	the	three	categories	(F,	A	and	EC)	have

been	calculated	as	synthetic	measures	of	microbial	functional	capacity.	Both	SEI	and	SIR	represent	the	total	microbial	functional	capacity	expressed	as	sum	of	all	enzymatic	activities	and	of	induced	respiration	of	all	substrates,	respectively.

Microbial	functional	diversity	was	assessed	calculating	the	Shannon	diversity	index	(Kennedy	and	Smith,	1995)	corresponding	to	the	entropy	concept	defined	by:	H’ = −	∑	pi	*	ln	pi	(Shannon	and	Weaver,	1949;	Spellerberg	and	Fedor,	2003),	where	pi	is	in	turn:	for	H’EA,

the	ratio	of	the	activity	of	a	particular	enzyme	to	the	sum	of	all	enzymatic	activities	while	for	H’MR	it	is	the	ratio	of	the	respiration	rate	of	each	single	C-substrate	to	the	sum	of	all	substrates.	Shannon	diversity	index	is	related	to	the	entropy	of	a	system	and	when	applied	as

a	measure	of	microbial	functions	entropy,	may	express	the	heterogeneity	of	soil	organic	substrates	availability	and	microbial	processes	(Marinari	et	al.,	2013).	Since	the	eight	enzymes	and	the	15	substrates	here	tested	did	show	activity	in	all	the	analysed	samples,	then,	in

this	work,	the	diversity	recorded	reflects	only	the	“evenness”	or	distribution	of	the	enzyme	activities	or	ability	to	use	the	different	substrates	(Bending	et	al.,	2002;	Rodríguez-Loinaz	et	al.,	2008).

2.4	Statistical	analyses



The	analysis	of	all	collected	data	was	carried	out	into	various	steps.	At	first,	with	the	aim	to	compare	the	two	indexes,	a	standardization	due	to	the	existing	differences	in	the	range	of	H’EA	and	H’MR	possible/admissible	values	was	performed	by	transforming	the

original	indexes	into	two	new	variables	each	one	with	mean	equal	to	zero	and	variance	equal	to	1.	As	usual,	the	procedure	was	carried	out	by	subtracting	the	variable	mean	(i.e.	the	mean	value	of	H’EA	and	H’MR,	respectively)	from	each	observation	and	then	dividing	by

its	 own	 standard	 deviation	 (each	 one	 obtained	 from	 the	 original	 indexes).	 As	 a	 property	 of	 standardized	 (z-scores)	 values,	 the	 standardized	 distributions	maintain	 the	 same	 shape	 (i.e.	 in	 terms	 of	 skewness	 and	 kurtosis)	 of	 the	 two	 original	 distributions	 and	 the

transformation	does	not	change	the	location	of	any	observation	score	relative	to	others	in	the	distribution.	From	now	on,	all	the	statistical	analyses	were	carried	out	on	the	two	standardized	distributions.

The	descriptive	analyses	provided	a	clear	picture	of	the	distribution	of	the	two	indexes	(H’EA	and	H’MR)	as	well	as	information	about	the	shape	of	the	two	distributions.	Moreover,	rank	correlation	measures	and	test	performed	by	using	the	Spearman	correlation

enabled	to	evaluate	if,	and	to	what	extent,	the	two	methodological	approaches	(EA,	enzyme	activities	and	MR,	MicroResp™)	used	to	evaluate	soil	microbial	functional	diversity	are	related.

The	Kruskal-Wallis	non-parametric	test	was	used	to	test	if	and	to	what	extent	the	two	indexes	distinguished	the	various	land	use	categories	in	relation	to	TOC	and	pH	ranges.

By	considering	the	asymmetry	of	the	two	distributions	(e.g.	standardized	H’EA	and	H’MR	respectively,	as	shown	in	Fig.	2)	as	well	as	the	results	of	the	Shapiro-Wilk	normality	test,	we	analysed	the	existence	of	association	between	each	of	the	two	measures	and

selected	covariates	by	using	Quantile	Regression	Models	(QRMs).	In	fact,	these	types	of	regression	models	offer	the	possibility	to	highlight	how	the	effect	of	the	selected	covariates,	in	this	case	TOC	content,	pH	and	land	use	category,	changes	throughout	the	entire

distribution	of	the	dependent	variable.	To	estimate	the	relationships	(in	terms	of	association)	between	the	dependent	variables	and	the	set	of	selected	covariates,	the	classical	OLS	(Ordinary	Least	Squares)	regressions	could	be	applied.	However,	data	obtained	from

experimental	collection	 tend	 to	be	skewed	so	 that	 these	models	were	not	able	 to	describe	 the	 “correct”	 relationships.	Moreover,	QRMs	are	more	 robust	 to	 the	presence	of	outliers	and	can	be	consistent	under	weaker	stochastic	assumption	 than	with	 least-squares

estimation	(Cameron	and	Trivedi,	2005;	Koenker,	2005).

Referring	to	the	soil	context,	the	application	of	QRMs	has	important	advantages.	Firstly,	QRMs	can	help	to	explore	if	the	existing	differences	observed	between	the	two	measures	can	be	attributed	to	different	effects	played	by	the	explanatory	variables	at	the

various	quantiles.	Secondly,	it	can	be	interesting	to	understand	what	happens	throughout	the	entire	distribution	of	the	two	measures	(H’EA	and	H’MR)	and	at	their	extremes.

We	estimated	 two	QRMs	which	 assumed	 the	 dependent	 variable	 to	 be:	 (i)	H’EA	and	 (ii)	H’MR	 respectively.	 In	 both	models	 the	 set	 of	 covariates	 includes	 factors	 describing:	 the	 land	 use	 category	 (distinguished	 into	 Forest,	 Agricultural	 and	Extreme	 soil

Fig.	2	Distribution	of	the	two	standardized	indexes:	a)H’EA	and	b)	H’MR.
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Conditions),	the	levels	of	pH	and	TOC.	Among	the	soil	properties	that	mostly	affect	microbial	biomass	activity	and	diversity,	TOC	and	pH	were	chosen	as	covariates	to	explain	H’	index	variability	(Creamer	et	al.,	2016b;	Fierer	and	Jackson,	2006;	Constancias	et	al.,	2015).	In	this

study,	soils	were	grouped	into	three	categories	in	relation	to	TOC	content:	 i)	 low:	for	TOC	<1.5%;	ii)	medium	TOC	<1.5–3>;	iii)	high:	for	TOC	≥3%.	Similarly,	soils	were	grouped	into	three	categories	in	relation	to	pH	values:	 i)	<6.5	slightly	acid	–	very	strongly	acid,	 ii)

<6.5–7.4>	neutral,	iii)	>7.4	slightly	alkaline	–	moderately	alkaline.	STATA	software	(STATA	13.2	edition)	was	used	for	statistical	analyses.	Three	distinct	levels	of	significance	were	considered	for	the	estimated	coefficients	and	are	reported	in	the	model:	a	value	of	p < 0.001

(indicated	in	the	tables	of	results	with	***),	emphasizing	strong	relationships	between	the	explicative	variable	of	interest	and	the	dependent	variable	significant	at	0.1%	level;	the	value	of	p < 0.01	(indicated	in	tables	of	results	with	**)	indicates	a	relationship	significant	at	1%

level	and	finally	a	value	of	p < 0.05	(indicated	in	the	tables	of	results	with	*)	emphasizing	a	relationship	between	the	variables	significant	at	5%	level.

3	Results
Fig.	1	shows	the	functional	capacity	of	soil	microbial	biomass	calculated	as	the	SEI	and	SIR	for	all	soils	within	the	three	categories	(F,	A	and	EC).	Soils	characterized	by	extreme	conditions	showed	the	highest	level	of	variability	–	including	upper	outliers	–	for	SEI

(ranging	from	42	to	11,800	nmoles	MUF	g−1 h−1),	while	the	functional	capacity	of	forest	soils	showed	a	high	level	of	dispersion	for	SIR	(ranging	from	0.9	to	177 μg	CO2	g−1 h−1).	Agricultural	soils	show,	for	both	methodological	approaches,	a	smaller	level	of	variability.

Fig.	2	shows	the	distribution	of	the	two	standardized	indexes	values	H’EA	and	H’MR,	respectively,	over	the	196	values	of	microbial	functional	diversity.	The	two	distributions	(expressed	in	terms	of	z-scores)	are	positively	skewed	and	leptokurtic	–	as	emerged	by

the	descriptive	statistics	reported	in	Table	2	–	and	significantly	different	from	normality	as	confirmed	by	the	Shapiro-Wilk	W	and	Shapiro-Francia	W’	test.

Table	2	Descriptive	statistics	of	the	two	standardized	measures.	H’EA	and	H’MR:	Shannon	diversity	index	calculated	by	means	of	enzyme	activities	and	MicroResp,	respectively,	over	196	soil	samples.
alt-text:	Table	2

Measure Min q0.25 q0.50 q.0.75 Max Skewness Kurtosis

H’EA −3.940 −0.451 0.039 0.754 1.953 −0.851 4.279

H’MR −3.567 −0.242 0.382 0.651 0.933 −1.746 5.506

Fig.	1	Boxplot	of	microbial	functional	capacity	measured	by	means	of	enzyme	activities	and	CLPP-MicroResp.	a)	SEI	(synthetic	enzymatic	index)	and	b)	SIR	(substrate	induced	respiration)	distributions	in	the	three	soil	categories	(F,	forest,	A,agricultural	and	EC,	extreme	conditions	soils).

alt-text:	Fig.	1



The	Spearman	rank	correlation,	verifying	the	similarity	of	the	orderings	of	the	data	when	ranked	according	to	each	of	the	measures,	showed	that	the	two	measures	are	not	related	for	measuring	microbial	functional	diversity	(p-value = 0.0987)	(Table	3).	However,
by	distinguishing	rank	correlation	according	to	the	land	use	category,	we	found	a	moderate	and	significant	level	of	inverse	rank	correlation	(p-value = 0.0073)	when	the	two	indexes	refer	to	soil	of	type	A.	No	significant	rank	correlation	was	found	between	the	two	measures
for	soil	type	EC	and	F	(p-value = 0.6534	and	p-value = 0.8727	respectively)	(Table	3).

Table	3	Spearman	rs	values	for	both	standardized	indices	H’EA	and	H’MR	calculated	for	all	data	and	within	the	three	soil	categories	F,	A	and	EC	soils.	ns:	not	significant,	**p < 0.01.
alt-text:	Table	3

All	data (F) (A) (EC)

H’EA	–	H’MR −0.1183 ns −0.0273 ns −0.3180** −0.0482 ns

According	to	the	results	of	Kruskal-Wallis	test,	both	H’EA	and	H’MR	distinguished	in	different	ways	the	various	soils	when	TOC	or	pH	ranges	were	considered	(Table	4).	Thus,	according	to	the	obtained	p-values	H’MR	showed	a	slightly	higher	discriminatory

potential	than	H’EA.	H’MR,	in	fact,	was	significantly	effective	at	low	TOC	ranges	(<1.5%)	where	H’EA	was	not.	On	the	other	hand,	both	methods	failed	to	discriminate	in	alkaline	soils	(pH	values ≥ 7.4).

Table	4	Results	of	Chi-squared	statistics	Χ2	and	p-values	obtained	with	Kruskal-Wallis	rank	test	on	soil	functional	diversity (soil	microbial	functional	diversity	indices)	(H’EA	and	H’MR)	among	the	three	land	use	categories ("among	the	three	land	use
categories"	should	be	deleted)	within	restricted	classes	of	TOC (total	organic	carbon	(TOC))	and	pH.	P	values	are	reported	in	parentheses.

alt-text:	Table	4

TOC	values H’EA H’MR

Low:	TOC < 1.5% 2.202	(0.333) 11.039	(0.004)

Medium:	1.5 ≤ TOC < 3% 7.640	(0.022) 6.272	(0.043)

High:	TOC ≥ 3% 4.431	(0.	035) 7.150	(0.	007)

pH	values (The	coulumns	of	H'EA	and	H'MR	for	TOC	and	pH	values	should	be	aligned)

pH < 6.5 11.843	(0.003) 8.971	(0.011)

6.5 ≤ pH < 7.4 13.867	(0.001) 30.998	(0.000)

pH ≥ 7.4 1.046	(0.306) 2.517	(0.113)

The	analysis	of	the	potential	relationships	between	each	of	the	measures	(H’EA	and	H’MR)	and	the	selected	variables	(land	use,	TOC	and	pH)	was	carried	out	by	referring	to	the	quantile	regression	model	(QRM),	which	enabled	analysis	of	the	effect	of	the

covariates	throughout	the	entire	distribution	as	well	as	at	the	extremes.	Table	5	shows	the	estimation	results	of	regression	models	at	quantiles	0.25,	0.50	and	0.75.

Table	5	Estimation	results	of	 (Relace	the	sentence	"Estimation	results	of	QRMs	(0.25,	0.50,	075	quantiles)"	with	"Estimation	results	of	quantile	regression	models	(QRMs)	between	soil	microbial	functional	diversity	indices	(H'EA	and	H'MR)	and	the

selected	variables	(land	use	category:	forest	soils	-	F,	agricultural	soils	-	A,	extreme	conditions	soils	-	EC;	pH	and	total	organic	carbon	ranges)	at	quantiles	0.25,	0.50,	0.75".)QRMs	(0.25,	0.50,	0.75	quantiles).	SE = standard	error,	*	Significant	at	5%,	**

1%	and	***	0.1%	level.

alt-text:	Table	5

H’EA H’MR

Coef. SE Sign. Coef SE Sign.

Quantile	0.25

TOC	values	(ref.	Low: < 1.5%)

Medium:	1.5 ≤ TOC < 3 0.027 0.120 0.505 0.338



High:	TOC ≥ 3% 0.004 0.150 0.744 0.436

pH	(ref.	pH < 6.5)
6.5 ≤ pH < 7.4 −0.177 0.077 ** 0.295 0.183

pH ≥ 7.4 −0.871 0.254 ** −0.471 0.343

Land	use	category	(ref.	EC)

F 0.462 0.160 ** 0.821 0.417

A 0.193 0.175 0.996 0.497 *

Constant −0.487 0.125 *** −1.276 0.426 **

Quantile	0.50

TOC	values	(ref.	Low:	<1.5%)

Medium:	1.5 ≤ TOC < 3 −0.197 0.183 −0.043 0.097

High:	TOC ≥ 3% −0.583 0.340 −0.0.31 0.271

pH	(ref.	pH < 6.5)
6.5 ≤ pH < 7.4 0.066 0.259 0.213 0.088 *

pH ≥ 7.4 0.417 0.342 −0.060 0.176

Land	use	category	(ref.	EC)

F 0.415 0.305 0.418 0.230

A −0.377 0.180 * 0.259 0.114 *

Constant 0.260 0.307 0.171 0.120

Quantile	0.75

TOC	values	(ref.	Low: <1.5%)

Medium:	1.5 ≤ TOC	< 3 −0.001 0.142 0.008 0.072

High:	TOC ≥ 3% −0.549 0.256 * −0.070 0.136

pH	(ref.	pH < 6.5)
6.5 ≤ pH < 7.4 −0.008 0.233 0.079 0.073

pH ≥ 7.4 0.527 0.235 * −0.096 0.116

Land	use	category	(ref.	EC)

F 0.422 0.192 ** 0.239 0.111 *

A −0.703 0.136 *** 0.160 0.080 *

Constant 0.804 0.246 ** 3.212 0.414 **



Notes:	*	p < 0.05;	**	p < 0.01;***p < 0.001.

Focusing	on	TOC	content	we	only	found	a	negative	association	at	quantile	0.75	(p-value < 0.05)	between	H’EA	and	high	level	of	TOC	(equal	or	greater	than	3%).	On	the	other	hand,	pH	levels	are	negatively	related	to	the	H’EA	measure	in	the	lower	part	of	the

distribution	(e.g	at	quantile	0.25	of	the	dependent	variable	H’EA,	p-value < 0.01)	while	a	positive	relationship	was	observed	with	high	 levels	of	pH	in	the	highest	quantile	of	 the	distribution	(e.g.	 for	high	values	of	 the	dependent	variable	H’EA).	Furthermore,	a	positive
relationship	was	found	between	medium	level	of	pH	(values	ranging	between	6.5	and	7.4)	and	H’MR	in	the	middle	part	of	the	distribution	(quantile	0.50).

The	land	use	category	is	a	key	factor	distinguishing	the	values	of	the	two	measures.	For	H’EA	the	relationship	is	positive	and	strongly	significant	at	quantiles	0.25	and	0.75	for	land	use	category	F	(forest	soils)	while	a	negative	relationship	with	agricultural	land

use	category	was	observed	at	quantiles	0.50	and	0.75.	At	the	same	time,	we	observed	positive	and	significant	relationships	between	the	values	of	H’MR	and	agricultural	land	use	category	at	all	different	quantiles	throughout	the	entire	distribution	while	forest	soil	only	at

0.75	quantile	(Table	5).

4	Discussion
In	this	study,	a	large	data	set	of	196	values	of	Shannon	diversity	index,	calculated	from	data	of	enzyme	activities	and	CLPP-MicroResp	techniques,	was	used.	Griffiths	et	al.	(2016)	recently	included	both	techniques	in	a	list	of	18	potential,	powerful	indicators

aimed	to	monitor	soil	biodiversity	and	ecosystem	function	across	Europe.

The	first	aim	of	this	paper	was	to	assess	the	relative	sensitivity	of	each	methodological	approach	in	capturing	differences	among	the	land	use	categories	when	different	levels	of	pH	and	TOC	are	considered.

The	Kruskal-Wallis	test	showed	that	both	methods	were	able	to	highlight	differences	among	land	use	categories	at	almost	all	ranges	of	TOC	and	pH.	However,	while	both	of	them	failed	to	discriminate	in	alkaline	soils	(pH > 7.4),	only	MicroResp	was	completely
effective	along	the	whole	TOC	gradient,	including	low	TOC	values	(<1.5%).	This	result	might	point	to	MicroResp	as	a	more	powerful	tool	for	evaluating	microbial	functional	diversity,	particularly	in	oligotrophic	environments	where	the	addition	of	easily	available	organic	C

sources	(represented	by	the	different	substrates)	may	stimulate	microbial	respiration.	Conversely,	enzyme	production	is	not	similarly	stimulated	as	it	requires	a	higher	energetic	expense	(Burns	and	Dick,	2002).	In	studies	aimed	to	evaluate	the	effect	of	land	use	change	on

microbial	functional	diversity,	the	CLPP-MicroResp	approach	can	be	thus	suggested	as	soil	microbial	catabolic	evenness	among	various	land-uses	is	usually	related	to	differences	in	organic	C	pools	(Degens	et	al.,	2000).	Creamer	et	al.	(2009)	also	reported	that	the	MSIR

(multi	substrate	induced	respiration)	technique	resulted	in	a	much	more	distinct	and	relatively	consistent	pattern	of	separation	between	the	tested	soils	with	respect	to	enzyme	activities.	The	lack	of	potential	for	both	techniques	to	discriminate	among	different	land	uses	in

alkaline	soils	(pH > 7.4)	may	be	due	to	the	fact	that	the	interrelationship	between	soil	pH	and	microbial	diversity	may	be	lost	(Fierer	and	Jackson,	2006)	or	even	decreased	(Griffiths	et	al.,	2011)	at	soil	pH	values	higher	than	7.

In	this	study,	no	correlation	was	found	between	H’EA	and	H’MR	all	over	the	data	collected.	Moreover,	an	opposite	behaviour	of	the	two	indexes	was	found	in	agricultural	soils	where	the	significant	(p < 0.01)	correlation	coefficient	was	negative.	This	result	confirms
what	was	previously	observed	regarding	oligotrophic	environments	characterized	by	lower	organic	matter	content,	such	as	agricultural	soils.	In	fact,	as	reported	by	Lagomarsino	et	al.	(2011),	the	microbial	functional	diversity	determined	by	means	of	the	enzymatic	pattern

is	affected	by	land	use	showing	an	increase	along	a	gradient	of	soil	organic	matter.	In	the	same	paper	the	authors	reported	an	inverse	relationship	between	microbial	functional	diversity	and	the	catabolic	response	per	unit	of	biomass	expressed	by	the	metabolic	quotient

(qCO2).

The	lack	of	correlation	between	H’	by	means	of	enzymes	and	CLPP-MicroResp	suggests	that	the	two	techniques	may	assess	sequential	steps	of	decomposition	processes,	even	if	in	this	meta-analysis	the	product	of	most	selected	enzymatic	reactions	did	not

represent	 the	substrates	used	 to	 test	CLPP-MicroResp.	Enzymatic	hydrolysis	 focuses	on	 the	breakdown	of	complex	organic	polymers,	which	not	necessarily	 leads	 to	 the	complete	mineralization	of	substrates	but	can	also	 lead	 to	anabolic	pathways	 for	biosynthetic

processes,	polymerization,	 condensation	 (e.g.	humification,	 interaction	with	mineral	 colloids).	Conversely,	CLPP-MicroResp	measures	 the	complete	mineralization	of	 simple	and	complex	organic	compounds	 to	CO2,	which	 represents	 the	 final	 step	of	 decomposition

process.	Therefore,	in	our	opinion,	a	comprehensive	assessment	of	microbial	functional	diversity	can	be	provided	by	the	integration	of	both	techniques.	For	this	reason,	they	can	be	considered	complementary	components	of	microbial	functional	diversity.

Moreover,	to	further	explain	the	lack	of	correlation	between	the	two	methods,	we	should	keep	in	mind	that	soil	enzymes	include	the	contribution,	considerable	in	most	cases,	of	the	immobilized	fraction	(humus-clay	bound	enzymes)	(Nannipieri	et	al.,	2012).	This

fraction	is	considered	a	permanent	bio-catalytic	property	of	the	soil,	not	necessarily	linked	to	the	living	biomass.	Immobilized	enzymes	may	represent	soils’	background	hydrolytic	potentials,	established	and	stabilized	during	time,	and	representing	their	resilient	capacity

(Ceccanti	et	al.,	2008).	To	date,	no	methods	are	available	to	distinguish	between	the	extracellular	activities	of	stabilized	enzymes	from	that	of	enzymes	associated	with	active	cells.	Such	separation	is	important	because	only	enzymes	associated	with	active	cells	contribute

to	microbial	activity.	The	stabilized	extracellular	fraction	is	no	more	related	to	microbial	metabolism	and	can	persist	in	soil	under	unfavourable	conditions	for	soil	microorganisms	(Nannipieri	et	al.,	2012).	Therefore,	enzyme	activities,	and	the	functional	diversity	measures

derived	from	using	this	methodology,	inform	on	the	general	soil	biological	functioning	including	not	only	the	actual	living	microbial	activity	but	also	the	past	biochemical	activity	still	operating	within	soil	matrix.	Conversely,	CLPP-MicroResp	has	been	considered	a	direct

measurement	of	microbial	communities’	catabolic	profile	providing	an	instant	photograph	of	microbial	physiology	(Lagomarsino	et	al.,	2007).

The	QRM	helped	to	understand	 if,	and	 to	what	extent,	 the	role	of	selected	covariates	(land	use,	TOC	and	pH)	changes	 throughout	 the	entire	distribution	of	each	dependent	variable	(H’EA	and	H’MR).	 It	 is,	 in	 fact,	known	that	microbial	 functions	are	 largely

dependent	on	organic	substrates	availability	and	soil	reaction	(Bardgett	and	van	der	Putten,	2017).	The	QRM	was	found	to	be	an	effective	statistical	approach	to	analyse	microbial	functional	diversity	response	in	relation	to	the	selected	covariates,	particularly	at	the	lowest

(0.25)	and	highest	(0.75)	quantiles.



In	this	study	QRM	showed	that	both	diversity	indexes	depended	more	on	soil	pH	than	on	TOC	content	indicating	soil	reaction	as	the	property	mostly	affecting	microbial	diversity	(Zhalnina	et	al.,	2014).	In	fact,	only	when	TOC	values	were	above	3%	the	H’EA	was

negatively	affected	suggesting	that	the	increase	of	soil	available	organic	compounds	may	cause	a	negative	feedback	on	microbial	hydrolytic	reactions.	On	the	contrary,	it	was	more	evident	the	relationship	between	pH	and	both	indices.	H’EA	was	negatively	related	to	pH	in

the	0.25	quantile	indicating	that	low	levels	of	this	index	are	more	sensitive	to	soil	pH	variations	(Griffiths	et	al.,	2011).	Conversely	the	dependence	of	both	indexes	(H’	MR	and	H’EA)	on	pH	was	positive	at	0.50,	and	0.75	quantiles,	respectively.	Soil	pH	variations	can	induce,

more	than	the	mere	TOC	content,	significant	changes	within	microbial	biomass	structure	in	terms	of	species	and	related	functional	patterns.	Microbial	biochemical	processes	are	strictly	dependent	on	pH	values	that	control	the	majority	of	the	reactions	occurring	in	the	soil.

Fierer	and	Jackson	(2006)	and	Lemanceau	et	al.	(2015)	reported	soil	pH	as	the	best	predictor	of	microbial	diversity	and	richness	affecting	consequently	microbial	functions.

However,	the	nature	of	this	relationship	is	controversial.	Griffiths	et	al.	(2011)	report	that	a	decline	of	β-diversity	was	observed	at	increasing	pH	in	a	spatial	assessment	of	soil	bacterial	community	profiles	across	Great	Britain.	Fierer	and	Jackson	(2006),	 in	a

similar	study	performed	across	North	and	South	America,	showed	a	unimodal	distribution	of	bacterial	diversity,	reaching	possibly	a	plateau	at	near	neutral	pH.

Finally,	the	influence	of	the	different	land	use	categories	was	evident	in	some	parts	of	the	distribution	for	both	indexes,	especially	at	0.75	quantile.	In	particular,	the	effect	of	forest	soils	was	always	positive,	in	most	cases	significant,	for	both	indexes	at	all	quantiles,

confirming	the	strict	relationship	existing	between	the	forest	environment	and	soil	microbial	diversity	(Creamer	et	al.,	2016b).

5	Conclusions	and	future	perspectives
This	 study	 demonstrates	 that	 both	methods,	 enzyme	 activities	 and	MicroResp,	 are	 reliable	 ecological	 indicators	 to	 assess	 soil	microbial	 functional	 diversity.	However,	 since	 no	 correlation	was	 found	 between	 the	 diversity	 indexes	H’EA	and	H’MR,	 it	 was

hypothesized	that	the	two	methods	may	target	complementary	components	of	microbial	functional	diversity.

The	results	lead	to	the	following	conclusions:	i)	both	methods	were	effective	in	capturing	differences	among	various	land	use	categories	although	MicroResp	was	more	sensitive	at	low	levels	of	soil	organic	matter,	ii)	the	QRM	approach	allowed	a	more	detailed

analysis	along	the	distribution	of	the	diversity	indexes	(H’EA	and	H’MR)	with	H’EA	showing	a	more	significant	dependence	on	the	selected	variables.

This	study	can	lay	the	foundations	to	further	studies	aimed	to	assign	an	ecological	significance	to	the	assessment	of	microbial	functional	diversity.
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Highlights

• Enzymes	and	MicroResp	as	reliable	indicators	to	assess	microbial	functional	diversity.

• No	correlation	was	found	between	the	enzyme	and	MicroResp	diversity	indexes.

• The	two	methods	target	complementary	components	of	microbial	functional	diversity.

• Both	methodswere	effective	to	show	differences	among	various	land	use	categories.

• Quantile	regression	model	allowed	analysis	along	the	distribution	diversity	indexes.
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