Article

The three major axes of terrestrial ecosystem function

https://doi.org/10.1038/s41586-021-03939-9

Received: 30 October 2019

Accepted: 20 August 2021

Published online: 22 September 2021

Open access

Check for updates

Mirco Migliavacca^{1,2,55}, Talie Musavi¹, Miguel D. Mahecha^{1,2,3,4}, Jacob A. Nelson¹, Jürgen Knauer^{5,56}, Dennis D. Baldocchi⁶, Oscar Perez-Priego⁷, Rune Christiansen⁸, Jonas Peters⁸, Karen Anderson⁹, Michael Bahn¹⁰, T. Andrew Black¹¹, Peter D. Blanken¹², Damien Bonal¹³, Nina Buchmann¹⁴, Silvia Caldararu¹, Arnaud Carrara¹⁵, Nuno Carvalhais^{1,16}, Alessandro Cescatti¹⁷, Jiquan Chen¹⁸, Jamie Cleverly^{19,20}, Edoardo Cremonese²¹, Ankur R. Desai²², Tarek S. El-Madany¹, Martha M. Farella²³, Marcos Fernández-Martínez²⁴, Gianluca Filippa²¹, Matthias Forkel²⁵, Marta Galvagno²¹, Ulisse Gomarasca¹, Christopher M. Gough²⁶, Mathias Göckede¹, Andreas Ibrom²⁷, Hiroki Ikawa²⁸, Ivan A. Janssens²⁴, Martin Jung¹, Jens Kattge¹², Trevor F. Keenan^{6,29}, Alexander Knohl^{30,31}, Hideki Kobayashi³², Guido Kraemer^{3,33}, Beverly E. Law³⁴, Michael J. Liddell³⁵, Xuanlong Ma³⁶, Ivan Mammarella³⁷, David Martini¹, Craig Macfarlane³⁸, Giorgio Matteucci³⁹, Leonardo Montagnani^{40,41}, Daniel E. Pabon-Moreno¹, Cinzia Panigada⁴², Dario Papale⁴³, Elise Pendall⁴⁴, Josep Penuelas^{45,46}, Richard P. Phillips⁴⁷, Peter B. Reich^{44,48,49}, Micol Rossini⁴², Eyal Rotenberg⁵⁰, Russell L. Scott⁵¹, Clement Stahl⁵², Ulrich Weber¹, Georg Wohlfahrt¹⁰, Sebastian Wolf¹⁴, Ian J. Wright^{44,53}, Dan Yakir⁵⁰, Sönke Zaehle¹ & Markus Reichstein^{1,2,54} □

The leaf economics spectrum^{1,2} and the global spectrum of plant forms and functions³ revealed fundamental axes of variation in plant traits, which represent different ecological strategies that are shaped by the evolutionary development of plant species². Ecosystem functions depend on environmental conditions and the traits of species that comprise the ecological communities⁴. However, the axes of variation of ecosystem functions are largely unknown, which limits our understanding of how ecosystems respond as a whole to anthropogenic drivers, climate and environmental variability^{4,5}. Here we derive a set of ecosystem functions⁶ from a dataset of surface gas exchange measurements across major terrestrial biomes. We find that most of the variability within ecosystem functions (71.8%) is captured by three key axes. The first axis reflects maximum ecosystem productivity and is mostly explained by vegetation structure. The second axis reflects ecosystem water-use strategies and is jointly explained by variation in vegetation height and climate. The third axis, which represents ecosystem carbon-use efficiency, features a gradient related to aridity, and is explained primarily by variation in vegetation structure. We show that two state-of-the-art land surface models reproduce the first and most important axis of ecosystem functions. However, the models tend to simulate more strongly correlated functions than those observed, which limits their ability to accurately predict the full range of responses to environmental changes in carbon, water and energy cycling in terrestrial ecosystems7,8.

Terrestrial ecosystems provide multiple functions (for example, resource use and potential uptake of carbon dioxide, among others) and ecosystem services on which society depends⁵. To understand and predict the response mechanisms of ecosystems as a whole to climatic and other environmental changes, it is crucial to establish how many and which functions need to be measured to obtain a good representation of overall ecosystem functioning. So far, the key functional axes that control the behaviour of terrestrial ecosystems have not yet been quantified⁵. This can be achieved by identifying associations between a comprehensive set of ecosystem functions measured consistently across major terrestrial biomes and a range of climatic conditions.

Here, we identify and quantity the major axes of terrestrial ecosystem functions and sources of variation along these axes. First, we characterize multiple ecosystem functions across major terrestrial biomes. Second, we identify the most important axes of variation of ecosystem functions using an exploratory analysis similar to that used for the global spectrum of plant forms and functions³. Third, we analyse which variables drive the variation along these axes, from a suite of climatic variables, and the structural and chemical properties of the vegetation. Fourth, we analyse the extent to which two state-of-the-art land surface models (models that simulate the states and exchange of matter and energy between the Earth's surface and the atmosphere) reproduce

A list of affiliations appears at the end of the paper.