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Thesis abstract 
 

Approaching micro-evolution of bacterial pathogens of plants using 

MLVA: invasive outbreaks vs endemic diseases 

Introduction  

The movement of goods around the world and broad borders have facilitated the diffusion of 

plant diseases through the movement of pathogens into a new area, and climate change has 

helped the emergence or re-emergence of new pathogens that negatively affect food 

production.  In this thesis, we have dealt with three important pathogens Pseudomonas syringae 

pv. actinidiae, Xylella fastidiosa , as invasive outbreaks pathogens and Pseudomonas 

savastanoi an endemic pathogen. These pathogens have a very important impact on food 

production not only in Italy but also worldwide. In order to understand the genetic 

characteristics,  various methods have been developed for analysing plant pathogenic bacteria, 

these methods are based on either restriction enzymes or DNA segments amplified by PCR. 

These methods have differed in their discriminative power, reproducibility, and ease of results 

interpretation. Hence, we have developed and applied MLVA (Multiple Loci Variable Number 

of Tandem Repeats Analysis) for genotyping the three pathogens. 

The aims  

To develop a robust MLVA (Multiple Loci Variable Number of Tandem Repeats Analysis) 

scheme suitable for global and local studies of three main bacterial diseases (endemic and 

invasive) in Italy: Knot disease on olive, oleander, and ash which is caused by Pseudomonas 

savastanoi pathovars, as an endemic pathogen, then canker of kiwifruit which is caused by P. 

syringae pv. actinidiae (Psa), and the new emerge olive quick decline syndrome which is 

caused by Xylella fastidiosa  subspecies pauca st53 as an invasive outbreak. Then, we used this 
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approach to understand differences in populations of each pathogen, elucidate the diffusion and 

movements of these populations. 

The results  

 The results obtained in these studies point out that MLVA represents a very promising first-

line assay for large-scale routine genotyping prior to whole-genome sequencing of only the 

most relevant samples in case of outbreaks. In addition, its ability to differentiate the pathovars, 

biovars, and subspecies, `the method went beyond that when it was able to differentiate the 

sequence types of the same subspecies. MLVA assay has great potential as an easy and 

effective tool not only to recognize and schedule the presence of the above-mentioned types of 

bacterial species all over the world but above all to trace their movements on local and to 

international scale, in addition to its ability supporting the simple detection of contaminated 

materials with key information concerning specific haplotypes populations. 
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 : Introduction  

 Plant disease 

       Plant diseases remain an endless threat to our food, crops, cash crops, social life, and 

landscape. Disease in plants can be defined as follows: the series of visible and invisible 

reactions of plant cells and tissues to biotic (pathogenic organisms) and abiotic (environmental 

factors) or their combinations, which result in adverse changes in the form, function, or 

integrity of the plant and may lead to partial damage of plant parts and or in severe cases death 

of the entire plant or fields plants. The inherited defects (e.g. genetic disease) of the plant can 

be added to the definition, due to their important roles. Human involvement and activities also 

play an important role in the development of plant disease (1). 

     Abiotic factors, i.e. environmental or physiological conditions, such as temperature, 

moisture, mineral nutrients, pollutants, malnutrition, toxic agents, etc., occurring above or 

below certain levels tolerated by plants can disturb plant functions (2). In simple words, the 

disease is any kind of distribution in plant function due to biotic and abiotic or human activities 

that make the plant unable to carry out its physiological functions correctly. Therefore, plant 

diseases may be the result of living and/or non-living causes. 

Biotic diseases are caused by living organisms, known as pathogens, which include 

microorganisms (e.g., viruses, bacteria, oomycetes, fungi, nematodes, and parasitic plants) (3). 

A plant pathogen is an organism that can inhabit the rhizosphere (zone of interaction of root 

and soil) and/or phyllosphere (aerial part of the plant) and the endosphere (internal parts of the 

plants) and can disturb the growth, production, and survival of the plant by causing changes in 

the morphology and behavior of the plant or its tissues (4). For example, when bacteria attack 

plants, they usually disturb plant cell metabolism by secreting enzymes, toxins, growth 

regulators, and other substances, and by absorbing nutrients from the host cells for their own 

use (5). Some pathogens may also cause disease by growing and multiplying in the xylem or 

phloem vessels of plants, thereby blocking the upward transportation of water and nutrients, as 

in the case of Xylella fastidiosa , the causal agent of Pierce disease and olive quick decline 

syndrome (OQDS) in Italy, and of Candidatus Liberibacter asiaticus, the causal agent of 

Huanglongbing (HLB) disease (1). 
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Figure 1: The effects of the disease in fields of (A) Horse chestnut plants2; (B) Olive plants3; 

C) Pears.4   

Plant diseases vary in their effects, ranging from insignificant symptoms in the garden to 

disasters that destroy main food crops planted over large areas (6). Food losses due to crop 

infections from pathogens are a persistent problem in agriculture since these organisms reduce 

quality, yields, shelf-life, and consumer satisfaction, in both pre- and post-harvest (7). Major 

disease outbreaks may cause starvation, hunger, and migration, such as potato blight disease 

caused by Phytophthora infestans, the Great Bengal Famine of 1943, black stem rust of wheat 

in the USA, and many others (8). It is difficult to control plant pathogens due to their population 

differences in time, space, and genotype. Another important aspect is that a pathogen may 

evolve to overcome the resistance of the plant (9). In order to meet the increasing demands of 

feeding the growing population, the improvement of crop protection strategies to prevent losses 

due to pathogens plays an important role in securing both food quality and quantity (7). 

   In conclusion, it can be said that not only do biotic and abiotic factors cause plant disease but 

so does the interaction between them. In addition, human activities consisting of agricultural 

 
2 https://www.dailymail.co.uk/news/article-3223818/ 
3 https://www.cbsnews.com/news/pathogen-destroying-olive-trees-in-italy-xylella-fastidiosa/ 
4 https://wiki.bugwood.org/ Erwinia amylovora 
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practices such as cropping systems and extensive pesticide applications could also lead to the 

development of this complex/disease (10). We will discuss biotic factors which include three 

bacterial pathogens; hence, other aspects will not be discussed here. 

 Bacterial plant pathogens  

Bacteria are single-celled prokaryotic microorganisms, classified as eubacteria and 

archaebacteria according to differences in the composition of their cell wall and cytoplasmic 

membrane. Eubacterial plant pathogens are sub-divided into gram-negative bacteria, gram-

positive bacteria, and Mycoplasma-like organisms (MLOs). The difference between them and  

Mollicutes (1)  is the presence of cell wall characteristics. MLOs lack a cell wall; their outer 

boundary is instead a cytoplasmic membrane, which gives them some unusual properties not 

found in most eubacteria.  

    Common plant pathogenic bacteria are all small, single, rod-shaped cells, apart from the 

filamentous Streptomyces bacteria. Bacteria range from 0.6 to 3.5 ɛm in diameter  (11). The 

cell wall of most bacterial species is surrounded by a viscous material known as a capsule, 

which provides protection against stresses, immune responses, antibacterial agents, and 

antibiotics. Gram-positive bacteria, on the other hand, produce endospores to help them survive 

unfavorable conditions (12). 

       Many bacterial species are motile by means of their flagella, which are filamentous 

structures consisting of proteins. The number and distribution of flagella vary among species. 

Some species have only one flagellum present at one end (polar or monotrichous flagellation). 

In some species have flagella located at both ends of the cell (lophotrichous bacteria), while 

other species have flagella at various places on the cell (peritrichous bacteria) (1).      

     There are over 100 bacterial species responsible for plant diseases affecting productivity. 

Difficulties in controlling bacterial diseases (both chemically and biologically) are due to 

different factors such as limits on using antibiotics in Europe, the development of resistance, 

wide host range, population size, and evolution.  Bacterial diseases of fruit trees, for example, 

may cause losses that reach 50% -100% and the whole crop could be destroyed as a result of 

the bacterial attack (13). 

         Bacteria multiply asexually by binary division. The cell grows to twice its size and splits 

into two cells; this division must occur at the correct time and correct location in the cell. 
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Progeny cells receive a complete set of genes of their parent cell. On the other hand, the gram-

positive bacteria Streptomyces species were found to multiply by forming a spore (14)(15). 

Bacteria replicate at a high rate. A single bacterial cell may produce one million progeny 

bacteria in less than a day if there are optimal environmental factors. However, this high rate 

will gradually slow and finally stop at a certain point (16). Plant-associated bacteria may be 

beneficial or harmful; they can live in the rhizosphere (zone of root and soil interaction) and/or 

phyllosphere (aerial part of the plant), and the endosphere (internal parts of the plants). Plant 

pathogenic bacteria are found as saprophytes in plant debris or in the soil, but mainly develop 

in the host plant as parasites, or on the plant surface as epiphytes (1). 

    Pathogenic bacterial species that cause serious diseases of plants throughout the world have 

increased from several genera (five) to almost 40 genera, belonging to three gram-negative 

bacterial families (Xanthomonadaceae, Pseudomonadaceae, and Enterobacteriaceae), and one 

gram-positive family (Corynebacteriaceae)  (17,18). There are more than 150 bacterial species, 

including over 10 species considered to be the most important bacterial plant pathogens 

because they cause high economic losses: Pseudomonas syringae pathovars; Ralstonia 

solanacearum, Agrobacterium tumefaciens; Xanthomonas oryzae pv. oryzae; Xanthomonas 

campestris pathovars, Xanthomonas axonopodis pathovars; Erwinia amylovora; Xylella 

fastidiosa , Dickeya (dadantii and solani); Pectobacterium carotovorum, and Pectobacterium 

atrosepticum (19). These species are the most scientiýcally/ economically important bacterial 

pathogens (20).  

 Economic importance of plant diseases 

       The emergence and introduction of new plant pathogens have been aided by different 

factors, such as open borders, food and goods trade, climate changes, multi-cropping, 

monoculture production systems, changing from traditional to high-intensity agriculture 

systems, excessive use of pesticides, and many others (15). The interaction of these factors has 

affected the natural plant-pathogen interaction, in turn disturbing the coevolutionary system by 

creating a unique condition that makes the bacterial population evolve and causes epidemics 

(21). Bacterial plant pathogens are a major problem worldwide for agriculture because they are 

difficult to control, and their impact on agriculture is huge. Meanwhile, the results of any 

bacterial attack on a crop will be more significant at the global level, but this is related to 

different factors, for example, local climate, cropping practices, the choice of crop and plant 

cultivar, plant species, even more, the characteristics of pathogens (pathovars, biovars, 
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sequence typing) (22). Many plant pathogenic bacteria are asymptomatic, and any simple 

change in one or some of the previous factors may lead to favorable conditions that help the 

emergence or re-emergence of plant pathogens (23). In 2002, the bleeding canker of the 

European horse chestnut disease caused by Pseudomonas syringae pv. aesculi was reported in 

England, Wales, Scotland, Netherlands, Belgium, France, and Germany. It affected hundreds 

of thousands of trees in these countries, resulting in severe damage to rural and urban landscape 

features (15). Pseudomonas syringae pathovars cause diseases of a wide host range, e.g. 

monocots, herbaceous dicots, and woody dicots, worldwide. For example, Pseudomonas 

syringae pv. actinidiae was present in Japan since 1984, but with a limited impact on the local 

production in Japan and China (24ï27). However, in 2008 a new biovar spread worldwide 

starting in Italy, New Zealand, Chile, China and other countries (28,29) and caused severe 

losses in all major areas of kiwifruit cultivation (30). The emergence of the bacterium Xylella 

fastidiosa  subsp. pauca in Italy (Apulia region) in 2013 poses a great threat to Europe and the 

Mediterranean basin because of its host's number over 350 plant species, and vectors. The 

bacterium has also been detected in France and Spain (31). The disease was not reliant only on 

the bacterium but also on the interaction of plant, pathogen, and vectors and the effects of 

abiotic factors (32). The impact of Xylella fastidiosa  in Italy has caused not only economic 

losses, but also agricultural, environmental, political, and cultural damage (32). There is no real 

estimate of the financial cost, but it is estimated that there are approximately 25 million olive 

trees in the demarcated area, so that the loss to olive agriculture is substantial (Bosca personal 

communication). Another important species is Agrobacterium spp., which can attack more than 

500 plant species causing significant economic losses in the production of many plants 

worldwide. Most of these species affect fruit species: stone and pome fruits, nut trees and 

grapevine, as well as some perennial ornamentals (33). Precise estimation of losses in crops 

attacked by bacteria is difficult, because comparison of crop sizes in protected and non-

protected plantations is impossible.  

 Epidemiology of plant bacterial diseases 

A plant disease to become established in a new area, it needs three factors: a susceptible host, 

pathogen virulence, and suitable environmental conditions (humidity and temperature). Human 

activities can cause wounds or damage to the plant tissue, in addition, frost, hail, wind, and 

rain, all these factors can facilitate bacterial entrance (34). Epidemiology studies plant disease 

occurrence over space and time, with information related to the pathogenôs ability to survive 

(11). The bacterial disease process includes two important steps: invasion of plant tissue and 
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multiplication. Plant pathogenic bacteria may live as epiphytes and some as saprotrophs on a 

host plant, but they are unable to enter plant tissue directly. The process of infection starts with 

the attachment of bacteria to the plant surface followed by bacteria penetrating through the 

wounds or natural openings, such as hydathodes, stomata, and nectaroides then is the 

multiplication of the bacteria in the new environment; they multiply in the intercellular spaces 

from where they can spread into different plant tissue (35). The environmental conditions, 

especially humidity and temperature, can further develop or limit the pathogen, disease, and 

development of symptoms. Bacterial numbers can decrease rapidly when the infected tissue 

dies.  Moreover, many bacteria are unable to survive on dead plant debris, which in the end 

reduces the source of inoculum (36). 

    Bacteria may spread by one or multiple methods, which are based on bacterial location.  For 

example, bacteria may be transferred by infected plant materials or contaminated seed, others 

may be transferred by animals, insects, birds, mites or by human equipment (machinery and 

tools), and activities such as cultivation, grafting or pruning. They can also be spread by water, 

(rain, overhead irrigation) and wind (11,17). The most important method of bacterial 

dissemination involves vectors, as for OQDS caused by Xylella fastidiosa  and HLB caused by 

Candidatus Liberibacter asiaticus, both of which are transferred by insects. Bacteria may 

survive in insects, knots, plant debris, soil, water, or seeds. 

 Control measures  

      One of the main goals of growers is to earn an income from their crops by supplying the 

local or international markets to feed humans and animals. On the other hand, consumers seek 

safe and tasty products with an attractive appearance. In addition, they are also concerned about 

the conservation of the ecosystem and natural resources (1). These targets face the problem of 

plant disease, which disease control helps to solve and to achieve these aspects (37). The main 

methods of disease control are based on avoidance, exclusion, eradication, protection, 

developing plant resistance, and finally cure (38).  

       The best method of disease control is what is now known as Integrated Pest Management 

(IPM) and consists of various integrated activities. According to the Food and Agriculture 

Organization (FAO), IPM is defined as  óthe careful consideration of all available pest control 

techniques and subsequent integration of appropriate measures that discourage the 

development of pest populations and keep pesticides and other interventions to levels that are 

economically justiýed and reduce or minimize risks to human health and the environment (39).  
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   Cultural, physical, chemical and biological control methods, resistant varieties, improved 

resistance, quarantine and inspection and the recent trend methods of integrated pest 

management should be used alone or together to support disease management and to reduce 

the pathogen population below an acceptable threshold (40). Combinations of control 

techniques aim to reduce the pathogen population to a harmless level and to reduce the use of 

pesticides, thereby reducing the cost of control.    

      All these methods have different degrees of success and their own limitations. Factors that 

interact with each other and on disease control include pathogen-host interaction, pathogen 

epidemiology, environmental factors, and the seasonal or physiological stages of both host and 

pathogen (1). The best approach is to use appropriate integrated methods to help control the 

disease. The next sections will discuss these methods in a general way.  

  Chemical methods 

      A plant disease caused by phytopathogenic bacteria can be difficult to control, especially 

if the bacterial pathogen has become established and diffused. The use of chemical compounds 

will be more effective as a preventive measure, or at an early stage in the bacterial infection, 

which in general can be used for soil treatment, control of insect vectors, and fumigation (41). 

Agriculture has long made use of copper-based compounds, such as Bordeaux mixture, cupric 

hydroxide, copper sulfate, ammoniacal copper and copper salts of fatty acids against bacteria 

as a foliar treatment to protect plants from bacterial diseases (42). 

        Due to their effectiveness, copper-based compounds are used widely to control or reduce 

pathogens and have been used successfully against many bacterial plant diseases, including 

olive knot, Tomato bacterial speck, the bacterial canker of apricot and cherry, canker of kiwi 

fruit (43). Copper mixed with fertilizer to control the bacterial disease has given good results 

(44ï48). The over-use of copper compounds has, however, seriously damaged agricultural and 

natural ecosystems. In addition to the limitations of their use, the emergence of resistant strains 

has been detected in different bacterial species, and this could prevent control of the disease 

(49). 

      Phytotoxin accumulation in the soil due to repeated spraying has also been observed; in a 

study conducted in Italy, it was found that copper concentrations were high enough to represent 

a risk of toxicity  (50,51). 
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      Although of its importance, but the accumulation of copper in soil plays a toxic role in the 

plant and can contaminate the food chain, although this varies from plant to plant because some 

plant species can accumulate heavy metals in their tissue (52,53). Not only, copper is a soil 

toxin, but many bacteria have also developed a resistance to copper (52,54). 

In order to overcome copper resistance, farmers started to mix it with other 

Ethylenebisdithiocarbamate (EBDC) compounds such as maneb or mancozeb, but these 

compounds still have limited efficacy (55). In the treatment of endophyte pathogenic bacteria, 

copper is considered as toxic (51). 

         In the mid-ninetieth century, antibiotics were used extensively against bacterial plant 

pathogens. Four antibiotics are used in plant disease control (Streptomycin, Oxytetracycline, 

Gentamicin, and Oxolinic acid) to prevent different plant pathogens, such as Erwinia spp 

Pseudomonas spp., Xanthomonas campestris, Agrobacterium tumefaciens, mainly 

phytoplasmas. The main areas using these antibiotics are the USA, Mexico, New Zealand, and 

the Middle East, while some European countries, like Germany, Austria, and Switzerland, have 

allowed the use of antibiotics on an emergency basis, and under strictly limited conditions (56). 

         The main use of antibiotics and the widest application was against Erwinia amylovora, 

causal agents of fire blight (57). Extensive use of antibiotics has revealed the development of 

resistance in bacterial plant pathogens (58). The antibiotics remain one week on plant surfaces 

and their activity can quickly diminish. One problem for scientists is the possibility of 

transferring resistance genes from plant pathogenic bacteria into human and animal pathogenic 

bacteria, but most studies focus on transfer through the soil and deactivation of bacteria in the 

soil or on plant surfaces (59ï62). The possibility still presents if the other bacterial transmission 

methods are considered and if the plant carries out some of this bacterial resistance to 

antibiotics. 

      Biological control methods  

    These methods appeared in reaction to copper and antibiotic resistance, and to the pollution 

due to the excessive use of pesticides, whose accumulation has negative impacts on 

ecosystems. Biological control methods were developed for entomology and then plant 

pathology. For plant pathogenic bacteria, the process is based on using microorganisms as 

antagonists or natural substances from plants or any other sources to suppress the pathogen or 

diseases (63). Biocontrol agents work through multiple beneficial characteristics such as 
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rhizosphere competence, antagonistic potential, and ability to produce antibiotics, lytic 

enzymes, and toxins (64). These antagonists are either direct or indirect; the mechanism of a 

direct antagonist is based on direct contact or a high degree of selectivity to the pathogen, 

whereas the activity of an indirect antagonist does not involve sensing or targeting a pathogen 

(8). 

          Bacteria are the main group of beneficial microorganisms. These beneficial bacteria 

produce different kinds of metabolites, e.g. secretion of siderophores and enzymes, production 

of growth regulators and antibiotics, and induction of systemic resistance (65). 

       Bacterial species used to control and suppress plant disease include Bacillus spp. 

Pseudomonas spp., Agrobacterium spp., and some fungus have also been used, such as 

Trichoderma spp.  (66).  

        Many studies have reported the use of bacterial species or their products against bacterial 

plant pathogens directly like competition (67,68). Inducing systemic acquired resistance (SAR) 

in the plant (69ï75).  Several applications have been approved for controlling bacterial plant 

pathogens of tomato, pepper, onion and fire blight (76).       

      Bacteriophages can also be used for biological control in bacterial diseases, in combination 

with other control methods under the umbrella of IPM strategies. Phages have been used in 

wide applications against different human, animal and plant pathogens. Many studies have 

reported the use of phages against plant disease (77ï81). 

       Breeding programs have also been widely used in agriculture, involving the enhancement 

of plant resistance to disease. The mechanisms used include reengineering plants to produce 

antibacterial proteins of non-plant origin, inhibiting bacterial pathogenicity or virulence 

factors, enhancing natural plant defenses, and artificially inducing programmed cell death at 

the site of infection (82ï87). 

Different applications on various bacterial plant diseases have been applied to breeding 

programs(82). The use of certified plant material is an important method to control plant 

disease and aims to provide planting material free of phytopathogenic bacteria (39,83ï88). 

Different programs have been used for certified plant material to control plant disease (89).  
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      Physical methods are also widely used against plant pathogens, aiming to deactivate or 

eradicate the pathogen from seeds. These treatments include the use of hot water, hot air, steam, 

aerated steam, moist hot air, and solar heat, while other methods for the treatment of soil-borne 

pathogens are less used on bacterial pathogens, such as soil solarization, and hot air sterilization 

(41,90).   

    Cultural methods such as host eradication, crop rotation, sanitation by creating unfavorable 

conditions, plastic traps and mulches have been applied for the control of plant bacterial 

diseases, with the aim of eradicating and/or reducing pathogen inoculum (91). Most of the 

above-mentioned methods have their positive and negative impacts cooper-antibiotic creates 

resistance in bacteria (92). The use of SAR also has a negative impact on the plant (50,93ï95). 

          Development of strains that overcome the resistance genes were also noticed in some 

breeding programs (96). One of the most important methods in controlling the disease is 

monitoring and early detection of pathogens, which can help greatly in the reduction of disease 

spread and the preparation of a rapid management plan (97,98). The concept of IPM appears a 

necessity in order to reduce the use of chemicals and to control plant pathogens effectively 

(99). In addition to economic aspects (100). 

          Detection and identification are critical steps for the suitable application of phytosanitary 

measures (101). The precise estimation of disease occurrence and severity, or disease effects, 

in addition, to forecasting temporal and spatial disease spread in specific growing regions are 

important to set up the control measures. Different methods are used to diagnose and detect 

disease, including visual plant disease estimation and microscopic evaluation of morphological 

features to identify pathogens, as well as molecular, serological, and microbiological diagnostic 

techniques (102). Detection methods will be discussed below.  

 Population genetic analysis   

       The demand for food has been increased over the last century and this will continue due 

to the rising of human population. Indicators suggest that an additional 70% of food production 

is required for the next fifty years. The food supply chain or the decrease in agricultural 

productivity is facing many challenges, an important one of which is plant disease (103). The 

movement of goods around the world and open borders have facilitated the diffusion of plant 

diseases through the movement of pathogens into new areas. Furthermore, climate change has 

helped the emergence or re-emergence of new pathogens which negatively affect food 
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production (104). Many control methods have been used in order to set up disease management 

plans and face food shortages, including plant breeding (resistance variety) programs. 

However, these resistant varieties have faced failure due to the emergence of new variant 

strains that overcome these resistance genes. These strains have developed resistance to 

pesticides or antibiotics (105). It is very important to understand how a pathogen emerges and 

adapts to the environment. Population genetic analysis could be the best tool to understand the 

previous two concepts (106). Knowledge of population genetics has been increased by 

coalescent theory, computational methods, and molecular biology, which have opened up the 

genomic era (107).  

      Several advantages are obtained from the population genetic analysis. for example, it can 

helps to identify the source of infection of the plant pathogen and to determine if the pathogen 

has been introduced or has emerged locally (108). It also reveals the genetic patterns and 

evolutionary process (109), and another advantage, it helps in understanding the biologically 

relevant genetic variation within individuals and the effect of evolutionary forces and their 

contributions within and among the population through space and time (110). Population 

genetics aims to explain how genetic variation is maintained within and among the population 

over space and time (111). The information retrieved from these studies will help the creation 

of plant disease management strategies, through the understanding of disease epidemiology, 

ecology, biology and evolution (106,112). 

    The first step in the analysis of population genetics is to understand the populationôs genetic 

structure: how they form, how they vary and differences among the strains or populations using 

molecular markers (113). The population consists of a group of individuals of the same species 

living in a given area, interacting with each other and impacted by natural selection and 

evolution (113). The population is considered as the smallest unit of evolution (114). The 

discussion here will be limited to bacteria. Bacteria live in community as a population, they 

vary in their phenotypic and genotypic traits, and the study of population genetics of this 

organism can provide insight about the origin and dispersal of the bacterial pathogens (115). 

Population structure studies aim to understand how the pathogen evolved and the forces driving 

evolution, and apply this knowledge to achieve sustainable plant disease management (116). 

 Genetic variation  

      New developments in genomics allow discovery of the genome components. Whole-

genome sequences (WGS) and comparative analysis of bacterial genomes have revealed two 
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types of genes within the genome: the core and þexible genomes (117,118). These findings 

have revealed more about genetic variation among bacterial species that seem homogeneous 

but are heterogeneous at the cell and genetic levels. In addition, these findings have helped 

plant breeders to develop resistant cultivars (119,120). 

         The natural changes in the genetic information of a population or species are known as 

genetic variation. These variations help individuals whose genes give rise to new characteristics 

that are best adapted to the environment and will be the fittest to survive, reproduce and transfer 

these variations to the next generations, in a process known as evolution (121). Genetic 

variation occurs due to the interaction of different evolutionary forces, including mutations, 

horizontal gene transfer or gene flow, random genetic drift , natural selection and other 

environmental and human activities (122). 

      When bacteria reproduce by binary fission, all individuals within a species are identical 

ñclonesò because they originate from a single parent (wild-type) (123). Bacteria must ensure 

the transfer and maintenance of the genetic information with the correct sequence to their 

offspring. Different mechanisms are involved in the organization of this process (2). One 

mechanism that leads to the emergence of new descents through vertical gene transfer is de 

novo mutation and the accumulation of mutations over generations (124). 
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FIGURE 2: Circumstances involved in the generation and maintenance of the genetic variation of the pathogen 

population. green, brown and blue indicate a positive, negative and variable (positive or negative) impact on the 

evolution of genetic variation, retrieved from (116). 

A bacterial species with greater genetic variation has greater adaptability to changing 

environments (38). A great variety is observed with bacterial genomes, and these variations are 

due to the acquisition and loss of functional accessory genes by the interaction of the 

evolutionary forces (125). Lower genetic variability among the population decreases the fitness 

and adaptability of the population, while greater genetic variability helps the population to be 

more adaptable, and can help pathogens to evolve more rapidly to challenge different 

circumstances, including control measures (126). For example, when a new variant of the same 

pathogen appears and overcomes a resistant cultivar in one region, it then starts to spread to 

new regions or areas. The development of virulence genes that overcome resistance via 

mutation or other mechanisms in the local bacterial population is evolution and causes genetic 

variation (38). The new virulence strain can move into other local areas or countries as a result 

of natural and/or human causes that spread disease. This concept also applies to the use of 

chemicals or antibiotics, to which pathogens can develop resistance due to evolution (127,128). 

 Evolution  

 Population genetics answers the questions about what drives genetic variety and how it is 

maintained over time and explains the reasons for heterogeneity in bacteria (113). This is 

because population genetics studies the genetic structure (frequencies of alleles and genotypes) 

within and among the population to understand how evolution forces occur and act on 

populations (114).  There is no clear picture of the essence of evolution because of the ongoing 

dispute regarding as to whether the concept of evolution is microevolution or macroevolution, 
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and as to which one leads to the evolution of species (129). As a definition, evolution means 

changes in the inherited characteristics of a population over time, as over a long time (thousands 

of years) which leads to the development of new species, and over a short time (days weeks, 

months, years) which leads to the development of new variants through interactions of different 

processes, in order to adapt and to be more suited to the environment (130). 

The processes of evolution are mutations, recombination and horizontal gene transfer, genetic 

drift and natural selection; all these processes have interacted alone or with each other and led 

to evolution (131). 

       Macroevolution is the production of a new species from previously existing species and 

involves morphological innovations and ecological transitions (132). The term refers to the 

development of new species, genera, family or clades or their extinction through the long-term 

process under wide environmental changes (133). It focuses on phenotypic evolutionary trends 

over geological time. The mechanisms that lead to macroevolutionary transitions are an 

unsolved issue (134). 

        There are two schools that deal with these concepts. The first Raia et al., 2015 holds that 

micro-macro evolution has the same process to develop above and within-species level (135). 

The other school (136) basically explains that the process which produces macroevolution is 

different from the process of microevolution and that microevolution is not sufficient to 

produce macroevolution. Richard, 1940 has set three mechanisms involved in the development 

of new species; generation and sorting of variation in addition to natural selection. For bacteria 

the same ongoing argument regards the mechanisms responsible for microevolution or 

macroevolution (137); some authors (138) defend the idea that microevolution is responsible 

for macroevolution via a long-time process, while others (139,140) disagree, stating that 

macroevolution cannot be based on the processes of microevolution. (141,142) reported that 

qualitative change resulted in macroevolution through a long-term process. It is suggested that 

horizontal gene transfer among taxa higher than the species level could occur and lead to 

macroevolution (133). To sum up, there is a gap in understanding of the mechanisms of 

macroevolution, and it seems that the difference concerns only the time periods involved in the 

two processes (142).  

         It is not my intention to discuss the mechanisms involved in the process of 

macroevolution for two reasons; firstly, my topic focuses on microevolution, and secondly, the 
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topic has been discussed by other authors in the past (143). Three approaches have described 

the evolution of bacteria: age Inferred by association with ecological events, age inferred from 

eukaryotic molecular clocks and age inferred from the host fossil record (136,137,151ï

154,139,144ï150). The long-time period required by macroevolution makes it impossible to 

study its mechanisms in the laboratory, which leaves a big gap in understanding of this system 

(155).  

          Microevolution is the process involving changes in the gene pool that occur during a 

short period of time, i.e. days, weeks or months even years. These changes, which occur in the 

accessory genes, can lead to fast phenotypic changes and new bacterial variants; the final 

consequences of these processes are the development of epidemic diseases (133). 

Microevolution in bacteria is responsible for the rapid emergence of variants (132,156,157). 

Whole-genome sequences (WGS) and comparative analysis of bacterial genomes have 

revealed two types of genes within the genome: the core and þexible genomes (140,158ï161). 

The core genes are essential for the survival of the organism, whereas flexible genes consist of 

genes responsible for adaptation to speciýc niches, hosts, or environments. Core genes are 

evolved in mutation and natural selection but rarely in horizontal gene transfer and are 

considered as the raw material for evolution, while the þexible genome evolves largely through 

horizontal genetic exchange. Flexible genomes have an important role from the biological point 

of view; they are involved in pathogenicity, virulence features such as adhesins, capsules or 

toxins, and developing resistance to chemicals or antibiotics (118,162). Genes responsible for 

these factors normally lie within the flexible gene pool or plasmids of the bacterial genome. 

This can offer advantages under particular conditions due to human activity and environmental 

conditions, whereas the evolutionary forces take advantage and play their role mainly on these 

groups of genes (163ï165). 

         The major driving forces for novel genetic variants in bacteria are mutations, horizontal 

gene transfer and recombination, genetic drift and natural selection. These mechanisms 

continually help bacteria to rapidly generate a new variants  (118,166). Horizontal gene transfer 

of genes lost by mutation is thought to be the primary mechanisms of prokaryotic adaptation 

leading to speciation. Since a very great number of DNA sequences between 10 and 100 

kilobases (kb) in length are present in the genome termed genomic islands, a huge number of 

genes in the genomic islands are present too. These genes may be transferred and recombined 

all together in a new bacterial genome, which may lead to changes in the genome functions and 
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evolution in important leaps (140).  In the study conducted by (118,167) on Salmonella 

enterica, the result showed that a significant amount of the DNA segment is from distantly 

related species which indicates lateral gene transfer involvement in evolution. All  of the 

evolutionary forces will be discussed below. 

       

 

FIGURE 3: Mode of the DNA pools in the genomes of prokaryotes, retrieved from (168). 

 

 Evolutionary forces  

 Mutation  

      This is the primary source for genetic variation and raw material of evolution (118). A 

mutation is a change occurring in DNA nucleotide sequences structures that are transmitted 

from parent to offspring (169,170). There are three types of mutation based on their effect on 

genomes: the first type of mutation can increase the fitness of the host, the second can decrease 

its fitness (harmful), and the third has no effect on its fitness. Mutations can result from 

substitution, deletion, insertion, inversion, reciprocal translocation and chromosomal 
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rearrangements of DNA sequences (171). A small portion of mutation has a beneficial 

advantageous effect, while the majority has a deleterious effect (172). Point mutation and DNA 

rearrangements (inversions, duplications, insertions, deletions, or transposition of large 

sequences of DNA from one location of a bacterial chromosome or plasmid to another can 

occur during DNA replications, and could on an evolutionary time-scale lead to a modification 

in the genetic map (173). Mutation rates vary among bacterial genomes between species, or 

within the strains of the same species, and haploid pathogens differ from diploid pathogens in 

the change of the mutation numbers (171,174). Mutation of a single nucleotide could cause the 

protein to lose or change its function to a new function (175). 

     These mutations can lead to the loss of genetic functions or entire genes, or add a new 

function in the case of duplication, for example (176).  Mutation alone cannot have a great 

effect on the evolutionary process unless it is combined with other mechanisms. When a 

mutation occurs, natural selection decides whether to keep or eliminate this mutation from the 

population (170,177).  

     Most mutations are harmful to the bacteria, while others can provide advantages under the 

right conditions and based on natural selection (178). Mutation rate variability effects 

evolutionary adaptation. In a study Lopreato, 2001 on E. coli, it was found that evolutionary 

adaptation accelerated when the mutation rate increased (179). 

     A point mutation can be generated by slipped strands mispairing, which positively or 

negatively affects gene expression; one of its advantages is a contribution to the development 

of bacterial resistance to antibiotics (180). The modiýcation of structural and regulatory genes 

in bacterial species that are opportunistic or non-primary pathogens have the ability to modify 

or knock out the encoded proteins and inþuence their function (pathoadaptive mutagenesis) 

during pathogenesis (140). A pathoadaptive mutation is another microevolutionary concept, 

which enables some bacteria to be pathogenic without modification or loss of pre-existing 

genes that had been adapted for life as a commensal organism (181). Deletion is another 

microevolutionary process within mutation, in which bacteria can adapt to the environment 

through the manipulation of large DNA sequences (181). The role of mutation in plant 

pathogenic bacteria has been clarified and confirmed in different studies (162,182), etc. Within 

the concept of mutation, a very important DNA motif called tandem repeats (TRs) plays an 

important role in the evolution of bacteria. These motifs developed due to DNA replication 
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slippage and their mutation rates are higher compared to point mutations (183ï187). This 

aspect will be discussed later on this chapter.  

 Horizontal gene transfer (HGT), gene flow  

HGT is the movement and incorporation of genetic material between closely related organisms 

or distantly related organisms (188). This process can either moderate or deepen genetic 

variability among subpopulations or strains in the case of bacteria inhabiting the same 

environment (189ï191). This mechanism is considered the most important mechanism in 

bacterial evolution (187). Horizontal gene transfer among and within bacterial populations 

occurs via the release of naked DNA from the community (eukaryotic, prokaryotic) followed 

by uptake and recombination by the bacteria (192). Three different mechanisms are responsible 

for HGT: natural transformation, transduction, and conjugation. In order to accomplish the 

transfer of DNA sequences, mobile genetic elements such as plasmids, bacteriophages, 

transposons, and integrons are responsible for the transfer of DNA among bacterial 

populations(193). Many factors could limit HGT such as the establishment, expression, and 

temporospatial functions of the agents affecting DNA movement: plasmids, bacteriophages, 

and transposons (194,195).  

    HGT plays a major role in the evolution of most prokaryotes, alongside other mechanisms. 

It is responsible for resistance genes, gene clusters encoding biodegradative pathways and 

pathogenicity determinants, and is responsible for speciation and sub-speciation in bacteria 

(194). In addition to genome size, other factors like growth temperature, oxygen utilization, 

and pathogenicity may affect HGT (196ï199). One study revealed that HGT is the driving 

force responsible for much of the genetic variation among prokaryotic microbes (191). HGT 

and recombination have formed the diversity of the bacterial population and the variation of 

their lineages. While HGT has introduced novel DNA distinct bacterial genome, the latter 

mediates the exchange of DNA among the individuals of the same species (200). The HGT 

mechanism depends on the recombination and incorporation of genes and genetic elements 

from strains of bacterial species and eukaryotic species (189,201). In HGT recombination, the 

bacteria achieved recombination through the same processes; in transformation, bacteria can 

acquire DNA from the neighbouring environment, which causes bacterial DNA modification; 

in conjunction, bacteria transfer DNA sequences by direct contact, and in transduction, the 

involvement of a bacteriophage is required for the bacteria to be able to exchange DNA.  These 

three processes help to achieve HGT (189,193). A study conducted recently showed the 
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involvement of HGT in a wide range of antibiotic resistance in bacteria (Zhan, 2016). It was 

found that different numbers of genes were shared between archaea and the bacteria that live 

in similar ecological conditions, due to HGT (196,197,199). Different There are several 

advantages derived from recombination: it can achieve purging deleterious mutations, the new 

combination (multilocus genotypes) helps the population to adapt, and it reduces or eliminates 

linkage disequilibrium (191). Additionally, it increases the diversity of bacterial clonality, 

and/because recombination work to homogenize the species gene pool(202). Recombination 

could disturb HGT, especially on the gene on plasmids. It can substitute for the acquisition of 

adaptations from both close and distant species (203). Different plant pathogenic bacteria have 

witnessed HGT and recombinant (198).  

        Gene flow or gene migration refers to the transfer of genetic variation from one 

geographic population to another population, which could happen between two populations of 

the same species or between two different species through horizontal gene transfer (204ï207). 

Gene flow plays two important roles in evolution: the first is to increase the range of a species, 

and the second is to limit the genetic divergence of populations that would occur by random 

genetic (208). 

 Genetic drift  

       This is the process in which there is a probability that newly generated mutants can survive 

and exist in the population. In other words, the mutants occurring in a large population, which 

are constant and usually quite low, are able to remain and persist, which then leads to more 

genetic variability than in a small population  (209). 

  The random change in alleles frequency in a population occurs by mutants/mutations (genetic 

sampling error) over a short period of time. It is more effective in small populations  (210). 

The influence of genetic drift is limited by the number of individuals that survive to be able to 

transmit the modified genes to their offspring, and also by the size of the population: drift 

occurs faster in small populations. At the same time, the effect of genetic drift will decline over 

time with an increasing population  (211). Genetic drift may lead to a reduction in genetic 

variation (due to the disappearance of the gene variants), and to genetic differentiation among 

populations (209,212). Immigration, emigration, founder effects, and population bottlenecks 

are responsible for genetic drift. A population bottleneck occurs when the size of the population 

decreases sharply due to external factors, and the alleles fluctuation is varied. The founder 

effect is a type of population bottleneck and occurs when a few individuals migrate out of the 
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population to establish a new subpopulation (126). The replacement rate of a gene is constant 

between mutation and genetic drift. When a new allelic variation is created by a mutation in 

DNA, the genetic drift works slowly to remove it in order to create a stable state (208). Allele 

frequencies can be changed due to mutation, recombination and genetic drift (213). Genetic 

drift plays a crucial role in forming the genetic structure of a pathogen in a local population 

due to the environmental condition surrounding the pathogen. Control measures can reduce the 

rate of evolution by decreasing the effective population size (212). 

Genetic drifts affect bacterial genomes through the fixation of harmful mutations (113). It 

promotes genome reduction in bacteria. and education of bacterial genome size is a 

consequence of genetic drift coupled with a mutational bias toward deletions (126). Genetic 

drift segregates a bacterial gene pool into well-defined regions, and reduce the genetic diversity 

in bacteria (214). It has played an important role in the diversification of bacteria such as 

Pyrococcus, Mycobacterium tuberculosis (215).  

        Natural selection  

     Natural selection is a model of how evolution works or what makes the organisms adapt to 

their environment. It plays an important role in genetic variations, and it also shapes the 

phenotypic, biological, and behavioral adaptations of bacteria across generations (216,217). 

     This concept was described by Darwin, an English naturalist, with the famous phrase 

ñdescents with modificationsò or survival of the fittest (fitness means the organisms possessing 

the best characteristics for that particular environment will survive (218).  This scientific theory 

explains the process that causes a change in the characteristics of organisms over time to be 

more suited to their environment reproduce and disperse, which could lead in turn after a long 

time period to the evolution of a new species (209,219,220). The interaction between natural 

selection and evolutionary forces can result in evolution (221). 

       Natural selection results from several interacting steps; under certain pressure conditions 

the presence of variation among descendants appears due to evolutionary processes, such as 

mutation or HGT, the number of individuals who carry the variations traits should be pass to 

the offspring through vertical gene transfer, the reproduction of the variants varies among 

strains, the successful variations accumulate during time and disperse to the survival progeny 

that can continue and reproduce under that certain conditions the parents escape through which 

in turn give the best fit for the environment (122).  Natural selection explains the predictability 
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of one genotype to be fit for the pressure of the environment; it sometimes leads to the origin 

of new species, besides the evolution of the species by adapting to their environment (209). 

When newly-generated genotypes have harmful fitness effects, natural selection will work to 

eliminate them from the population, but if the generated genotype is neutral, there will be no 

effect on the fate of these variants (222). These mechanisms have an impact on the population 

which can lead a single population to be divided into two subpopulations, different from each 

other intolerance to the environmental conditions, pathogenicity, resistance to chemicals, 

invasion, etc., but this new subpopulation can share a common core genome (223).  An example 

of natural selection on bacteria is resistant to antibiotics and pesticides. When the harmful 

bacteria are exposed to antibiotics a resistant bacterium can survive for multiple reasons like 

incomplete dosage or mutations. The surviving bacteria can reproduce and increase over time 

by natural selection, which is the strongest evidence of Darwin (224). According to natural 

selection, bacteria can suffer from resistance cost; when bacteria developed resistance in the 

case of extreme use of antibiotics, this resistance will be eliminated when the use of antibiotic 

stops (222,225). During the last decade, many studies have shown that bacterial resistance to 

antibiotics does not belong to the mutation & natural selection mechanisms, but it belongs to 

different means; for example, it comes from the selection of an existing genetic trait, from gene 

transfer, or genetic loss due to mutation (226). Natural selection is involved in the limitation of 

neutral genetic diversity across many species (227ï229). According to (218), molecular 

variability among species is caused by random drift of mutant genes, and not by Darwinian 

selection. A new phenotype will be subject to natural selection forces, which will decide if the 

new phenotype stays or is discarded from the genome (122). The natural selection theory 

cannot completely explain the fact of evolution  (132). 

         In conclusion, the above-mentioned processes play an important role in evolution. 

Mutation, recombination and horizontal gene transfer can increase genetic variability by adding 

or losing new DNA sequences. While genetic drift decreases genetic variation, natural selection 

plays an important role by increasing or decreasing the genetic variation based on the generated 

variation (230). The emergence of plant disease especially bacteria results from DNA 

modifications due to the evolutionary process. In any case, these processes are vulnerable to 

environmental conditions, which can shape the rearrangement of the earlier pathogenicity 

determinant or the new ones (113). Understanding how genetic variation is maintained within 

and among the population over space and time will help the establishment of sustainable plant 

disease control (187).  Molecular markers can solve the problem. Molecular markers need to 
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be chosen appropriately to be cheap, fast, reasonably polymorphic, reproducible, and provide 

insights at the right evolutionary scale  (106). The following pages will discuss this concept. 

 Genotyping and Molecular methods  

     Plant disease management strategies are based on crucial steps. One of these steps is 

understanding the ecology and biology of plant pathogens (105), the other essential step in 

setting up active control measures is surveillance (monitoring and early detection) of the 

disease and its causal agents (99). The ability to quickly and reliably differentiate among related 

bacterial isolates is essential for epidemiological surveillance (Sankaran et al., 2010). These 

methods and the estimations of their strength are based on a knowledge of the genetic and 

phenotypic diversity of plant pathogens (231).  

      Bacterial pathogens have evolved from a small number of species that have differences in 

their phenotypic and genotypic traits. These species are relatively close and able to cause 

disease in different host plants (232). These species have caused disease due to the emergence 

of new variants as a result of evolution or are newly discovered pathogens  (233). Evolutionary 

forces have helped these species to adapt and resist the environmental conditions, which in turn 

allowed the pathogen to evolve and re-emerge, causing severe diseases (234). These species 

are comprised of strains from one lineage with typical features, and they are similar to each 

other, or differ in some of their genotypic and/or phenotypic traits (235). Moreover, a group of 

strains based on special features can form one of the following groups: biovars, serovars, 

phagovars, and pathovars (236). The results of the driving evolutionary forces are genetic 

diversity among bacterial strains or populations (237).  

       Genotyping methods can help to understand the genetic diversity in the population 

structure of a pathogen. Molecular markers need to be chosen appropriately to be cheap, fast, 

reasonably polymorphic, reproducible, and provide insights at the right evolutionary scale 

(233). Understanding the recent divergence in bacterial pathogen requires markers with high 

mutation rates, such as tandem repeats (105). The other loci in mitochondrial, nuclear, that 

have slow mutation rates can provide a more distant evolutionary history (238ï240). 

         Different methods have been used in the past: morphological, biochemical, nutritional, 

and immune tests were used to differentiate among strains, and this has led to the species 

concept (110,241,242). There are a number of practical limitations that make the previous 

methods unsuitable for bacterial population structure studies and dynamics also for scientific 
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purpose is less determined, but very critical (243). These methods have several drawbacks: 

they are usually labor-intensive and time-consuming and provide false-positive and false-

negative results; they are prone to errors, and unable to distinguish among closely related 

strains or track their origin; it is difficult to compare the behavior of different pathogens, and 

they are highly variable or unstable (244). For these reasons, researchers have worked hard to 

find easier alternative methods. Methods can easily apply, require less time and labor and are 

even less expensive. The golden era of detection and identification or differentiation among 

strains starts with a nucleic acid-based technique. The first DNA based method used among 

Ps. syringae strains was a DNA-DNA hybridization method (245ï247). Subsequently, it 

became necessary to identify a dependable method that can accurately discriminate between 

strains (248). Molecular typing methods are fast and powerful tools that enable us to 

differentiate closely related strains (249).  

       Genotyping or discrimination among closely related strains based on their genetic bases is 

very important for plant pathogen detection, the study of population genetic structure (250), 

evolutionary history and host specificity (251), epidemiology studies (outbreak investigation, 

causal agents, transmission, and surveillance) (250), and taxonomy structure (223). This 

information will aid substantially in setting up plant disease management (233). Genotyping 

started with random PCR ampliýcation-based methods. The identified genetic profile of each 

strain is different, based on the method which gives a specific result as a fingerprint (252).  

         Many methods have been applied in the past twenty-five years for genotyping of human, 

animal, and plant pathogenic bacteria. These methods are applied in order to quickly and 

accurately discriminate the related strains and/or understand the source of infection and how 

do they spread (253).  Van Belkum, 1999 has identified three classes of bacterial genotyping 

methods: DNA banding pattern-based genotyping methods show that strains differ in their 

yield size of DNA bands by amplification of genomic DNA using restriction enzymes 

(REs)(254). DNA sequencing-based genotyping methods are based on the differences between 

the obtained DNA sequences after PCR amplification. Finally, DNA hybridization-based 

methods discriminate bacterial strains by analyzing the hybridization of their DNA to probes 

of known sequences. In other words, these methods are either based on restriction enzymes 

analysis of the total genome or depend on DNA segments amplified by PCR (253). 

         The most common and widely applied methods in plant pathogenic bacteria are pulsed-

field gel electrophoresis (PFGE) and ribotyping, Repetitive sequence-based PCR (Rep-PCR) 
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(255). Random amplification of polymorphic DNA (RAPD) (256), restriction fragment length 

polymorphism PCR-(RFLP) (257), Amplified Fragment Length Polymorphism (AFLP) (258), 

Multilocus sequence typing (MLST) (259), SNPs-based genotyping (260), and Whole Genome 

Sequence (WGS) (261). Due to our studies of the three diseases (Olive knot, Olive Quick 

Decline Syndrome, and Canker of Kiwi) the disease caused by Pseudomonas savastanoi, 

Xylella fastidiosa  and Pseudomonas syringae pv. actindiae the methods used with the three 

diseases will be discussed below. 

          Methods applied to genotyping and population studies of Pseudomonas savastanoi 

include SDS-PAGE (262,263), restriction fragment length polymorphism (RFLP) (264), 

(ERIC, BOX, and REP) (265), fluorescent amplified fragment length polymorphism (f-AFLP) 

analysis (266,267), Random amplification of polymorphic DNA (RAPD) (268), High-

Resolution Melting Analysis (HRMA) (269), rep-PCR and MLST (270).  

          While the methods used for the differentiation and genotyping of Pseudomonas syringae 

pv. actindiae are rep-PCR, IS50-PCR and RAPD, from a wide collection of Italian, Korean 

and Japanese strains (271), Genome sequencing and SNP analysis (272), Comparative genomic 

analyses (273), Multilocus sequence analysis (MLSA) of housekeeping, type III effector and 

phytotoxin genes were also used for differentiation (274,275).  

        Lastly, methods used to genotype and differentiate X. fastidiosa are (RFLP)(276), 

Random amplification of polymorphic DNA (RAPD) , combination of different methods such 

(RFLP), (RAPD), ERIC and REP(277), PCRs were used in later years (278), Short Sequence 

repeats (SSR) applying a variable number of tandem repeats analysis (VNTR)  (279,280), 

MLST/MLSA Multilocus sequence typing analysis (251,281ï283), Combination of SNPs and 

SSR marker methods (284ï286), and whole-genome analysis (287). 

       These methods have been described intensively and applied to different human, animal, 

environmental bacterial pathogens in addition to plant pathogenic bacteria. Each method has 

its own positive and negative aspects. For example, methods based on restriction enzymes, 

such as PCR-(RFLP), and (PFGE) are time-consuming and labor-intensive, show lower 

resolution than DNA- DAN hybridization among related strains, and require a large amount of 

genomic DNA. The results of these methods cannot be exchanged among laboratories (288ï

290).  AFLP also requires a large amount of high-quality genomic DNA and it shows limited 

genetic diversity (258,291). RAPD methods have shown low reproducibility and sensitivity to 
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other factors involved in PCR procedures (292). MLST is the most widely applied method; 

despite its accuracy, reproducibility, and portability, MLST has faced some challenges in its 

results for monomorphic bacteria, where it shows low resolution for this type of pathogen due 

to the low sequence diversity in these genes. Therefore, it fails to resolve the evolutionary 

pattern of plant pathogenic bacteria, since many bacterial pathogens are monomorphic (293). 

Whole-genome sequencing (WGS) and SNPs methods have provided more details about 

genome properties but are expensive and still require advances in next-generation sequencing 

technologies, or knowledge in computational biology and facing infrastructural constraints 

(294). As it appears from this literature, the methods vary in their reproducibility, accuracy, 

applicability, and technical problems. They can be expensive, time-consuming and laborious, 

and not comparable across the laboratories which are different from what it is needed.  

      In order to provide and compare three different diseases with three different times of 

emergence, one as endemic (Olive knot) and two as epidemic (Canker of Kiwifruit and olive 

quick decline syndrome), the molecular marker should be carefully chosen, and the method 

should be independent, reasonably polymorphic, reproducible, less expensive, less laborious, 

portable and easy to compare across laboratories. It should also provide an accurate 

evolutionary scale (295,296). Short tandem repeats (DNA motifs) that have high mutation rates 

(103-109) can provide understandings into recent divergence (105,113). Within bacterial 

populations, a promising tool is Multiple Locus Variable Number of Tandem Repeats (MLVA) 

which benefits from sequencing technology and computer analysis. The method was developed 

for Haemophilus influenzae strains and bacterial human pathogens (238ï240) and will be 

discussed next.       

    In the past, different methods have been used to detect and identify the plant pathogens, such 

as cultural, biochemical, physiological and immunological assays. While the identification of 

the pathogens was based on specific morphological features, biochemical and immune tests led 

to the identification and assignment of the pathogens to the species level (297ï299). The 

polymerase chain reaction (PCR) has replaced a wide range of traditional methods and become 

the cornerstone for bacterial detection and identification. In addition to the normal PCR, 

advanced PCR methods have been invented and have been used widely for detecting plant 

pathogens. These methods include reverse-transcription PCR (RT-PCR), Multiplex PCR, Real-

time PCR, Co-operational polymerase chain reaction (Co-PCR), and nested-PCR.  Many 
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reviews have been carried out for these methods and other Nucleic acid-based methods (300ï

302). 

  Multiple Locus Variable -number Tandem Repeat Analysis (MLVA) 

The whole-genome sequences analysis era and the development of computer science and 

software have made it possible to discover repetitive DNA sequences (104,300,303ï307). 

These DNA repetitive sequences were found distributed throughout the eukaryotic and 

prokaryotic genomes (308). TRs have different locations within the genome, in intergenic 

regions, coding regions or pseudogenes (309). 

        These repeats were first discovered in eukaryotes in 1960 (310). In addition to their 

presence in multiple copies, they have differences in other features such as size, location, 

complexity, and repeat style (311). Different criteria were used to classify these repetitive DNA 

sequences, such as their functional role, degree of repetitiveness, and how they group together 

(312). TRs are classified based on their organization on the genome into two types. There are 

interspersed repeats, in which these repeat units are scattered in the genome in a random way 

(313). Interspersed repeats are transposable elements which include the transposable elements, 

short interspersed elements retrogenes, and retropseudogenes, and the differences in genome 

size are generated by this type of repeats (314). Then there are Tandem Repeats (TRs), where 

the repetitive sequences are aligned in an array one after one, and these include gene families, 

microsatellite, minisatellite, satellite DNAs and mixes of both repeats, such as segmental 

duplications (SDs) and duplicated DNA fragments (315). Tandem repeats (TRs) or satellite 

DNA are DNA sequences repeated in sequences from head to tell manner and with a different 

number of repeats in each locus of each individual (2,313). DNA sequences (short nucleotides) 

that form a unit, and these units are repeated in array several times in the locus within the 

genome. These sequences are divided into three types based on the size of the repeated unit are 

divided into three types: microsatellites, mini-satellites, and macro-satellites or mega-satellites. 

It is not clear whether microsatellites are from 1-6 Base pairs (bp) or from 1-9bp, as different 

studies have identified microsatellites from the size of the repeated unit from 1bp to 6bp 

nucleotide long, and also called them Short TRs, microsatellites, simple sequence repeats 

(SSRs) (316).  Other studies have identified the microsatellite from 1-9bp for each unit size. 

For minisatellites, the size of the unit is from ten nucleotides and until to 100bp (317,318). The 

macro-satellite or mega-satellite contains more than 100bp per unit (312,315,319,320). 

Furthermore, TRs can be placed in two categories degenerated and identical TRs. Degenerated 
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TRs only in which one nucleotide difference in the unit that arising from point mutation. On 

the other hand, in identical TRs the nucleotides match each other in all of the units(321,322). 

 

FIGURE 4: Tandem repeats classifications and types 

 

Among these microsatellites, or simple sequence repeats (STRs) are considered of most 

important for their abundance comparing to minisatellite, in addition, the numbers of repeats 

within specific STRs tend to be highly variable, their easiness to be analyzed by PCR 

(308,322). Weber and Wong have found out the variability among these TRs in human 

genomes and identify the possibility of using these TRs as a genetic marker (323).  Because of 

their high variability, they are also referred to as a variable number of tandem repeats (VNTRs) 

(324). One of the main characteristics of these tandem repeats are the instability, they mutate 

in very high-speed 10-2- 10-7 higher than regular mutation rates (point mutation) (297,319). The 

mutations are happened mainly due to (deletion, addition) in the repeat units, while the 

mutation within the repeat units is rare (311). In general, there are three mechanisms that 

explained TRs mutation in eukaryotes: recombination, Retro-transposition mechanism, Strand-

slippage replication (315), other studies have focused on only two mechanisms: recombination 

and DNA polymerase slippage (311). In prokaryotes, the mechanisms for the TRs mutation are 
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the same which includes DNA strand slippage and their effect of contraction and expansion, 

recombination, replication, and a variety of DNA repair pathways (325ï327). 

 Identification of tandem repeats  

The development of genome sequencing, bioinformatics, and computer science has helped the 

identification and analysis of repeats. Different algorithms have been used to identify these 

TRs. These algorithms are varying in their ability to detect different types of TRs  

(319,325,328ï330). The problem is the ability of these algorithms to detect the different types 

of TRs, therefore the use of different types of algorithms is recommended (331).  Furthermore, 

in order to obtain the right number and consensus TRs, there are three important parameters 

should be applied while using these algorithms: alignment weights, type of repeats, and 

threshold scores. These parameters strongly affect the results of TRs (308). Various methods 

and algorithms have been applied to detect TRs, these methods have been reviewed in (332). 

There are five main and Widely applied algorithms TRF, Mreps, Sputnik, STAR, and Repeat 

Masker (332ï334). We have used Tandem Repeat Finder which is widely used (TRF the most 

applied algorithms) (335). TRF program shows more flexibility with the easiness of handling 

the parameters to obtain the exact results (336).  

 The role of tandem repeats  

   TRs were thought to be useless DNA, due to their high variability and their sequence 

simplicity (332). Studies in the last 25 years have proved the importance of these repeats. The 

role that tandem repeats come from their location in the genome. Analysis of the genomes has 

clarified, when they fall with the coding region, regulatory sequences they affect gene 

expression (337). TRs are found within promoters of stress-induced genes and within the 

coding regions of genes encoding cell-surface and regulatory proteins. The changes in these 

repeats are accompanied by phenotypic changes (319). A different role has been identified for 

TRs, In addition to their role in genetic mapping, genotyping, and forensic studies (315). In 

any case, the abundance of repetitive sequences in eukaryotes is not meaningless. Since the 

1990s, different studies have shown the role of TRs in human disease. More than 20 diseases 

have been found in humans related to TRs, hereditary neurological diseases including fragile 

X syndrome, Huntingtonôs disease, myotonic dystrophy, etc. (338). Furthermore, it was found 

that TRs interfere with cellular function (329,339). In animals, an association was found 

between tandem repeats and canine epilepsy disease (340). In other eukaryotes, such as yeast, 

fluctuation in gene size which leads to quantitative alterations in phenotype are associated with 
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TRs (341). In the plant Arabidopsis thaliana, STRs can influence gene and protein function, 

which leads to phenotypic variability (310). Also, a correlation was found between STR 

diversity, and ecological factors in wheat and barley (342,343). TRs were found to play an 

important role in animal disease (344,345). More details about Tandem repeats and their roles 

have been reviewed  (341,346). The first study on bacteria was on the H. influenzae phase 

variation gene in 1989 (319).  Phase variation is one of the bacterial adapting strategies, thus 

the bacteria will be able to face the changing environment by modulating the function of 

speciýc genes (347). The repeats are involved in different cell roles such as disease 

development, cellular differentiation, genome stability, transcriptional control, and evolution 

(308,348). TRs abundancy could speed the loss of gene order, through chromosome 

rearrangement (320). TRs play a role in bacterial pathogenicity and genomic variability 

(Rocha, 2003). In the study conducted by  (340,349).  TRs were found to play a role in genetic 

variation within a population, and they facilitate evolutionary changes. Many other studies have 

been conducted to reveal the importance of TRs, especially microsatellites and their role in 

bacteria,  in the last two decades (343). An important role of TRs is that they can reveal the 

recent divergence in the microevolutionary level due to the high mutation rates ( 318, 331, 350, 

351). Three genetic variations have been used for comparative genomics studies: Single 

Nucleotide Polymorphisms (SNPs), Copy Number Variations (CNVs) and Tandem Repeats 

(TRs) (238,240). As the number of these tandem repeats in a particular locus varies from strain 

to strain, they are known as variable-number tandem repeats or VNTRs (320). The particularity 

of the TRs used in this process is falling under the umbrella of variability in TRs length, 

sequence, and position of each strain (352,353). 

 The MLVA method  

     MLVA or Multilocus Variable-Number Tandem-Repeat Analysis is a molecular method 

based upon the calculation of Variable copy Numbers of Tandem Repeats (VNTR). These 

regions are the most variable regions in bacterial genomes and therefore have the potential to 

resolve the genetic diversity of monomorphic bacterial pathogens (309,354). The first step in this 

method is the identification of the TRs from in silico programs, according to certain criteria. 

Secondly, in order to calculate these TRs, PCR primers must be designed from the conserved 

region around these TRs, the left and right flanking regions. This is followed by sample 

preparation and DNA extraction for each sample, then PCR amplification. Finally, the 

differences among the strains should be measured by gel electrophoresis and capillary 

electrophoresis, in which the results translated numerically, after the calculation of these loci by 
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detracting the right and the left flanking regions from the amplicons from PCR and dividing the 

remaining length by the size of the corresponding repeat unit in that locus. The results obtained 

from both approaches are imported into sophisticated software for the assignment of allele 

numbers. A string of alleles is created from the number of repeat units for each locus forming the 

MLVA profile and is eventually used to assign an MLVA type. The generated numeric data can 

be exchanged among laboratories around the world via the public MLVA database (223,312). 

Its great ability to discriminate the strains based on differences in the number of the repeats in 

each locus generated by ampliýcation of the genomic DNA of several loci results in a high level 

of polymorphism  (322,355). In addition, MLVA is a rapid procedure for monitoring short-term, 

local outbreaks of bacterial pathogens, revealing insights about the relationships at a 

microevolutionary level (253). 

       MLV A methodology was primarily developed for Haemophilus influenzae strains and 

bacterial human pathogens (322), and then for bacterial animal pathogens (298,299,352). 

MLVA was applied for the first time in subtyping the plant pathogenic bacteria Xylella 

fastidiosa  (356),  and since then has been used to subtype a wide range of plant pathogenic 

bacteria, as shown in the box below. 
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TABLE I: USE OF MLVA  METHODS FOR SUBTYPING BACTERIAL PLANT PATHOGENS 

Authors Year  N of VNTR 

Loci 

Pathogen species  Host plant species  

Della Coletta-Filho et 

al.  
 

2001 8 Xylella fastidiosa  Citrus sinensis; 

Coffea arabica  

Ngoc et al.  2009 14 Xanthomonas citri pv. citri  Citrus spp. 

Bergsma-Vlami et al.  

 

2012 6 Xanthomonas arboricola pv. pruni Prunus 

laurocerasus 

Gironde and Manceau  

 

2012 8 Pseudomonas syringae pv. maculicola; 

Pseudomonas syringae pv. tomato 

Brassicaceae fam.; 

Lycopersicon 

esculentum 

Zhao et al.  2012  25 Xanthomonas oryzae pv. oryzicola Oryza sativa 

NôGuessan et al.  2013  26 Ralstonia solanacearum Solanaceae fam 

Zaluga et al.  2013  8 Clavibacter michiganensis subsp. 

michiganensis 

Lycopersicon 

esculentum 

Pruvost et al.  2014  31 Xanthomonas citri pv. citri  Citrus spp. 

Vernière et al.  2014  14 Xanthomonas citri pv. citri  Citrus spp. 

Bühlmann et al 2014  6 Erwinia amylovora Pomaceae fam 

     

Ciarroni et al. 2015 13 Pseudomonas syringae pv. actinidiae Actinidia deliciosa 

Guinard et al. 2017 7 Ralstonia solanacearum Mix populations  

     

 

 Use of MLVA 

 

 The method has great potential as an easy and effective tool, not only in the recognition and 

schedule/detection of the presence of different bacterial types worldwide but above all to trace 

their movements on a local to the international scale, supporting the simple detection of 

contaminated materials with key information concerning specific haplotypes (251). The first 

MLVA scheme for a plant pathogenic bacterium was developed for Xylella fastidiosa  in the 

early 2000s. The method provided a high-resolution tool for epidemiological, genetic, and 

ecological analysis of citrus-speciýc Xylella fastidiosa  strains; this (357) made it possible to 

obtain high resolution and robust genotyping of Xanthomonas citri  pv. citri  (251). (358) 

reported the usefulness of the method in population structures and epidemiological monitoring, 

in addition to fast, reliable, and cost-effective molecular typing. MLVA was reported to be a 

very promising first-line assay for large-scale routine genotyping prior to whole-genome 

sequencing (Zhao et al., 2012a). It was reported as a very useful tool for gaining insight into 

geographic diversity, and for understanding the dynamic evolution of the pathogen (357). 

MLVA is a promising typing technique for local surveillance and outbreak investigation in 

epidemiological studies; it can unravel the intra-pathovar structure.  
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 : Canker of kiwifruit disease 

 Kiwi fruit (Actinidia spp.) kiwi, Chinese gooseberry, Yang-tao, 

Fuzzy-Skinned  

 

  The genus Actinidia (A.) belongs to the family Actinidiaceae, which includes 54 species and 

21 varieties. The famous commercial varieties distributed around the world are A. chinensis, A 

deliciosa and A. chevalier (1). The genus Actinidia is widely distributed in eastern Asia, and 

most species are present in China endemically. Their distribution lies in mountains and hills of 

the southwest to the northeast, and for this reason, China is considered the origin of the genus 

(2). Although the wild taxa of actinidiae are present in China, it was not domesticated until the 

last century, when it was domesticated for commercial purposes for the good-flavoured, and 

large-fruited species. Two of the main species distributed around the world are A. chinensis 

and A. deliciosa and they have been domesticated over a wide area of China, after the success 

of domestication in New Zealand (3). In New Zealand, the first domestication and commercial 

cultivation started approximately in 1904 when a school teacher brought seeds from China and 

passed them to the botanist Alexander Allison, and commercial cultivation started (4). The fruit 

was actually planted in Europe between the 17th and 18th centuries for ornamental purposes 

(5). The genus is a dioecious plant and it has different advantages for human health, where it 

considered to be beneficial for gut health and digestion (6). The fruit helps to improve digestive, 

immune and metabolic health. It is rich in vitamin C, dietary fiber, potassium, vitamin E and 

folate, besides many bioactive components which include antioxidants, phytonutrients, and 

enzymes (7).     

         Kiwifruit production has increased by more than 50% in the last twenty years, and the 

production of this fruit has reached 0.22% of global food production, after apple, orange, and 

banana (6). Five countries are the worldôs main producers of kiwi: China, Italy, New Zealand, 

Chile, and Greece. Of these, Italy, New Zealand, Chile, and Greece account for 80% of total 

production, whereas China exports only 1% of their production while the other amount is used 

for national consumption (8). The kiwifruit ranks after citrus, apples, table grapes, peaches / 

nectarines, and pears in terms of value. In Italy, kiwifruit accounts for about 3.5% of the total 

area under fruit crops and about 4% of total fruit production by weight  (9). 

        Plant pathogens are the main constraints for plant production. The Kiwi plant is attacked 

by different pathogens, such as fungi, viruses, and bacteria. Different plant pathogens have 
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been reported such as bacterial canker, blossom blight, fruit rot, stem canker, gray mold, 

anthracnose, Nectria canker, leaf blight, brown leaf spot, brown felt, and root-knot nematode 

(10). The main fungal diseases of kiwifruit are Field rot, caused by Sclerotinia sclerotiorum, 

Storage rot, caused by Botrytis cinerea, and Ripe rot, caused by Botryosphaeria dothidea (11). 

It is also attacked by other fungi species, such as Phaeoacremonium spp., Phaemoniella spp. 

and Fomitiporia punctate, which cause wood decay and vine decay (12). Other fungi cause 

nursery damage on kiwifruit on the young plant (13). Viruses, also, attack kiwi plants. Three 

different groups of viruses have been identified, and of these two viruses have been identified 

as causing severe damage to the commercial orchards of kiwifruit: Cherry leaf roll virus 

(CLRV) and Pelargonium zonate spot virus (PZSV) (10). Bacterial diseases also affect 

kiwifruit. Two species Pseudomonas viridiflava and Pseudomonas syringae pv. syringae 

causes Blossom blight and necrotic leaf spotting (14). In 2008 a new virulent strain of 

Pseudomonas syringae pv. actinidiae has attacked the kiwi fruit in Italy causes a severe 

damages to the Kiwi production sector. 

 Importance and distribution of the disease 

     The disease is caused by virulent strains of the gram-negative bacterium Pseudomonas 

syringae pv. actinidiae (Psa) (15,16). The disease has caused great damage to kiwifruit 

productions around the world (17), It was first described in 1984 in Japan on Actinidia deliciosa 

as a new pathovar belonging to Pseudomonas syringae complex (18). The disease was 

described in China in 1994 as attacking kiwi fruit (17). Since the earliest identification of the 

disease in Japan, the disease has been officially reported in different countries in China (19), 

Korea since the 1990s (20ï23). In addition, Italy (24,25) reported the disease in the early 1990s. 

In 2008 a new and very aggressive strain has emerged in Italy, causing severe damage and 

spreading quickly all over the country, attacking Actinidia chinensis, and Actinidia deliciosa 

(26). Globally, after the detection of the Italian outbreak, the disease has been reported from 

different countries on Actinidia chinensis, and Actinidia deliciosa in Portugal, New Zeeland, 

France, Switzerland, Spain, Chile, Turkey, Germany, Slovenia, Greece, Georgia, and finally 

Argentina (16,27). 
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FIGURE 5: Distribution of bacterial canker of kiwi fruit around the world. 

   Under favorable conditions, the disease can cause great economic losses by destroying the 

orchard in one or just a few seasons (28ï33). The disease has caused severe damage in orchards 

and extensive economic losses worldwide (34,35). It is already responsible for worldwide 

economic losses amounting to hundreds of millions of euros and poses a very big threat to the 

entire kiwifruit industry in New Zealand (36). In New Zealand the problem has had a bigger 

impact; in the first five years of the outbreak losses of around NZ$400 million were expected, 

but about NZ$900 million in just one year (35). The situation in New Zealand has now been 

recovered by the replacement of the sensitive variety óHort16Aô with Actinidia chinensis var. 

chinensis óZesy002ô (37). In Italy for example, losses reached about ú2 million euros in 2009 

(38). The situation has increased according to the infected area, which reached 2000 ha between 

2010-2012, and each lost hectare cost about ú85.000 (39). 

       Different measures have been taken in order to control and manage the disease in Italy. 

These include spray treatments, cultural practices, such as pruning, tool disinfections, and 

covering pruning cuts, managing nitrogen fertilization and water stress in a correct manner, 

and many others (40). The recovery of kiwi plantation in Italy is proceeding slowly, despite 

the cultivation of more than 25,000 ha around the country (41). 

 

 

 

 








































































































































































































































































































