‘luscia

Dipartimento di Scienze Agrarie e Forestali

Corso di Dottorato di Ricerca in

Scienze delle Produzioni Vegetali e Animah XXXI Ciclo

Approaching the micro-evolution of bacterial pathogens of plants
using MLVA: invasive outbreaks vs endemic diseases

AGR/12- Patologia Vegetale

PhD student
Dr. Yaseen JundRAHI

-:-\\j\\ '
s
PhD Coordinator Supervisors
Prof. RobertBERNINI Prof. Giorgio MariandBALESTRA
Prof. StefaniaASCI Prof. AngeloMAZZAGLIA
L/
Co- advisor

Dr. FRANCO VALENTINI

e \

AA 2019/2020



Thesis abstract

Approaching micro-evolution of bacterial pathogens of plants using

MLVA: invasive outbreaks vsendemic diseases

Introduction

The movement of goods around the world and broad borders have facilitated the diffusion of
plant diseases through the movement of pathogens into a new area, and climate change has
helped the emergence or-emergence of new pathogemisat negatively affect food
production In this thesis, we have dealt with three important pathogsesdomonas syringae

pv. actinidiae Xylella fastidiosa, as invasive outbreakpathogens and®’seudomonas
savastanoian endemic pathogen. These pathogens bavery important impacon food
production not only in Italy but also worldwideln order to understand thgenetic
characteristicsyarious methods have been developedf@lysingplant pathogenic bacteria,
these methods are based on eitlestriction enzymes or DNA segments amplified by PCR.
These methodsawe differedin their discriminative power, reproducibility, and ease of results
interpretationHence we havedeveloped andpplied MLVA (Multiple Loci Variable Number

of Tandem Repeatsnalysis)for genotyping the three pathogens.
The aims

To develop a robust MLVA (Multiple Loci Variable Number of Tandem Repeats Analysis)
scheme suitable for global and local studies of three main bacterial diseases (endemic and
invasive) in Italy: Knotdisease on olive, oleand@nd ash which is caused Bgeudomonas
savastanopathovars, as an endemic pathogen, then canker of kiwifruit which is cauBed by
syringaepv. actinidiae (Psa), and the new emerge olive quick decline syndrome which is

caused byylella fastidiosasubspeciepaucast53 as an invasive outbreak. Then, we used this



approach to understand differences in populations of each pathogen, elucidate the diffusion and

movements of these populations.

The results

The results obtained in these studies point outNHatA represents a very promising first
line assay for largecale routine genotypingrior to wholegenome sequencing of only the
most relevant sampl@s case of outbreaksn addition, isability to differentiate the pathovars,
biovars and subspeciesthe methodvent beyond that when it was able to differentiate the
sequence types of the same subspeds/A assay has great potential as an easy and
effective tool not only to recognize and schedule the presence of therakatiened types of
bacterid speciesall over the world but above all to trace their movements on loachlt@n
international scalan addition to its abilitysupporting the simpldetection of contaminated

materials with key information concerning specific haplotypes populations.
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Chapter 1 : Introduction

1.1 Plant disease

Plant diseases remain an endless threat to our food, crops, cash crops, social life, and
landscape. Disease in plants can be defined as follows: the series of visible and invisible
reactions of plant cells and tissues to biotic (patinagorganisms) and abiotic (environmental
factors) or their combinations, which result in adverse changes in the form, function, or
integrity of the plant and may lead to partial damage of plant aditsr in severe cases death
of the entire planor fieldsplants The inherited defects (e.g. genetic disease) of the plant can
be added to the definition, due to their important roles. Human involvement and activities also
play an important role in the development of plant dis€Bse

Abiotic factors, i.e. environmental or physiological conditions, such as temperature,
moisture, mineral nutrients, pollutants, malnutrition, toxic agestts, occurring above or
below certain levels tolerated by plants can disturb plant funcf{®)n$n simple wordsthe
disease isny kind of distributionn plant functiordueto biotic am abiotic or human activities
thatmakethe plant unable to carry out its physiological functions correctly. Therefore, plant

diseases may be the result of living and/or-liaing causes.

Biotic diseases are caused by living organisms, known as pathogéid) include
microorganisms (e.g., viruses, bacteria, oomycetes, fungi, nematodes, and parasiti@@plants)

A plant pathogen is an organism that can inhabit the rhizosphere (zone of interaction of root
and soil) and/or phyllosphere (aerial part of the plant) andriiesphere (internal parts of the
plants)and can disturb the growth, production, and survivéheplant by causinghanges in

the morphologyand behavioof the plant or its tissugd). For example, when bacteria attack
plants, they usually disturb plant cell metabolism bygrettng enzymes, toxins, growth
regulators, and other substances, and by absorbing nutrients from the host cells for their own
use(b). Some pathogens may also cause disease by growing and multiplyiregxylem or
phloem vessels of plants, thereby blocking the upward transportation of water and nutrients, as
in the case oKylella fastidiosa, the causal agent dPiercedisease and olive quick decline
syndrome (OQDS) in ltaly, and &@andidatus Liberibeter asiaticusthe causal agent of
Huanglongbing (HLB) diseagé).



Figure1: The effects of the disease in fields of (A) Horse chestnut pjgBsOlive plants;
C) Peard

Plant diseases vary in theadffects, ranging from insignificant symptoms in the garden to
disasters that destroy mainofib crops planted over large ar€é% Food losses due to crop
infections from pathogens are a persistent problem in agriculture since these organisms reduce
quality, yields, shelfife, and consumer satisfactioim, both pre and postharvest(7). Major

disease outbreaks may cause starvation, hyagdmigration, such as potato bligtisease

caused byhytophthora infestanghe Great Bengal Famine of 1943, black stem rust of wheat
intheUSA, and many other@®). It is difficult to control plant pattgens due to their population
differences in time, space, agénotype. Another important aspect is that a pathogen may
evolve to overcome the resistance of the p(@hptin order to meet the increasidgmands of

feeding the growing population, the improvement of crop protection strategies to prevent losses

due to pathogens plays an important role in securing both food quality and g(@ntity

In conclusion, it can be said that not only do biotic and abiotic factors cause plant disease but
so does the interaction between them. In addition, human activities consisting of agricultural

2 https://www.dailymail.co.uk/news/articl@223818/
3 https://www.cbsnews.com/news/pathogistroyingolive-treesin-italy-xylella-fastidiosa
4 https://wiki.bugwood.orgErwinia amylovora
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practices sut as cropping systems and extengyesticide applicatiancould also lead to the
development othis compleXdiseas€10). We will discuss biotic factors which include three

bacterialpathogenshence, other aspects will not be discussed here.

1.2 Bacterial plant pathogens

Bacteria are singleelled prokaryotic microorganisms, classified as eubactend
archaebacteria according to differences in the composition of their cell wall and cytoplasmic
membrane. Eubacterial plant pathogens aredsuiled into grarmegative bacteria, gram
positive bacteria, ansllycoplasmdike organisms (ML@®). The differerce between them and
Mollicutes (1) is the presence of cell watharacterigcs. MLOs lack a cell wall; their outer
boundary is instead a cytoplasmic membrane, which gives them some unusual properties not

found in most eubacteria.

Common plant pathogenic bacteria are all small, singleshaged cells, apart from the
flament ous Streptomyces bacteri a. Ba¢lil)eThe a r an
cell wall of most bacterial species is surrounded by a viscous material known as a capsule,
which provides protection against stresses, immune responses, antibacterial agents, and
antibiotics. Grarrpositive bacteria, on the other hand, produce endosporep thvém survive

unfavorableconditions(12).

Many bacterial species are motile by means of their flagella, which are filamentous
structures consisting of proteins. The number and distribution of flagella vary among species.
Some species have only one flagellum present at one end (polar driotans flagellation).

In some species have flagella located at both ends of the cell (lophotrichous bacteria), while

other species have flagella at various places on the cell (peritrichous bdgderia)

There are over 100 bacterial species responsible for plant diseases affecting productivity.
Difficulties in controlling bacterial diseases (both chemically and biologically) are due to
different factors such dsnits on using antibiotics in Europthe developmenbf resistance,
wide host rangepopulation sizeandevolution. Bacterial diseases of fruit trees, forregke,
may cause lossekat reaclb0%-100% and the whole crop could be destroged result of
thebacterial attack13).

Bacteria multiply asexually by binary division. The cell grows to twice its size and splits

into two cells; this division must occur at the correct time and correct location in the cell.
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Progeny cells receive a complete set of gefidseir parent cell. @ the other hand, the gram
positive bacteria Streptomyces speaiese found to multiply by forming a sporél4)(15).
Bacteria replicate at a high rate. A single bacterial cell may produce one million progeny
bacteria in less tlmaa day if there are optimal environmental factors. However, this high rate
will gradually slow and finally stop at a certain po{@6). Plantassociated bacteria may be
beneficial or harmful; they can live in the rhizosphere (zone of root and soil interaction) and/or
phyllosphere (aerial part of the plant), ahd endosphere (internal parts of the plants). Plant
pathogenic bacteria are found as saprophytes in plant debris or in the soil, butdeeghbp

in the host plant as parasites, or on the plant surface as epi(l)ytes

Pathogenic bacterial species that cause serious diseases of plants throughout the world have
increased fsm several genera (five) to almost 40 genera, belonging to threenggative
bacterial familiesXanthomonadaceae, Pseudomonadacaa@i-nterobacteriacegeand one
grampositive family Corynebacteriacege(17,18) There are more than 150 bacterial species,
including over 10 species considered to be the most important bacterial plant pathogens
because they caa high economic losse®seudomonas syringapathovars;Ralstonia
solanacearumAgrobacterium tumefacienXanthomonas oryzapv. oryzae;Xanthomonas
campestris pathovars Xanthomonas axonopodigathovars;Erwinia amylovora Xylella
fastidiosa, Dickeya @adantiiandsolani) Pectobacterium carotovorurandPectobacterium
atrosepticum19. These species are the most scientiyc
pathogeng20).

1.3 Economic importance of plant diseases

The emergence and introduction of new plant pathogens have been aided by different
factors, such asopen borders,food and goods trade, climate changes, mrautipping,
monoculture production systems, changing from traditional to -inigimsity agriculture
systems, excessive use of pesticides, and many §1%gr3 he interaction of these factors has
affected the natural plajpathogen interaction, in turn disturbing the coevolutionary system by
creating a unique condition that makes the bacterial population evolve and causes epidemics
(21). Bacterial plant pathogens are a major problem worldwide for agriculture because they are
difficult to control, andtheir impact on agriculture is huge. Meanwhile, the results of any
bacterial attaclon a crop will be more significant at the global level, but this is related to
different factors, foexample Jocal climate, cropping practices, the choice of crop and plant
cultivar, plant species, even more, the characteristics of pathogens (pathnveass,
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sequence typingj22). Many plant pathogenic bacteria are asymptomatic, and any simple
change in one or some of the previous factors eagto favorableconditions that help the
emergence or remergence of plant pathoge(®3). In 2002, the bleeding canker of the
European horse chestridisease caused I®seudomonas syringge. aesculiwas reported in
England, Wales, Scotland, Netherlands, Belgium, Fraarwet Germany. It affected hundreds

of thousands of trees in these countries, resulting in severe damage to rural and urban landscape
features(15). Pseudomonas syringgeathosars cause diseases of a wide host range, e.g.
monocots, herbaceous dicots, and woody dicots, worldwide. For exaRggadomonas
syringaepv. actinidiaewas present in Japan since 1984, but with a limited impact on the local
production in Japan and Chii{2a4i 27). However, in 2008 new biovar spread worldwide
startig in Italy, New Zealand, Chile, China and other count{&%29)and caused severe
losses in all major areas of kiwifruit cultivati¢®0). The emergence of the bacterixfylella
fastidiosa subsp. paucan Italy (Apulia region) in 2013 poses a great threat to Europe and the
Mediterranean basin becausgits hosts number oveB50 plant species, and vectors. The
bacterium has also been detected in France and &daiiThe disease was not reliant only on

the bacterium but also on the interaction of plant, pathogen, and vectors and the effects of
abiotic factorg(32). The impact oiXylella fastidiosa in Italy has caused not only economic
losses, but also agricultural, environmental, political, and cultural daf@2y@& hereis noreal
estimateof the financial cost, but it is estimated that there are approximately 25 million olive
trees inthedemarcatedrea, so that the loss to olive agriculture is substantial (Bosca personal
communication). Another important speciefdggobacteriunspp., whch can attack more than

500 plant species causing significant economic losses in the production of many plants
worldwide. Most of these species affect fruit species: stone and pome fruits, nut trees and
grapevine, as well as some perennial orname(®&ls Precise estimation of losses in crops
attackedby bacteria is difficult, because comparison of crop sizes in protected and non

protected plantations impossible

1.4 Epidemiology of plant bacterial diseases

A plant diseasé becomeestablished in a new area, it needs three factors: a susceptible host,
pathogen virulence, and suitable environmental conditions (humidityammkrature). Human

activities can cause wounds or damage to the plant tissaédition,frost, hail, wind, and

rain, all these factorsan facilitate bacterial entran¢®4). Epidemiology studies plant disease
occurrence over space and time,tvh i nf or mati on rel ated to the

(11). The bacterial diseaseqress includes two important steps: invasion of plant tissue and
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multiplication. Plant pathogenic bacteria may live as epiphytes and some as saprotrophs on a
host plant, but they are unable to enter plant tissue directly. The process of infectiontstarts w
the attachment of bacteria to the plant surface followed by bacteria penetrating through the
wounds or natural openings, such as hydathodes, stomata, and necttrerdes the
multiplication of the bacteria in the new environment; thyftiply in the intercellular spaces

from where they can spread into different plant tis&%. The environmental conditions,
especially humidity and temperature, can further develop or limit the pathogen, disease, and
developnent of symptoms. Bacterial numbers can decrease rapidly when the infected tissue
dies. Moreover, many bacteria are unable to survive on dead plant debris, which in the end

reduces the source of inoculyBb6).

Bacteria may spread by one or multiple methods, which are based on bacterial location. For
example, bacteria may be transferred by infected plant materials or contaminated seed, others
may be transferred by animals, insects, birdsesror by human equipment (machinery and
tools), and activities such as cultivation, grafting or pruning. They can also be spread by water,
(rain, overhead irrigation) and wind11,17) The most important method of bacterial
dissemination involves vectors, as for OQDS causeyisila fastidiosaand HLB caused by
Candidatus Liberibacter asiaticuoth of which are transferreloly insects. Bacteria may

survive in insects, knots, plant debris, soil, water, or seeds.

1.5 Control measures

One of the main goals of growers is to earn an income from their crops by supplying the
local or international markets to feed humans and dsil®a the other handgconsumers seek
safe and tasty products with an attractive appearémaddition, they are also concerned about
theconservation of the ecosystem and natural reso(t§€Ehese targets face the problem of
plant disease, which disease control helps to solvecaachieve these aspe¢8y). The main
methods of disease control are based on avoidance, exclusion, eradication, protection,

developing plant resistancnd finally curg38).

The best method of disease control is what is now known as Integrated Pest Management
(IPM) and consists of various integrated activities. According toFtimd and Agriculture
OrganizationFAO), IPM isdefinedas6t he car ef ul consideration
technigues and subsequent integration of appropriate measures that discourage the
development of pest populations and keep pesticides and other interventions to levets that ar
economically justiyed and reduce or @9).ni mi ze
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Cultural, physical, chemical and biological control methods, resistant varietiesved
resistance,quarantine and inspection and the recent trend methodstexrrated pest
management should be used alone or togéthsupport disease management and to reduce
the pathogen population below an acceptable thres@® Combinations of control
techniques aim to reduce the pathogen population to a harmless level and to reduce the use of

pesticides, thereby reducing the cost of control.

All these methods hawdifferentdegrees of success and their own limitatidtectors that
interact with eaclotherand on disease control include pathcegest interaction, pathogen
epidemiology, environmental factors, and the seasonal or physiological stages of both host and
pathogen(1). The best approach is to use appropriate integrated methods to help control the

disease. The next sections will disstisese methods in a general way.

1.5.1. Chemical methods

A plantdisease caused by phytopathogenic bacteria can be difficult to cospetialy
if the bacterial pathogen has become established and diffused. The use of chemical compounds
will be moreeffective as greventivemeasure, or at agarly stage in the bacteriatfection,
which in general can be used &mil treatment, control of insect vectoasidfumigation(41).
Agriculture has long made use of coppased compounds, suchEB@rdeauxmixture, cupric
hydroxide, coppesulfate ammoniacal copper and copper salts of fatty acids against bacteria

as a folar treatment to protect plants from bacterial dise@k®s

Due to their effectiveness, copgmised compounds are used elydto control or reduce
pathogensand have been used successfully against many bacterial plant diseases, including
olive knot, Tomato bacterial spedkg bacterialcankerof apricot and cherry, canker of kiwi
fruit (43). Copper mixed with fertilizer to contrdhe bacterialdisease has given gooésults
(44v 48). The overuse of copper compounds hhswever, seriously damaged agricultural and
natural ecosystems. In addition to the limitations of their use, the emergence of resistant strains
has been detected in different bacterial species, and this could prevent control of the disease
(49).

Phytotoxin accumulation in the soil due to repeated sprdyasglso been observed; in a
study conducted in Italy, it was found tleapper concentrations were high enough to represent
a risk of toxicity (50,51)



Although of its importanceébut the accumulation of copper in soil plays a toxic nolie
plant and can contaminate the food chain, althouglvénies from plant to plant because some
plant specieganaccumulate heavy megain their tissu€52,53) Not only, copperis a soll

toxin, but nany bacteria have also developed a resistance to c(§i64)

In order to overcomecopper resistance, farmers started to mix it with other
EthylenebisdithiocarbamatéEBDC) compounds such as maneb or mancozeb, but these
compoundsstill have limited efficacy55). In the treatment of endophyte pathogenic bacteria,

copper is considered as toxil).

In the midninetieth century,antibiotics were used extensively against bacterial plant
pathogens. Four antibiotics are used in plant disease coBtrep{omycinOxytetracycline,
Gentamicin,and Oxolinic acid)to prevent different plant pathogens, suchEasinia spp
Pseudomonas spp.Xanthomonas campestris Agrobacterium tumefaciens,mainly
phytoplasmasThe main areas using these antibioticsthe USA, Mexico, New Zealand, and
the Middle Eastwhile someEuropean countries, like Germany, AustaadSwitzerland, have

allowed the use of antibiotics on an emergency basis, and under strictly limited cor{8&jons

The mainuse of antibiotics and the widest application was ag&nsinia amylovora,
causal agents of fire bligl¢b7). Extensive use of antibiotics has revealed the development of
resistance indicterial plant pathoger§8). The antibioticyemainone week on plant surfaces
and their activity can quickly diminish. One probldor scientistsis the possibility of
transferringresistance genes from plant pathogenic bacteria into humamiamal pathogenic
bacteria, but most studiéscuson transfer through the soil adéactivatiorof bacteria in the
soil oron plant surface®9i 62). The possibility stilbresentsf the other baterial transmission
methods are considered and if the plaatriesout some ofthis bacterial resistance to
antibiotics.

1.5.2.  Biological control methods

These methods appeared in reaction to copper and antibiotic resistance, and to the pollution
due to the excessive use of pesticides, whose accumulation has negative impacts on
ecosystemsBiological control methods were developed for entomology and then plant
pathology. For plant pathogenic bacteria, the process is based on using microorganisms as
artagonists or natural substances from plants or any other sources to suppress the pathogen or

diseaseq63). Biocontrol agents work througmultiple beneficial characteristics such as
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rhizosphere competence, antagonistic potential, and ability to produce antibigtiics,
enzymes, and toxin®4). These antagonists are either direct or indirect; the mechanism of a
direct antagonist is based on direct contact or a high degree of selectivity to the pathogen,
whereas the activity of an indirect antagonist does not involve sensing omgu@gtthogen

(8).

Bacteria are the main group of beneficial microorganisms. These beneficial bacteria
produce different kinds of metabolites, e.g. secretion of siderophorenayes, production
of growth regulators and antibioti@nd induction of systemic resistarés).

Bacterial species used to control and suppress plant disease iBdodels spp
Pseudomonas sppAgrobacterium spp and some fungus have also been used, such as

Trichoderma spp (66).

Many studies have reported the use of bacterial species or their products against bacterial
plant pathogensikctly like competition(67,68) Inducingsystemic acquired resistance (SAR)
in the plant (69i 75). Several applications have been approved for controlling balcgaint

pathogens of tomato, pepper, onion and fire bi{gh).

Bacteriophages can also be used for bioldgioatrol in bacterial diseases, in combination
with other control methods under the umbrella of IPM strategies. Phages have been used in
wide applications against different human, animal and plant pathogens. Many studies have

reported the use of phagesaagt plant diseag@7i 81).

Breeding programs have also been widely used in agriculture, involving the enhancement
of plant resistance to disease. The mechanisms used include reengineering plants to produce
antibacterial proteins of negplant origin, inhibiting baterial pathogenicity or virulence
factors, enhancing natural plant defesy and artificially inducing programmed cell death at
the site of infectior{82 87).

Different applications on various bacterial plant diseases have been applied to breeding
prograns(82). The use of certified plant material is an important method to control plant
disease and aims to provide planting material free of phytopathogenic b§88:8a 88).
Different programs have been used for certified plant material to control plant d8@pse



Physical methods are also widely used against plant pathogens, aiming to deactivate or
eradicate the pathogen from seeds. These treatments include the use of hot water, hot air, steam
aerated steapmoist hot airandsolar heat, while other methods thetreatment of soiborne
pathogens are less used on bacterial pathogens, such as soil solarization, and hot air sterilization
(41,90)

Cultural methods such as host eradication, crop rotation, sanitation by credtmgrable
conditions, plastic traps and mulches have been applied for the control of plant bacterial
diseases, with the aim of eradicating and/or reducing pathageolum (91). Most of the
abovementioned methodkave their positive and negative impacts coap#ibiotic creates

resistance in bacter{@82). The use of SAR also has a negative impact on the (38r83 95).

Development of strains that overcome the resistance genes were also noticed in some
breeding programs(96). One of the most important methodsdantrolling the disease is
monitoring and early detection of pathogens, which can help grealig neduction of disease
spread and the preparation of a rapid managemen{3ds898) The concept of IPM appears a
necessity in order to reduce the use of chemicals and to control plant pathogens effectively
(99). In addition to economiaspectg100).

Detection and identification are critical steps for the suitable application of phytosanitary
measure$101) The precise estimation of diseassurrence and severity, or disease effects,
in addition, to forecasting temporal and spatial disease spread in specific growing regions are
important to set up the control measures. Different methods are udedjtmse and detect
disease, includingisual plant disease estimation and microscopic evaluation of morphological
features to identify pathogens, as well as molecular, serological, and microbiological diagnostic

technique¢102) Detection methods will be disssed below.

1.6  Population genetic analysis

The demand for food has been increased over the last century and this will continue due
to the risingof human population. Indicators suggest that an additional 70% of food production
is required for the ext fifty years. The food supplghain or the decreasen agricultural
productivity is facing many challenges, an important one of which is plant did€3eThe
movement of goods around the woaddopen borders have facilitated the diffusion of plant
diseases through the movement of pathogens into new Bretsermoreclimate change has

helped the emergence or-emergence of new pathogens which negatiafgct food
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production(104). Many control methods have been used in order to set up disease management
plans and face food shortages, including plant breeding (resistance variety) programs.
However, these resistant varieties have faced failure due to the emergence of new varia
strains that overcome these resistance genes. These strains have developed resistance to
pesticides or antibiotiod.05). It is very important to understand how a pathogen emerges and
adapts to the environment. Population genetic analysis could be the best tool to understand the
previous two concept$l06) Knowledge of population genetics has been increased by
coalescent theory, computational methods, and molecular biology, hdwehopened up the

genomic erg107).

Several advantages are obtained from the population genetic analysis. for example, it can
helps to identify the source of infection of the plargthogen antb determine if the pathogen
has been introduced or has emerged loc@l8) It also reveals the genetic patterns and
evolutionary proces€l09), and another advantagehelps in understanding the biologically
relevant genetic variation within individuals and the effect of evolutionary forces and their
contributions within and among the population through space amel(1i10) Population
genetics aims to explain how genetic variation is maintained within and among the population
over space and tim@11). The information retrieved from these studies will help theticnea
of plant disease management strategies, through the understanding of disease epidemiology,

ecology,biology and evolution(106,112)

The first step in the analysis of populatio
structure: how they form, how they vary and differences among the strains or populations using
molecular markergl13) The population consists of a group of individuals of the sseeies
living in a given area, interacting with each other and impacted by natural selection and
evolution (113) The populatia is considered as the smallest unit of evolu(ibi4) The
discussion here will be limited to bacteria. Bacteria live in community as a population, they
vary in their phenotypic and genotypic traits, and the study of population genetics of this
organism can provide insight about the origin and dispersal of the inhpathogeng115).

Population structure studies aim to understand how the pathogen evolved and the forces driving

evolution, and apply this knowledge to achieve sustainable plant disease mandg&6jent

1.7 Genetic variation

New developments in genomics allow discovery of the genome components.- Whole

genome sequenc€®/GS) and comparativanalysis of bacterial genomes have revealed two
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types of genes within the g(&l7dlB)dhesetfifd@gsc or e
have revealed more about genetic variation among bacterial species that seem homogeneous
but are heterogeneous at the cell and genetic levels. In addition, these findings have helped
plant breeders to developsistant cultivarg119,120)

The natural changes in the genetic information of a population or species are known as
genetic variation. These variations help individuals whose genes give rise to new characteristics
that are best adapted to the environment and will be the fittestiteesueproducend transfer
these variations tohe next generations, i@ process known as evolutigt21) Genetic
variation occurs due to the interaction of different evolutionary forces, including mutations,
horizontal gene transfer or gene flow, dam genetic drift, natural selection andther

environmental and human activiti€i22)

When bacteria reproduce by binary fission, all individuals within a species are identical
Acl oneso because they or-iym)i(l23 Basterih mustnensare s i n g |
the transfer and maintenance of the genetic information with the correct sequence to their
offspring. Different mechanisms are involved in the organization ofpfosess(2). One
mechanism that leads to the emergence of new descents through vertical gene transfer is de

novo mutation and the accumulation of mutations over generfiga}
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FIGURE 2: Circumstances involved ithegeneration and maintenanakthe genetic variation dhe pathogen
population. green, brown and blue indicate a positive, negative and variable (positive or negative)rirtipact
evolution of genetic variation, retrieved frdiil6).
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A Dbacterial species with greater genetic variation has greater adaptability to changing
environment$38). A great variety is observed with bacterial genomes, and these variations are
due to the acquisition and loss of functional accessory genes by the interaction of the
evolutionary force$125). Lower genetic variability among the population decreases the fitness
and adaptability of the population, while greater genetic vaitiahiélps the population to be

more adaptable, and can help pathogens to evolve more rapidly to challenge different
circumstances, including control measuE25) For example, when a new variant of the same
pathogen appears and overcomes a resistant cultivar in one region, it then starts to spread to
new regions or areas. The development of virulenaeegyghat overcome resistance via
mutation or other mechanisms in the local bacterial population is evolution and causes genetic
variation(38). The new virulence strain can move into other l@eahs or countries as a result

of natural and/or human causes that spread disease. This concept also applies to the use of

chemicals or antibiotics, to which pathogens can develop resistance due to eybaitjaa3)

1.8 Evolution

Population genetics answers the questions about what drives genetic variety and how it is
maintained ovetime andexplains the reasons for heterogeneity in bactdra3) This is

because papation genetics studies the genetic structure (frequencies of alleles and genotypes)
within and among the population to understand how evolution forces occur and act on
populationg114) There is no clear picture of the essence of evolution because of the ongoing

dispute regarding as to whether the concept of eeolig microevolution or macroevolution,
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and as to which one leads to the evolution of spdt23) As a definition, evolution means
changes in the inherited characteristics of a population overdsyer a long time (thousands

of years)which leads to the development of new species, and over a short time (days weeks,
months, yearsyhich leadgo the development of new variants through interactions of different

processes, in order to adapt anthe more suited to the environmgh80).

The processes of evolution are mutations, recombination and horizontal gefer tigenetic
drift and natural selection; all these processes have interacted alone or with each other and led
to evolution(131)

Macroevolution is the production of a nepecies fronpreviously existing species and
involves morphological innovations and ecological transitidr82) Thetemn refers to the
development of new species, genera, family or clades or their extinction through therfong
process under wide environmental chan@&s) It focuses on phenotypic evolutionary trends
over geological time. The mechanisms that lead to macroevolutionary transitions are an
unsolved issu€l34)

There are two schools that deal with these concepts. The firseRalia2015holds that
micro-macro evolution has the same process to develop above andsp#uies leve|135)
The other schod|136) basically explains that the process which produces macroevolution is
different from the process of microevolution and that microevolution is not sufficient to
produce macroevolution. Richard, 1948ssetthree mechanisms involved in the development
of new species; generation and sorting of variation in addition to natural selection. For bacteria
the same ongoing argument regards the mechanisms responsible foevoiidgion or
macroevolution137), some author§l38) defend the idea that microevolution is responsible
for macroevolution via a longme process, while otherd39,140)disagree, stating that
macroevolution cannot be based on the processes of microevo(addnl42)reported that
gualitative change resulted in macroevolution through aterng process. It is suggested that
horizontal gee transfer among taxa higher than the species level could occur and lead to
macroevolution(133) To sum up, there is a gap in understanding of the mechanisms of
macreevolution, and it seems that the difference concerns only the time periods involved in the

two processefl4?2)

It is not my intention to discuss the mechanisms involved in the process of

macroevolution for two reasons; firstly, my topic focuses on microewolusind secondly, the
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topic has been discussed by other authors in thg 43} Three pproaches have described

the evolution of bacteria: age Inferred by association with ecological events, age inferred from
eukaryotic molecular clocks and age inferred from the host fossil rg¢8@137,151
154,139,144150) The longtime period required by macroevolution makes it impossible to
study its mechanisms in the laboratory, which leaves a big gap in understanding of this system
(155).

Microevolution is the process invahg changes in the gene pool that occur during a
short period of time,e. days, weeks or montleven yearsThese changes, which occur in the
accessory genes, can lead to fast phenotypic changes and new bacterial variants; the final
consequences of these proesssre the development of epidemic diseas€k33).
Microevolution in bacteria is responsible for the rapid emergence of va(le8#s156,157)
Wholegenome sequees (WGS) and comparative analysis of bacterial genomes have
revealed two types of genes wit h(140,1581618 genonm
The core genes are essenfibalthe survivalof the organism, whereas flexible genes cstnsi
genes responsible for adaptation to speciyc
evolved in mutation and natural selection but rarely in horizontal gene transfer and are
considered as the raw mat er i alolvdstamelyghvoaghut i o n
horizontal genetic exchange. Flexible genomes have an important role from the biological point
of view; they are involved in pathogenicity, virulence features such as adhesins, capsules or
toxins, and developing resistance to cheats or antibiotic§118,162) Genes responsible for
these factors normally lie within the flexible gene pool or plasmids of the bacterial genome.
This can offer advantages under particular conditions due to humaryasmigienvironmental
conditions, whereas the evolutionary forces take advantage and play their role mainly on these
groups of genefl63 165)

The major driving forces for novel genetiariants in bacteria are mutations, horizontal
gene transfer and recombination, genetic drift and natural selection. These mechanisms
continually help bacteria to rapidly generate a mavients (118,166) Horizontal gene transfer
of genes lost by mutation is thought tothe primary mechanisms of prokaryotic adaptation
leading to speciation. Since a very great number of DNA sequences between 10 and 100
kilobases (kb) in length are present in the genome termed genomic islands, a huge number of
genes in the genomic island® gresent toolhese genes may be transferred and recombined
all together in a new bacterial genome, which may lead to changes in the genome functions and
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evolution in important leap§140) In the study conducted b118,167)on Salmonella
enterica the result showed that a signifitaamount of the DNA segment is from distantly
related species which indicates lateral gene transfer involvement in evolalioaf the

evolutionary forcesvill be discussed below.
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FIGURE 3: Mode of the DNA pools in the genomes of prokaryotes, retrieved ft63).

1.9 Evolutionary forces

1.9.1. Mutation

This is the primary source for genetic variation and raw material of evollid8) A
mutation isa change occurring in DNA nucleotide sequences structures that are transmitted
from parent to offspring169,170) There are three types of mutation basedheir effect on
genomes: the first type of mutation can increase the fitness of the host, the second can decrease
its fitness (harmful), and the third has no effect on its fitness. Mutations can result from

substitution, deletion, insertion, inversiomeciprocal translocation and chromosomal
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rearrangements of DNA sequendds’1l) A small portion of mutation has a beneficial
advantageous effect, while the majority has a deleterious €&z} Point mutation and DNA
rearrangements (inversions, duplications, insertions, deletions, or transposition of large
sequences of DNA from one location of a bacteriabetusome or plasmid to another can
occur during DNA replications, and could on an evolutionary-sceelead toa modification

in the genetic mag173). Mutation rates vary among bacterial genomes between species, or
within the strains of the same species, and haploid pathogens differ from diploid pathogens in
the change of the mutation numbgrg1,174) Mutation of a single nucleotide could cause the

protein to lose or change its function to a new funciatb).

These mutations can lead to the loss of genetic functions or entire genes, or add a new
function in the case of duphtion, for exampl€176) Mutation alone cannot have a great
effed on the evolutionary process unless it is combined with other mechanisms. When a
mutation occurs, natural selection decides whether to keep or eliminate this mutation from the
population(170,177)

Most mutations are harmful to the bacteria, while others can provide advantages under the
right conditions and based on natural select{@@8) Mutation rate variability effects
evolutionary adaptation. In a study Lopreato, 200E. coli, it was found that evolutionary

adaptation accelerated when the mutation rate incr¢Agey

A point mutation can be generated by slipped strands mispairing, which positively or
negatively affects gene expression; one of its advantages is a contribution to the development
of bacterial resistance to antibiotid80) The modi ycati on of structur
in bacterial species that are opportunistic or-pomary pathogens have thbility to modify
or knock out the encoded proteins and inpue
during pathogenesid40) A pathoadaptive mutation is another microevolutionary concept,
which enables some bacteria to be pathogenic without modification or loss-exXigtiag
genes that had been adaptfor life as a commensal organig@81) Deletion is another
microevolutionary process within mutation, in which bacteria can adapt to the environment
through the manipulation of large DNA sequen¢&81) The role of mutation in plant
pathogenic bacteria has been clarified and confirmed in different st(h@s182) etc. Within
the concept of mutation, a very important DNA motif called tandem repeats (TRs) plays an

importantrole in the evolutionof bacteria. These motifs developed due to DNA replication
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slippage and their mutatiorates are higher compared to point mutati@3 187). This

agect will be discusselater on this chapter

1.9.2. Horizontal gene transfer (HGT), gene flow

HGT is the movement and incorporation of genetic material between closely related organisms
or distantly related organism@88) This process can either moderate or deepen genetic
variability among subpopulations or strains in the case of bacteria inhabiting the same
environment(189 191) This mechanism is considered the most important mechanism in
bacterial evolution(187). Horizontal gene transfer among and within bacterial populations
occurs via the release of naked DNA from the community (eukaryoticapatic) followed

by uptake and recombination by the bactéxf®?) Three different mechanisms are responsible

for HGT: natural transformation, transduction, and conjugatiorortler to accomplish the
transfer of DNA sequences, mobile genetic elements such as plasmids, bacteriophages,
transposons, and integrons are responsible for the transfer of DNA among bacterial
population§193) Many factors could limit HGT such as the establishment, expression, and
temporospatial functions of the agents affecting DNA movement: plasmids, bacteriophages,
and transposond94,195)

HGT plays a major role in the evolution of most prokaryotes, alongside other mechanisms.
It is responsible for resistance genes, gene clusters encoding biodegradative pathways and
pathogenicity determinants, and is responsibtespeciation and sufpeciation in bacteria
(194). In addition to genome @z other factors like growth temperature, oxygen utilization,
and pathogenicity may affect HGI96 199) Ore study revealed that HGT is the driving
force responsible for much of the genetic variation among prokaryotic micfb®®s HGT
and recombination have formed the diversity of the bacterial population and the variation of
their lineages. While HGT has introduced novel DNA distinct bacterial genome, the latter
mediates the exchange of DNA among the individuals of the same s(i&gsThe HGT
mechanism depends a@he recombination and incorporation of genes and genetic elements
from strains of bacterial species and eukaryotic spét8%201) In HGT recombination, the
bacteria achieved recombination through the same processes;siorraation, bacteria can
acquire DNA from theneighbouringenvironmentwhich causes bacterial DNA modification;
in conjunction, bacteria transfer DNA sequences by direct contact, arahsductionthe
involvement of a bacteriophage is required forliaeteria to be able to exchange DNA. These

three processes help to achieve H@B9,193) A study conducted recently showed the
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involvement of HGT in a wide range oftémnotic resistance in bacteria (Zhan, 2016). It was
found that different numbers of genes were shared between archaea and the bacteria that live
in similar ecological conditions, due to HEL96,197,199) Different There are several
advantages derived from recombination: it can achieve purging deleterious mutations, the new
combination (multilocus genotypeds¢lps the population to adapt, and it reduces or eliminates
linkage disequilibrium(191). Additionally, it increases the diversity of bacterial clonality,
and/because recombination work to homogenize the species ge(@0gpdRecombination

could disturb HGT, especially on the gene on plasmids. It can subbituke acquisition of
adaptations from both close and distant sp€@ig3). Different plant pathogenic bacteria have
witnessed HGT and recombing@®©8).

Gene flow or gene migration refers to the transfer of genetic variation from one
geographic population to another population,chiigould happen between two populations of
the same species or between two different species through horizontal gene (2QAs2€7).

Gene flow plays two important roles in evolution: the first is to increasaftige rof a species,
and the second is to limit the genetic divergence of populations that would occur by random
genetic(208)

1.9.3. Genetic drift

This is the process in which there is a probability that newly generated mutants can survive
and exist in the population. In other wer the mutants occurring in a large population, which
are constant and usually quite low, are able to remain and persist, which then leads to more

genetic variability than in a small populati¢@09)

The random change in alleles frequency in a population occurs by mutants/nsufg¢ioetic
sampling error) over a short period of time. It is more effective in small populaf{Ri3).
The nfluence of genetic drift is limited by the number of individuals that survive to be able to
transmit the modified genes to their offspring, and also by the size of the population: drift
occurs faster in small populations. At the same time, the effeenetig drift will decline over
time with an increasing populatio211) Genetic drift may lead to a reduction in genetic
variation (due to the disappearance of the gene variants), and to genetic differentiation among
populations(209,212) Immigration, emigration, founder effects, and population bottlenecks
are responsible for genetic drift. A population bottleneck occurs when the size of thaipopu
decreases sharply due to external factanslthe alleles fluctuations varied The founder

effect is a type of population bottleneck and occurs when a few individuals migrate out of the
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population to establish a new subpopula{id®6). The replacement rate of a gene is constant
between mutation and genetic drift. When a new allelic variatienested by a mutation in

DNA, the genetic drift works slowly to remove it in order to create a stable(2G8g Allele
frequencies can be changed due to mutation, recombination and gene(21&)fGenetic

drift plays a crucial role in forming the genetic structure of a pathogen in a local population
due to the environmental condition surrounding the pathogen. Control measures can reduce the

rate of evolution by decreasing the effective population(&z2)

Genetic drifts affect bacterial genomes through the fixation of harmful mutatids3 It
promotes genome reduction in bacteria. and education of bacterial genome size is a
consequence of genetic drift coupled with a mutational bias toward delél@sis Genetic

drift segregates a bacterial gene pool intoadefined regions, and reduce the genetic diversity

in bacteria(214) It has played an important role in the diversification of bacteria such as

Pyrococcus, Mycobacterium tuberculo&4.5).

1.9.4. Natural selectin

Natural selection is a model of how evolution works or what makes the organisms adapt to
their environment. It plays an important role in genetic variations,itantso shapeshe

phenotypic, biological, anbdehavioraladaptations of bacteria assgeneration®16,217)

This concept was described by Darwin, an English naturalist, with the famous phrase
Afdescents with modificationso or survival of
the bestharacteristics for that particular environment will sur{®&8). This scientific theory
explains the process that causes a change in the characteristics of organisms over time to be
more suitedo their environment reproduce and disperse, which could lead in turn after a long
time period to the evolution of a new spedi289,219,22Q)The interaction between natural

selection and evolutionary forces can result in evolu@1i).

Natural selection results from several interacting steps; under certain pressure conditions
the presence of variation among descendants appears due to evolutionary processes, such as
mutation or HGT, the number of individuals who carry the variations traits should be pass to
the offspring through vertical gene transfer, the reproduction of the variants varies among
strains, the successful variations accumulate during time and dispéngesurvival progeny
that can continue and reproduce under that certain conditions the parents escape through which

in turn give the best fit for the environmghf2) Natural selection explains the predictability
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of one genotype to be fit for the pressure of the environment; it sometimes leads to the origin
of new specigsbesideghe evolutionof the species by adapting to their environm@9).

When newlygenerated genotypes have harmful stheffects, natural selection will work to
eliminate them from the population, but if the generated genotype is neutral, there will be no
effect on the fate of these varia(222) These mechanisms have an impact orpthmulation

which can lead a single population to be divided into two subpopulations, different from each
other intolerance to the environmental conditions, pathogenicity, resistance to chemicals,
invasion etc, but this new subpopulation can share a comoore genom@23) An example

of natural selection on bacteria is resistant to antibiotics and pesticides. When the harmful
bacteria are exposed to antibiotics a resistant baoiezan survive for multiple reasons like
incomplete dosage or mutations. The surviving bacteria can reproduce and increase over time
by natural selection, which is the strongest evidence of Dai2@4d) According to natural
selection, bacteria can suffer from resistance cost; when bacteria developed resistance in the
case of extreme use of antibiotics, this resistance will be eliminated when the use of antibiotic
stops(222,225) During the last decade, many studies have shown that bacterial resistance to
antibiotics does not belong to the mutation & natural selection mechanisms, but it belongs to
different means; for example, it comes fromgk&ction of an existing genetic trait, from gene
transfer, or genetic loss due to mutat{@@6) Natural selection is involved in the limitation of
neutral genetic diversity across many sped@a7 229) According to(218) mdecular
variability among species is caused by random drift of mutant genes, and not by Darwinian
selection. A new phenotype will be subject to natural selection forces, which will decide if the
new phenotype stays or is discarded from the gend22) The natural selectiotheory

cannot completely explain the fact of evoluti¢h32).

In conclusion, the abowmentioned processes play an important role in evolution.
Mutation, recombination and horizontal gene transfer can increase genetic variability by adding
or losing new DNA sequences. While genetic drift decreases genetic vanatiora| selection
plays an important role by increasing or decreasing the genetic variation based on the generated
variation (230). The emergence of plant disease especially bacteria results from DNA
modifications due to the evolutionary process. In any case, these processes are vulnerable to
environmental conditionswhich can shape the rearrangement of the earlier pathogenicity
determinant or the new ongkl3) Understanding how genetic variation is maintained within
and among the population over space and tiniiéhelp the establishment of sustainable plant

disease contrdll87). Molecular markers can solve the problem. Molecular markers need to
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be chosen appropriately to be cheap, fast, reasonably polymorphic, reproducibievatel p

insights at the right evolutionary scal&06). The following pages will discugkis concept.

1.10 Genotyping and Molecular methods

Plant disease management strategies are based on crucial steps. One stepisése
understanding the ecology and biology of plant pathog&®s) the other essential step in
setting up active control measures is surveillance (monitoring and early detection) of the
disease and its causal aggg09). The ability to quickly and reliably differentiate among related
bacterial isolates is essential for epidemiological surveillance (San&aedn 2010). These
methods and the estimations of their strength are based on a knowledge of the genetic and

phenotypic diversity of plant pathoge(231).

Bacteral pathogens have evolved from a small number of species that have differences in
their phenotypic and genotypic traits. These species are relatively close and able to cause
disease in different host plaff832) These spees have caused disease due to the emergence
of new variants as a result of evolution or are newly discovered path@@3)sEvolutionary
forces have helped these species to aalagtesist the environmental conditions, which in turn
allowed the pathogen to evolve anderaerge, causing severe disea@3l) These species
are comprised of strains from one lineage with typical features, and they are similar to each
other, or differ in some of their genotypic and/or phenotypic t285) Moreover, a group of
strains based on special features can form one of the follogrioups: biovars, serovars,
phagovars, and pathovaf®36) The results of the driving evolutionary forces are genetic

diversity among bacterial strains populatios (237).

Genotyping methods can help to understand the genetic diversity inofheagon
structure of a pathogen. Molecular markers need to be chosen appropriately to be cheap, fast,
reasonably polymorphic, reproducible, and provide insights at the right evolutionary scale
(233). Understanding the recent divergence in bacterial pathogen requires markers with high
mutation rates, such as tandem rep€a@) The other loci inmitochondrial, nuclear, that

have slow mutation rates can provide a more distant evolutionary hi28&y240).

Different methods have been used in the past. morphological, biochemical, nutritional,
and immune tests were used to differentiate among strains, and this has led to tlse specie
concept(110,241,242) There are a number of practical limitations that make the previous

methods unsugible for bacterial population structure studies and dynamics also for scientific
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purpose is less determined, but very criti@d3) These methods have several drawbacks:
they are usually labentensive and time&onsuming and provide falgmsitive and false
negative results; they are prone to errorgj anable to distinguish among closely related
strains or track their origin; it is difficult to compare the behavior of different pathogens, and
they are highly variable or unstal{44). For these reasons, researcherge worled hardto

find easier alternative methaddethodscan easilyapply,require less timandlabor and are

even less expensive. The golden era of detection and identification or differentiation among
strains starts with a nucleic adihsed technique. The first DNA based method used among
Ps. syringaestrains was éDNA-DNA hybridization method(245 247). Subsequently, it
became necessary to identify a dependable method that can accurately discriminate between
strains (248) Molecular typing methods are fasind powerful tools that enable us to

differentiate closely related strai(349)

Genotyping or discrimination amortpsely relatedtrains based on their genetic bases is
very important for plant pathogen detection, the study of pdpolgienetic structur€250),
evolutionary history and host specificif®51), epidemiology studies (outbreakvestigation,
causal agents, transmission, and surveillarigép), and taxonomy structur€223). This
information will aid substantially in settingouplant disease managem¢a83). Genotyping
started with r an-tased m&tOd. Taenidgemtifiegt geretici pmfile of each

strain is different, based on the method wigcles a specific result as a fingerpriab2)

Many methods have been applied in the past twivtyyears for genotyping of human,
animal, and plant pathogenic bacteria. These methods are applied in order to quickly and
accurately discriminate the relatedagts and/or understand the source of infection and how
dothey spread253) VanBelkum, 1999 haidentified three classes of bacterial genotyping
methods: DNA banding pattetrased genotyping methods show that strains differ in their
yield size of DNA bands by amplification of genomic DNA using restriction enzymes
(REs)254). DNA sequencingpased genotyping methods are based on the differences between
the obtained DNA sequences after PCR amplification. Finally, DNA hybridizhased
methods discriminatbacterial strains by anag the hybridization of their DNA to preis
of known sequences. In other words, these methods are either based on restriction enzymes

analysis of the total genome or depend on DNA segments amplified by2BGR

The most common and widely applied methods in plant pathogenicibaate pulsed
field gel electrophoresis (PFGE) and ribotyping, Repetitive seqtlzasmd PCR (RePCR)
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(255) Random arplification of polymorphic DNA (RAPDJ)256) restriction fragment length
polymorphism PCRRFLP)(257), Amplified Fragment Length Polymorphism (AFLE2568),
Multilocus sequence typing (MLST259), SNPsbased genotypin(260) and Whole Genome
Sequence (WGS)261) Due to our studies of the three diseases (Olive knot, Olive Quick
Decline Syndrome, and Canker of Kiwi) the diseagaased byPseudomonas savastanoi
Xylella fastidiosa and Pseudomonas syringge. actindiae the methods used with the three

diseases will bdiscussedbelow.

Methods applied to genotyping and population studie®ssudomonasavastanoi
include SDSPAGE (262,263) restriction fragment length polymorphism (RFLE64)
(ERIC, BOX and REP)265), fluorescent amplified fragment length polymorphisrAFLP)
analysis (266,267) Random amplification of polymorpti DNA (RAPD) (268), High-
ResolutionMelting Analysis (HRMA)(269), rep-PCR and MLST(270)

While the methods used ftire differentiation and genotyping Bseudomonas syringae
pv. actindiae are repPCR, IS56PCR and RAPD, from a wide collection of Italian, Korean
and Japanese straif2y1), Genome sequencing and SNP anal{&r?) Comparative genomic
analyseg273), Multilocus sequence analysis (MLSA) of housekeeping, type Il effector and

phytotoxin genes were also used for differentiaf{@®m,275)

Lastly, methods used to genotype and differentMtefastidiosaare (RFLP}276)
Random amplification of polymorphic DNA (RAPD) , combination of different methods such
(RFLP), (RAPD), ERIC and REP77), PCRs were used in later yeg?258), Short Sequence
repeats(SSR) applying a variable number of tandem repeats analysis (VNZR9,280)
MLST/MLSA Multilocus sequence typing analy¢b1,281 283), Combination of SNPs and
SSR marker method284 286), and wholegenome analysi®87).

These methods have been described intensively and applied to different human, animal,
environmental bacterial pathogens in addition to plant pathogenic bacteria. Each method has
its own positive and negagvaspects. For example, methods based on restriction enzymes,
such asPCR(RFLP), and (PFGEpre timeconsuming and labantensive, show lower
resolution than DNADAN hybridization among related strains, and require a large amount of
genomic DNA. The radts of these methods cannot be exchanged among labord&8&s
290) AFLP also requires a large amount of hagrality genomic DNA and it shows limited
genetic diversity258,291) RAPD methods have shown low reprodiltipand sensitivity to
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other factors involved in PCR proceduk@92) MLST is the most widely applied method;
despite its accuracy, reproducibility, and portability, MLST has faced some challenges in its
results for monomorphic bacteria, where it shows low resolution for this type of pathogen due
to the lav sequence diversity in these genes. Therefore, it fails to resolve the evolutionary
pattern of plant pathogenic bacteria, since many bacterial pathogens are mono@8&hic
Whole-genome sequencin@VGS) and SNPs methods have provided more details about
genomeproperties but are expensive and still require advances irgeagtation sequencing
technologies, or knowledge in computational biology and facing infrastructural constraints
(294). As it appears from this literature, the methods vary in their reproducibility, accuracy,
applicability, and technicgiroblems. They can be expensive, tinmmsuming and laborious,

and not comparable across the laboratories which are different from what it is needed.

In order to provide and compare three different diseases with three different times of
emergencegne as endemic (Olive knot) and two as epidemic (Canker of Kiwifruit and olive
quick decline syndrome), the molecular marker should be carefully chosen, and the method
should be independent, reasonably polymorphic, reproducible, less expensive, lesadabori
portable and easy to compare across laboratories. It should also provide an accurate
evolutionary scal€295,296) Short tandem repeats (DNA motifs) that have high mutation rates
(103-109) can provide understandings into recent divergéh08,113) Within bacterial
populations, a promising tool is Multiple Locus Variable Number of Tandem Repeats (MLVA)
which benefits from sequeimg technology and computer analysis. The method was developed
for Haemophilusinfluenzaestrains and bacterial human pathog€238 240) and will be

discussed next.

In the past, different methods have been used to detect and identify the plant pathogens, such
as cultural, biochemical, physiological and immunological assays. While the identification of
the pahogens was based on specific morphological features, biochemical and immune tests led
to the identification and assignment of the pathogens to the specieg28vie299) The
polymerase chain reaction (PCR) has replaced a wide range of traditional methods and become
the cornerstone for bacterial detection and identificationaddition to the normal PCR,
advanced PCR methods have been invented anddeere used widely for detecting plant
pathogens. These methods include revaeescription PCRET-PCR), Multiplex PCR, Real

time PCR,Co-operational polymerase chain reantifCoPCR), and nesteBCR. Many
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reviews have been carried out for these methods and other Nuclelaaed methodS800
302)

1.11 Multiple Locus Variable -number Tandem Repeat Analysis (MLVA)

The wholegenome sequencemalysis era and the development of cotepwscience and
software have made it possible to discover repetitive DNA sequéh04s300,30B307).
These DNA-repetitive sequences were found distributed throughout the eukaryotic and
prokaryotic genomeg§308). TRs have differentocations within the genomen intergenic

regions,coding regions or pseudogen(869)

These repeats were first discovered in eukaryotes in (3880 In addition to their
presence in multiple copies, they have differences in other features such as size, location,
complexity, and repeat sty{@811) Different criteria were used to classify these repetitive DNA
sequences, such as their functional role, degree of repetitiveness, and how they group together
(312) TRs are classified based on their organization on the gemdonevio types. There are
interspersed repeats, in which these repeat units are scattered in the genome in a random way
(313) Interspersed repeats are trarsgie elements which include the transposable elements,
short interspersed elements retrogenes, and retropseudogenes, and the differences in genome
size are generated by this type of repéatel) Then there are TandeRepeats (TRs), where
the repetitive sequences are aligned in an array one after one, and these include gene families,
microsatellite, minisatellite, satellite DNAs and mixes of both repeats, such as segmental
duplications (SDs) and duplicated DNA fragne(815) Tandem repeats (TRs) or satellite
DNA are DNA sequences repeated in sequences from head to tell manner and with a different
number of repeats in each locus of each indivi2813) DNA sequenceéshort nucleotidés
that form a unit, and these undse repeated in array several times in the locus within the
genome. These sequences are divided into three types based on the size of the repeated unit are
divided into three types: microsatellites, ragaitellites, and macrsatellites or megaatellites
It is not clear whether microsatellites are fror Base pairgbp) or from 1-9bp, as different
studies have identified microsatellites from the size of the repeated unit from 1bp to 6bp
nucleotide long, and also called them Short TRs, microsatellibegle sequence repeats
(SSRs)(316). Other studies have identified the microsatellite fro®bp for each unit size.

For minisatellites, the size of the unit is from ten nucleotides and until to 180B318) The
macrasatellite or megsatellite contains morehan 100bp per uni(312,315,319,320)
Furthermore, TRs can be placed in two categories degenerated and identical TRs. Degenerated
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TRs onlyin which one nucleotide difference in the unit that arising from point mutation. On
the other hand, in identical TRs the nucleotides match each other in all of tl{82in882)

1) Tandem Repeats unit size classification

A) Microsatellite (repeat unit size from 1 to 9 bp)

5 _J ACTGT |.| ACTGT H ACTGT H ACTGT -{ ACTGT H ACTGT }— 3 ‘

Five base pairs in length with six repeat units

B) Minisatellite (repeat unit size from 10 to 100 bp)

5 —1 ACTGTAAGCTG H ACTGTAAGCTG H ACTGTAAGCTG H ACTGTAAGCTG F 3 ‘

Eleven base pairs in length with four repeat units

C) Macrosatellite or Mega-satellite (repeat unit size more than 100 bp)

| 5 4 ACT. - .CGT H ACT.. SRR SSN———— - | | F 3 |

One hundred five base pairs in length with two repeat units

2) Tandem Repeats unit sequences

Identical tandem repeats
5 _| ACTGTAA H ACTGTAA H ACTGTAA H ACTGTAA }— 3 ‘

Degenerated tandem repeats

5 — ACTGTAA H ACTGTAA H GCTGTTA H ACTGTCA }— 3 ‘

FIGURE4: Tandem repeats classifications and types

Among these microsatellites, or simple sequence repeats (STRs) are considered of most
important for their abundan@®mparing to minisatellite, in addition, the numbers of repeats
within specific STRs tend to be highly variable, their easiness to be analyzed by PCR
(308,322) Weber and Wondhave found out the variability among these TRs in human
genomes and identifyne possibility of usinghese TRs as a geneticker (323) Because of

their high variability, they are also referred to as a variable number of tandem repeats (VNTRS)
(324). One of the main characteristiobthese tandem repeats are itmgability, they mutate

in very highspeed 18- 107 higher than regular mutation rates (point mutat{@y,319) The
mutations are happened mainly due to (deletion, addition) in the repeat units, while the
mutation within the repeat units is raf@&L1) In general,there are three mechanisms that
explained TRs mutation in eukaryotes: recombination, Redresposition mechanisr8trand
slippage replicatio315), other studies have focused on only two mechanisms: recombination

and DNA polymerase slippag¢@l1) In prokaryotesthe mechanisms for the TRs mutatane
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the same which includd3NA strand slippage and their effedt@ntraction and expansion,

recombination, replication, and a variety of DNA repair pathwags 327).

1.11.1. Identification of tandem repeats

The development of genome sequencimginformatics and computer sciendes helped the
identification and analysis of repeats. Different algorithms have been usgehtdy these

TRs. These algorithms are varying in their ability to detect different types of TRs
(319,325,32B330). The problem is the ability of these algorithitn detect the different types

of TRs therefore the use of different types of algorithms is recomméd38&d Furthermore,

in order to obtain the right number and consensus TRs, there are three important parameters
should be applied while using these algorithms: alignment weights, type of repeats, and
threshold sores. These parameters strongly affect the results of3UBs Various methods

and algorithms have been applied to detect TRs, these methods have been reig8&d in
There are five main and Widely applied algorithms TRF, Mreps, Sputnik, STAR, and Repeat
Masker(332 334) We have used Tandem Repeat Findackvis widely used (TRF the most
applied algorithms}335) TRF program shows more flexibility with the easiness of handling

the parameters to obtain the exact reqGIB6).

1.11.2. The role of tandem repeats

TRs were thought to be useless DNA, due to their high variabitity their sequence
simplicity (332) Studies in the last 25 years have proved the importance of thesesrépeat
role that tandem repeats come from their location in the gernfonadysis of the genomes has
clarified, when they fall with the coding region, regulatory sequences they affect gene
expression(337). TRs are found within promoters of stresduced genes and within the
coding regions of genes encoding «liface and regulatory proteins. The changes in these
repeats are accommad by phenotypic chang€319) A different role has been identified for
TRs, In additionto their role in genetic mapping, genotyping, and forensic styd8iEs) In
any case,ite abundance of repetitive sequences in eukaryotes is not meaningless. Since the
1990s, diferent studies have shown the role of TRs in human disease. More than 20 diseases
have been found in humans related to TRs, hereditary neurological diseases including fragile
X syndr ome, Hunt i ngt on 6 etc (88B)swthesnwre, it maoortdo ni ¢
that TRs interfere with cellular functio(829,339) In animals, an association was found
between tandem repeats and canine epilepsy di€&&3eIn other eukaryotes, such as yeast,
fluctuation in gene size which leads to quantitative alterations in phenotype are associated with
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TRs (341) In the plant Arabidopsis thaliana, STRs can influence gene andnphatetion,

which leads to phenotypic variabilit{810). Also, a correlation was found between STR
diversity, and ecological factors in wheand barley(342,343) TRs were found to play an
important role in animal diseag@44,345) More details about Tandem repeats and their roles
have been reviewed341346) The first study on bacteria was on tHe influenzaephase
variation gene in 198@819) Phase variation is one of the bacterial adapting strategies, thus
the bacteria will be able to face the changing environment by modulating the function of
speci yc(347 dmerapeats are involved in different cell roles such as disease
development, cellular differentiation, genome stability, transcriptional control, and evolution
(308,348) TRs abundancy could speed the loss geine order, through chromosome
rearrangemen{320). TRs play a role in bacterial pathogenicity and genomic variability
(Rocha,2003). In the study conducted §840,349) TRs were found to play a role in genetic
variation within a population, and they facilitate evolutionary changes. Many other studies have
been conductkto reveal the importance of TRs, especially microsatellites and their role in
bacteria, in the last two decad@43) An important role of TRs is that they can reveal the
recent divergence ithe microevoltionary level dugo the high mutation ratgs318,331,350,

351) Three genetic variations have been used for comparative genomics studies: Single
Nucleotide Polymorphisms (SNPs), Copy Number Variations (CNVs) and Tandem Repeats
(TRs)(238,240) As the number of these tandem repeatsparéicular locus varies from strain

to strain, they are known as variallember tandem repeats or VNTE20) The particularity

of the TRs used in this process is falling under the umbrella of variability in TRs length,

sequence, and position of each st{&b12,353)

1.11.3. The MLVA method

MLVA or Multilocus VariableNumber TandemRepeat Analysis is a molecular method
based upon thealculation of Variable copy Numbers of Tandem Repeats (VNTR). These
regions are the most variable regions in bacterial genomes and therefore have the potential to
resolve the genetic diversity of monomorphic bacterial pathd@®3s354) The first step in this
methodis theidentification of the TRs fromin silico programs, according to certain criteria.
Secondly, in order to calculate these TRs, PCR primers must be designed from the conserved
region around these TRs, the left and right flanking regions. Thisllmved by ample
preparation and DNA extraction for each sample, then PCR amplification. Finally, the
differences among the strains should be measured by gel electrophoresis and capillary

electrophoresisn which the resultgranslated numerical)yafter the calcul@on of these loci by
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detracting the right and the left flanking regions from the amplicons from PCR and dividing the
remaining length by the size of the corresponding repeat unit in that Tdwisesults obtained

from both approaches are imported intiplsisticated software for the assignment of allele
numbers. A string of alleles is created from the number of repeat units for each locus forming the
MLVA profile and is eventually used to assign an MLVA typle generated numeric data can

be exchanged amng laboratories around the world viee public MLVA databas€223,312)

Its great ability to discriminate the strains based on differences in the number of the repeats in
each | ocus gener ahltegedomic PNAoihseveral paesultsiin@ high devel

of polymorphism(322,355) In addition, MLVA is a rapigprocedurdor monitoring shorterm,

local outbreaks of bacterial pathogens, revealing insights about the relationships at a

microevolutionaryjevel (253).

MLV A methodology was primarily developed feklaemophilus influenzastrains and
bacterial human pathoger{322) and then for bacterial animal pathogg298,299,352)
MLVA was applied for the first time in subtyping the plant pathogenic backyialla
fastidiosa (356), and since then has been used to subtype a wide range of plant pathogenic

bacteria, ashownin the box below.
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TABLE |: USE OFMLVA METHODS FOR SUBTYPNG BACTERIAL PLANT PATHOGENS

Authors  Year N of VNTR  Pathogen species Host plant species
Della ColettaFilho et | 2001 IéOCI Xylella fastidiosa Citrus sinensis;
al. Coffea arabica
Ngoc et al.| 2009 14 Xanthomonas citmv. citri Citrus spp.
BergsmaVlami et al. | 2012 6 Xanthomonas arboricolpv. pruni Prunus
laurocerasus
Gironde and Manceay 2012 8 Pseudomonas syringae. maculicola; Brassicaceae fam.;
Pseudomonas syring@e. tomato Lycopersicon
esculentum
Zhao et al.| 2012 25 Xanthomonas oryzgev. oryzicola Oryza sativa
N6 Guessg 2013 26 Ralstonia solanacearum Solanaceae fam
Zaluga et al.| 2013 8 Clavibacter michiganensis subsp. Lycopersicon
michiganensis esculentum
Pruvost et al.| 2014 31 Xanthomonas citmpv. citri Citrus spp.
Verniere et al.| 2014 14 Xanthomonas citmpv. citri Citrus spp.
Buhlmann et al 2014 6 Erwinia amylovora Pomaceae fam
Ciarroni et al. | 2015 13 Pseudomonasyringaepv. actinidiae Actinidia deliciosa
Guinard et al.| 2017 7 Ralstonia solanacearum Mix populations

1.11.4. Use of MLVA

The method hagreatpotential as aeasyand effective tool, not only in the recognition and
schedule/detection of the presence of different bacterial typeddwide but above all to trace
their movements on a local tbe internationalscale, supporting the simple detection of
contaminated matials with key information concerning specifiaplotypeg251) The first
MLVA scheme for a plant pathogenic bacterium was developedyelia fastidiosa in the
early 2000s. The method provided a hrgkolution tool for epidemiological, genetic, and
ecological analysis of citres p e cXylella fastidiosastrains; thig357) made it possible to
obtain hidh resolution andobust genotyping oKanthomonascitri pv. citri  (251) (358)
reported the usefulness of the method in population stescaind epidemiological monitoring,
in addition to fast, reliable, and cesffective molecular typing. MLVA was reported to be a
very promising firsline assay for largecale routine genotyping prior to whajenome
sequening (Zhao et al., 2012a). Was reported aa very useful tool for gaining insighto
geographic diversity, and for understanding the dynamic evolution of the pat(@gén
MLVA is a promising typing technique for local surveillance and outbreak investigation in

epidemiological studies; it camravel the intrgpathovar structure.
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Chapter 2 : Canker of kiwifruit disease

2.1 Kiwi fruit (Actinidia spp.) kiwi, Chinese gooseberry, Yangtao,
Fuzzy-Skinned

The genudctinidia (A. belongs to the familActinidiaceae which includes 54 species and
21 varieties. The famous commercial varieties distributed around the woAdcieensisA
deliciosaandA. chevalier(1). The genudActinidia is widely distributed in eastern Asiand
most species are present in China endemically. Their distribution lies in mountains and hills of
the southwesto the northeast, and for this reas@hinais considered the origin of the genus
(2). Although the wild taxa ddictinidiaeare present in China, it was not domesticated until the
last century, when it was domesticated for commercial purposes for thdlgeomared, and
largefruited species. Two of the main species distributed around the worldl ahgnensis
andA. deliciosaand they have been domesticated over a wide area of China, after the success
of domestication in New Zealarfd). In New Zealand, the first domestication and commercial
cultivation startedpproximatelyin 1904 when a school teacher brought seeds from China and
passed them to the botanist Alexander Allison, andweruaial cultivation starte@). The fruit
was actally planted in Europe between the 17th and 18th centuries for ornamental purposes
(5). The genus is a dioecious plamtd t has different advantages for human health, where it
considered to be beneficiarfgut health and digestig¢B). The fruit helps to improve digestive,
immune and metabolic health. It is rich in vitamin C, diefdrgr, potassium, vitamin E and
folate, besides many bioactive components which includi@xadants, phytonutrients, and

enzymeg7).

Kiwifruit production has increased by more than 50% in the last twenty yeartheind
production of this fruit has reached 0.22% of global food production, after apple, orange, and
banang6).Fi ve countries are the wor | dNéwsZealaad, n pr o
Chile, and Greece. Of these, Italy, New Zed|abhile and Greece account for 80%total
production, whereas China exports only 1% of their production while the other amount is used
for national consumptio(B). The kiwifruit ranks after citrus, apples, table grapes, pedches
nectarines, and pears in terms of value. In Italy, kiwifruit accounts for about 3.5% of the total

area under fruit crops and about 4% of total fruit pradadby weight (9).

Plant pathogens are the main constraints for plant production. The Kiwi plant is attacked

by different pathogens, such as fungi, viruses, and bacteria. Different plant pathogens have
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been reported such as bacterial canker, blossom blight, fruistesh cankergray mold,
anthracnose, Nectria canker, leaf blight, brown leaf spot, brown felt, anirmoibhematode

(10). The main fungal diseases of kiwifruit are Field rot, cause8dbdgrotinia sclerotiorum
Storage rot, caused Bptrytis cinereaand Ripe rot, caused Bptryosphaeria dothideél1).

It is also attacked by other fungi species, sucRleeoacremoniurapp, Phaemoniellapp.

and Fomitiporia punctatewhich @ause wood decay and vine decag). Other fungi cause
nursery damage on kiwifruit on the young plél®). Viruses alsq attack kiwi plants. Three
different groups of viruses have been identified, and of these two viruses have been identified
as causing severe damage to the commercial orchards of kiwifruit: Cherry leaf roll virus
(CLRV) and Pelargonium zonate spot virus 8§84 (10). Bacterial diseases also affect
kiwifruit. Two speciesPseudomonas viridiflavand Pseudomonas syringgev. syringae
causes Blossom blight and necrotic leaf spotiibg). In 2008 a newvirulent strain of
Pseudomonasyringae pv. actinidiae has attacked the kiwi fruit in Italy causes a sever

damagseto the Kiwi production sector.

2.2 Importance and distribution of the disease

The dseaseis caused by virulent strains of the graegative bacteriunPseudomonas
syringae pv. actinidiae (Psa) (15,16) The disease has caused great damage to kiwifruit
productions around the wor{d7), It was first describeoh 1984 in Japan oActinidia deliciosa
as a new pathovar belonging Rseudomonas syringaeomplex (18). The disease was
described in China in 1994 as attacking kiwi fidi7). Since the earliest identification of the
disease in Japan, the diseass been officially reported in differeabuntriesin China(19),

Korea sincehe1990520i 23). In addition, Italy(24,25)reported the diease in the early 1990s.

In 2008 a new and very aggressive strain has emerged in Italy, causing severe damage and
spreading quickly all over the country, attackingtinidia chinensisand Actinidia deliciosa

(26). Globally, after the detection of the Italian outbreak, the disease has been reported from
different countries o\ctinidia chinensisandActinidia deliciosain Portugal, New Zeeland,
France, Switzerland, Spain, Chile, Turkey, Germa&lgvenia Greece, Georgia, and finally
Argentina(16,27)
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FIGURE 5: Distribution of bacterial canker of kiwi fruit around the world

Under favorable conditionshe disease can cause great economic losses by destroying the
orchard in one or just a few seas@& 33). The disease has caused severe damage in orchards
and extensive economic losses worldw({@4,35) It is already responsible for worldwide
economic losses amounting to hundreds of millions of euros and poses a very big threat to the
entire Kwifruit industry in New Zealand36). In New Zealand the problem has had a bigger
impact; in the first five years of the outbreak losses of around NZ$400 million were expected,
but about NZ$900 million in just one yeé85). The situation in New Zealand has now been
recovered by the repl acement Adirfidiathimensisgae nsi t i v
chinensisf Zesy3¥P2dbn I taly for exampl e, | osses r ec
(38). The situation has increased according to the infected area, which reached 2000 ha between
20102012, and each |l ost@3%ectare cost about 08¢

Different measures have been taken in otderontrol and manage the disease in Italy.
These includespray treatments;ultural practices, such asuning, tool disinfections, and
covering pruning cuts, managing nitrogen fertilization and water stress in a correct manner,
and many other@&40). The recovery of kiwi plantation in Italy is proceeding slowly, despite
the cultivation of more than 25,000 ha arounddbentry(41).
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