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A B S T R A C T

The aim of this paper is to present a signal processing algorithm that, applied to the raw Locked Mode signal,
allows us to obtain a disruption indicator in principle exploitable on different tokamaks. A common definition of
such an indicator for different machines would facilitate the development of portable systems for disruption
prediction, which is becoming of increasingly importance for the next tokamak generations. Moreover, the
indicator allows us to overcome some intrinsic problems in the diagnostic system such as drift and offset. The
behavior of the proposed indicator as disruption predictor, based on crossing optimized thresholds of the signal
amplitude, has been analyzed using data of both JET and ASDEX Upgrade experiments. A thorough analysis of
the disruption prediction performance shows how the indicator is able to recover some missed and tardy de-
tections of the raw signal. Moreover, it intervenes and corrects premature or even wrong alarms due to, e.g.,
drifts and/or offsets.

1. Introduction

Rotating magneto-hydro-dynamic (MHD) modes in tokamaks are
often observed to slow down as their amplitude grows up. When a
critical threshold is reached, they stop rotating, or, as it is commonly
said, they lock in a certain toroidal and poloidal position leading very
often to disruption or, in any case, to a degradation of confinement. The
slowing down of the mode propagation velocity can be detected directly
measuring the voltage induced by the oscillating field perturbation in
tangential field pick up coils or Mirnov coils. Before the mode locking,
the measured signal exhibits a growing amplitude accompanied by a
reduction in frequency until the oscillation disappears, that is when the
mode locks. When the mode is locking the amplitude of its radial
component can be evaluated through the measure of the voltage in-
duced in the saddle coils. Such amplitude underlies the analysis de-
veloped in this work. In a tokamak device, the mode locking is the most
frequent precursor of disruptions, even if, in JET-ILW campaigns, an
increased rate of disruptions driven by core radiation peaking or im-
purities has been observed [1], [2]. Usually, mode locking appears at a

later stage in the chain of events characterizing the disruptive process.
Its process can be caused by intrinsic error fields or by the deceleration
of rotating precursor modes [1]. The analysis of these instabilities can
be exploited to develop disruption predictors provided that they have
an amplitude large enough to be detected before the thermal quench.

As reported in [1,3,4], most disruptions on JET present precursor
locked modes that can be due to either error fields or initially rotating
modes. However, for a non-negligible number of them, they manifest
too late to intervene. On ASDEX Upgrade (AUG), it is more common to
see modes that lock prior to the thermal quench, but also modes that are
still rotating at the time of the thermal quench. Such difference can be
justified by the lower intrinsic error fields in ASDEX Upgrade [5]
compared to JET. Also on AUG, in several percent of cases, the in-
stability manifests itself too close to the disruption time to allow any
intervention. An analysis of the locking of the mode before the dis-
ruption in the databases of JET and AUG is reported in Section 4.

On JET and AUG, protections against locked mode disruptions al-
ready exist, which use the amplitude of the locked mode signal as a
threshold. Such protection systems are machine dependent: at AUG the
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raw signal, available in real time for disruption mitigation purposes,
provides a measurement in Volt, whereas at JET such signal is in Tesla.

However, the development of portable systems for disruption pre-
diction is becoming of increasingly importance for the next tokamak
generations. Referring to JET and AUG, in this paper, a common defi-
nition of a locked mode indicator is proposed and the viability to
identify a common threshold value is investigated. To this purpose,
referring to the JET and AUG experiments, a multi-machine analysis has
been performed. In particular, two databases have been built containing
about six hundreds of disrupted and non-disrupted discharges in JET
with ITER-Like Wall (ILW) from 2012 to 2014 and roughly the same
number of shots at AUG from 2009 to 2015. The AUG raw signal has
been calibrated in Tesla to be compared with that of JET. Moreover, in
order to handle dimensionless quantities both the signals at JET and
AUG have been normalized as suggested in [3].

Furthermore, in both machines, the raw signals sometimes show
offsets and/or drifts, due to no compensation of the poloidal fluxes
generated by the plasma current and the current driving the OH coils.
Moreover, active coils for error field correction could introduce off-set
that have to be carefully handled. Hence, to avoid the effect of spurious
trips in this signal, the trigger level used to request the pulse termina-
tion is set to a rather high value. This procedure has the clear drawback
of delaying the request to safely shut down the plasma even when, by
monitoring the signal itself, the presence of a locked mode could have
been detected earlier.

Usually, the roots of drift and off-set are well known, and the cor-
rection could be trivial. However, the analysis of their causes could be
time consuming and its results do not enhance the disruption prediction
capability of the available signal. Hence, removing the drift and the off-
set from the point of view of the real time data processing, without
getting into the diagnostic limits and machine settings, is sufficient. In
this paper, an algorithm for drift and off-set removal has been im-
plemented and applied to the normalized locked mode signal. The al-
gorithm does not require any preliminary analysis, and it can be applied
also to those shots not affected by drift and off-set preserving the signal
information one is interested in.

Finally, as proposed in the literature [6,7], the resulting locked
mode signal has been processed to exploit the content information of
both the time and frequency domains resulting in an indicator fitting
both devices.

In fact, some algorithms, mostly based on the frequency content of
the raw locked mode signal, have been tested at JET for minimizing the
effect of these issues so as to provide an earlier alarm than the current
locked mode protection system [6]. These algorithms demonstrated to
perform better than those that trigger an alarm only when the locked
mode amplitude exceeds a prefixed threshold. Also in [7] time-fre-
quency analysis was used to detect anomalies in the locked mode signal
that triggers the disruption alarms on JET. Such predictor required a
limited number of past experiments to set the alarm threshold.

In the present paper, the validity of the proposed indicator has been
assessed by using it as disruption predictor.

Finally, a deep analysis of the prediction errors has been performed
to understand the intrinsic limits of the use of only the locked mode
signal as a disruption predictor.

The remainder of this paper is organized as follows. Section 2 re-
ports details of the locked mode diagnostics at JET and AUG. The ra-
tionale of the locked mode indicator is presented in Section 3. The
statistical analysis of the adopted databases is presented in Section 4.
Results of the locked mode indicator as disruption predictor, and a
reasoned analysis of the obtained results are discussed in Section 5. In
Section 6 conclusions are drawn.

2. Locked mode diagnostics

On JET, the locked mode amplitude is measured by a set of 2 × 4
saddle flux loops, located at radial positions, above and below the

middle plane, and mounted on the outside of the vacuum vessel at the
low-field side (LFS) of the plasma. They are positioned at a 90° angle to
each other. The locked mode amplitude, measure of the predominant
odd n= 1 mode, comes from several elaborations of these flux loops
signals, such as integration and the appropriate compensation of the
poloidal fluxes generated by the plasma current and the current driving
the OH coils. It is the effective amplitude of the radial component of the
mode, being the two measurements the sine (BrMHDF) and cosine
(BrMHDG) components of the mode [4]. The resulting locked mode
amplitude signal is calculated as indicated in Eq. (1), it is in Tesla and
will be indicated in the following with BML.

= +B Br Br( ) ( )ML MHDG MHDF
2 2 (1)

Regarding AUG, the signals for the present study come from a di-
agnostic constituted by two magnetic saddle coils mounted oppositely
at the high-field side of the vacuum vessel. Each coil consists of one
loop covering approximately 180° of the vacuum vessel wall, measuring
the difference between the time derivative of the radial magnetic fields
Be
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r on the coils located at the east and west side of the torus
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and it contains again information on the locked mode amplitude. In
the considered shot range, the routinely used disruption trigger made
reference to this diagnostic. Since, the paper aims to improve the pre-
diction capability of the raw signal actually used as predictor, such
diagnostic has been chosen as reference. In the following this raw signal
will be labelled LM-raw.

It is worth noting that, as the considered measure in AUG is based
only on a couple of opposite saddle coils, the spatial resolution could be
not enough if the phase of the locking position is not favorable with
respect to the area covered by the loops. This problem has been recently
solved on AUG by implementing a new diagnostic that is constituted by
a set of 4 saddle coils on the low field side (LFS) [5].

Another important difference between JET and AUG locked mode
amplitude diagnostics is that on AUG the signal is uniformly sampled at
2 MSamples/s whereas at JET the sampling time can vary during a
discharge from several tens of Samples/s to some kSamples/s.

Note that the LM diagnostic signal used for JET [8] is not the re-
ference signal for real time applications, but the analysis developed in
the following can be easily applied to the raw signals coming from real
time diagnostics.

3. Locked mode indicator

Generally speaking, an indicator can synthesize more signals in
order to describe a complex phenomenology, or can be based on a
single signal when the signal itself is intrinsically representative of a
disruptive behaviour as, for example, in the case of the locked mode. In
most circumstances, in order to maximize the information content in
the signal, it can be required to remove noise or unwanted spikes, or
simply to extract the trend of the signal filtering transient phenomena.
In this paper, the locked mode amplitude raw signals have been pro-
cessed in the time and frequency domains in order to synthesize an
indicator (called LM-ind) suitable for both JET and AUG tokamaks.

Firstly, the difference in the unit of measurement between JET and
AUG raw signals requires suitable corrections in order to scale the MHD
perturbation amplitude threshold to trigger a disruption predictor for
the next tokamak generation machines, as proposed in [3]. In the
present work, the absolute value of the AUG locked lode raw signal has
been calibrated in order to convert it in Tesla, as reported in (3):
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where A=1. 426389m2 is the coil surface, and Δt = 10ms is interval of
integration.

Then, in order to allow a possible comparison among the two ma-
chines, a suitable raw signal normalization has been implemented. Even
if the amplitude of the LM signal scales with several quantities, in this
work, as suggested in [3], the normalization has been done with respect
to the averaged edge poloidal field between HFS (at R-a), and LFS (at R
+a) at the middle plane, Bθ(0,a), in [T], where R is the major radius,
and a is the minor radius, measured at each time instant. Such nor-
malization provides a machine independent dimensionless parameter
BML/Bθ(0,a). Note that, in this paper, BML indicates both the locked
mode raw signal in [T] at JET, and the Locked Mode raw signal cali-
brated in [T] at AUG.

LM-ind is obtained by multiplying the following three scalar features
resulting from the processing of BML/Bθ(0,a) both in time and frequency
domains. At each time instant tk:

the first feature is the normalized raw amplitude, in [T], after de-
trending and off-set removal:

= −f t B B a t M( ) | / (0, )( ) |k ML θ k k1 (4)

where Mk is the mean value of the signal evaluated in the previous
3.2 ms.

the Fast Fourier Transform (FFT) of BML/Bθ(0,a) in the previous
51.2 ms is performed, and the standard deviation of the resulting signal
frequency spectrum (after discarding the DC component) is taken into
account as second feature:
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where Fm is the amplitude of the mth component of the frequency
spectrum, and F is the mean value of the P/2 considered components.
P= 512 is the number of samples in the considered time window, being
the sampling frequency equal to 10 kHz.

the sum of amplitude of the frequency spectrum components,
weighted with respect to the inverse of their squared frequencies, is
evaluated as third feature:
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Then, in order to develop a locked mode indicator exploitable in
both machines, both BML/Bθ(0,a) and LM-ind signals have been re-
sampled at 1 kSamples/s by means of a linear interpolation. Note that,
the variable sampling frequency in JET diagnostic could reverberate on
the results of a locked mode indicator if it is based also on the frequency
content. This aspect has been carefully considered in the definition of
the proposed locked mode indicator.

Fig. 1 reports the result of the algorithm for a JET disrupted pulse.
In particular, Fig. 1-a reports the raw LM signal (BML), Fig. 1-b shows
the related LM indicator (LM-ind), whereas the subplots c) and d) report
a zoom of the subplots a) and b) respectively, in the time window
63÷65.26 s. Fig. 2 reports the results of the algorithm applied on an
AUG disruptive pulse, showing similar behaviour. For both figures,
comparing plots a) and b) it can be observed as the indicator highlights,
more than the raw signal, the mode locking phase with respect the
behaviour of the rest of the shot. Whereas, comparing the two zooms,
reported in figure c) and d), for JET it can be noted that the indicator is
not affected by the variable sampling frequency of the diagnostic; for
AUG, it can be noted that the indicator highlights the beginning of the
mode locking phase before the raw signal.

4. Databases

In order to statistically assess the effectiveness and robustness of the
proposed indicator, it has been tested as a disruption predictor with
both JET and AUG data. For the sake of comparison, the performance of
the prediction systems, obtained by optimizing a threshold on the ac-
tual locked mode trigger, i.e., the raw signal normalized with respect to
the plasma current Ipla on JET (BLM/Ipla) in [T/MA], and the raw signal
(LM-raw) in [V] at AUG, have been computed. Moreover, also the di-
mensionless parameters BLM/Bθ(0,a) in both the machines have been
considered as reference.

Data for this study was selected from the ITER Like Wall (ILW)
experimental campaigns performed at JET from 2012 to 2014 and at
AUG from 2009 to 2015. Table 1 reports the composition of the JET
database, whereas Table 2 refers to AUG data.

Both tables report the experimental campaigns, and the number of
the disruptive (DISR) and regularly terminated (NO-DISR) shots se-
lected for the training and the test sets.

The training set of JET was extracted from the experimental cam-
paigns performed with the ILW and it contains only flat top disruptions
excluding those terminated by massive gas injection. The 54 disruptions
were manually and automatically classified [1], [9]. In order to test
both the ageing and the generalization capability of the LM-ind as
disruption predictor, a larger test set has been built, which covers a
wide range of campaigns from 2012 to 2014 and contains not only flat-
top disruptions. All disruptions occurred in the chosen experimental
campaigns have been included with the exception of disruptions fol-
lowing vertical displacement events (VDEs) and those intentionally
performed for the characterization of massive gas injection (MGI). The
database contains the disruption times (tD) calculated by using an au-
tomatic procedure that is part of a tool (DIS_tool) available for both JET
and AUG [10].

It has to be highlighted that a very important aspect in disruption
prediction issue is to design a system able, not only to correctly predict
disruptions, but also to minimize false alarms on regularly terminated
discharges. To this purpose, 84 non-disrupted pulses have been used to
train the system, belonging to the same range of the training disruptive
pulses, and other 251 non-disrupted pulses, available from the experi-
mental campaigns from 2012 to 2014, have been selected for the test
set.

The same criteria employed at JET have been used to select non-
disrupted and disrupted discharges on AUG. The training set contains
only flat top disruptions whereas the test set contains also no-flat top
disruptions and it extends over a larger time period (see Table 2).

4.1. Analysis of the locked mode signal

A manual analysis has been performed to verify the possible pre-
sence of the locked mode for each disruptive shot in the database and
the locked mode time (LM time) has been recorded. At JET it is assumed
as the time instant where the absolute value of the signal starts to rise,
regardless of its amplitude, whereas at AUG, the LM time is the time
instant where the frequency of oscillation of the raw signal decreases
and its absolute value starts to rise. Fig. 3 and Fig. 4 report examples of
the locked mode raw signal of a JET and an AUG disrupted pulse re-
spectively. The LM time has been manually set corresponding to the
vertical dashed line. The red vertical line refers to the disruption time tD
automatically calculated by DIS_tool [10].

Also for the non-disrupted pulses, the possible presence of locked
mode corresponding to, e.g., minor disruptions, was manually verified
and the locked mode time was recorded as well. Fig. 5 shows a JET non-
disrupted pulse where the locked mode signal suddenly increases in
correspondence with a minor disruption (MD).

The results of the manual analysis are reported in Table 3. The data
in the table helps to define the limits of a disruption predictor based
only on the locked mode signal. Furthermore, a possible deterioration
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of the prediction performance passing from training to test sets and
from JET to AUG can be quantified.

By analysing the JET data, it follows that, in the disruptive training
set, all the discharges have a locked mode, but, for 1.85% of them, the
locked mode signal starts to rise less than 10ms before the disruption.
According to [7], in JET a detection is considered tardy if the alarm is
triggered less than 10ms before the disruption time, where 10ms is
minimum time need by JET mitigation systems to intervene. The ana-
lysis of the disruption test set showed that for 1.90% of disruptions
there is no locked mode, and for as much as 19.52% of them the locked
mode signal starts to rise less than 10ms from disruption time, hence
too late to allow even a mitigation action. This would result in a

corresponding percentage of missed or tardy detections if a disruption
predictor makes use of only the locked mode signal amplitude. Note
that, if such a disruption predictor missed the alarm in these disrupted
shots it does not make a mistake because it has to simply recognize the

Fig. 1. An example of JET disrupted pulse: (a) Locked mode raw signal BML in [T], (b) the LM indicator in arbitrary units [AU]. The subplots c) and d) report a zoom
(time window 63÷65.26s) of the subplots a) and b) respectively.

Fig. 2. An example of AUG disrupted pulse: (a) Locked mode raw signal BML in [T], (b) the LM indicator in arbitrary units [AU]. The subplots c) and d) report a zoom
(time window 6÷7.21s) of the subplots a) and b) respectively.

Table 1
JET database.

Data set ILW experimental campaigns DISR NO-DISR

Training 2012–2012 54 84
Test 2012–2014 210 251
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presence of the locked mode. In this paper, the shots where there is no
rise in the locked mode signal will not be considered in the test set. It
has to be noted that the non-disrupted pulses in the training set do not
present locked modes, whereas in the 3.97% of non-disrupted pulses in
the test set there is a locked mode and in 90% of them it corresponds to

minor disruptions. This could produce false alarms in a locked mode
based disruption predictor. These shots will not be considered in the
evaluation of the predictor performance. In fact, in the framework of
the analysis presented in this work, the prediction errors due to a not
successful detection of a locked mode must not be confused with a not
successful detection of a disruption with no locked mode, since the
main objective of the proposed indicator is to maximize the detection of
the locked mode. This shot selection does not affect the training set
composition reported in Table 1; whereas, the test set, after removing 7
non-disruptive shots due to the lack of variables needed for the nor-
malization, results in 206 disruptive shots and 234 non-disrupted shots
in the test set.

Referring to AUG, data in Table 3 shows that, in the disruption test
set, 7.21% of pulses does not have locked mode whereas in 13.96% of
them it locks too late, i.e., the LM-raw amplitude starts to rise less than
2ms before tD (the minimum time needed by the AUG mitigation
system to intervene is 2ms, in this case a disruption is tardy detected if
the alarm is triggered later than 2ms before the disruption time
[11,12]). Moreover, in the non-disrupted test set, 6.69% of pulses
present a locked mode, 88.23% of them corresponding to minor dis-
ruptions.

The conclusions made for JET apply also for AUG: we may expect
missed alarms, tardy detections and false alarms that cannot be avoided
using only the amplitude of the locked mode raw signal. Also in the
AUG case, disrupted discharges without locked mode and non-disrupted
discharges where the locked mode is present have been excluded from
the evaluation of the prediction performance. This selection does not
affect the composition of the AUG training set reported in Table 3.
Whereas the test set, after removing 13 disruptive and 2 non-disruptive
shots due to the lack of variables needed for the normalization, results
in 193 disruptive and 235 non-disrupted shots. Table 4 summarizes the
composition of the database used to evaluate the prediction perfor-
mances for the two machines.

Moreover, comparing the statistics resulting from the manual locked
mode analysis made for the two devices, it could be expected that a
predictor based on the LMraw signal has worst performance on AUG
than on JET. The dissimilarities between the two devices have been
discussed in [3].

5. Locked mode signal for disruption prediction

Presently, on JET and AUG, the protection against disruptions uses
the amplitude of the locked mode signal as a trigger. In particular, the
alarm threshold is set on the BML/Ipla signal in [mT/MA] at JET and on
the LM-raw signal in [V] at AUG. Hence, there is no correlation between
the two trigger values. In a view of a machine independent disruption
prediction approach, dissimilarities between the two locked mode
triggers can be overcome taking into account, for both machines, the

Table 2
AUG database.

Data set Experimental campaign DISR NO-DISR

Training 2009–2013 60 72
Test 2009–2015 222 254

Fig. 3. Example of locked mode raw signal of a JET disrupted pulse. The ver-
tical dashed line indicates the LM time manually selected. The red vertical line
refers the disruption time automatically calculated by DIS_tool (For inter-
pretation of the references to colour in this figure legend, the reader is referred
to the web version of this article).

Fig. 4. Example of locked mode raw signal calibrated in Tesla of an AUG dis-
rupted pulse. The vertical dashed line indicates the LM time manually selected.
The red vertical line refers the disruption time automatically calculated by
DIS_tool (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article).

Fig. 5. Example of a JET non-disrupted pulse. The sudden increase of the locked mode raw signal corresponds to a minor disruption.
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raw locked mode signal calibrated in Tesla (BML) and normalized with
respect to Bϑ(0,a). The suitability of the proposed normalized signal as
machine independent predictor will be confirmed if a common alarm
threshold can be set for the two machines. To this aim, the distribution
of the BML/Bϑ(0,a) values in the pre-locking phase for JET and AUG
have been compared. Fig. 6a reports such distribution for AUG in red,
and for JET in blue. Note that, even if the post-locking phase of the
locked mode signal is characterized by a disruptive behaviour, it has
not been taken into account in this study because, once the trigger is
activated, the values assumed in this post-locking phase are no longer
relevant. As it can be noted, the two distributions in Fig. 6a show a
common value that identifies the end of the pre-locking phase. For the
sake of comparison, Fig. 6b reports the same distributions of the raw
BML values (the absolute values have been considered because, on AUG,
the locked mode signal can assume positive and negative values). As it
can be seen, in this case, a common value that identifies the end of the
pre-locking phase cannot be found.

In this paper, the value that identifies the end of the pre-locking
phase has been defined as that corresponding to the 99.7 percentile.
Table 5 reports the values of the two signals at 99.7 percentile for JET
in the first column, and for AUG in the second column. The remaining
0.3% of values has been, indeed, considered as outliers due to spikes
and other short transient phenomena. Moreover, in order to appraise
the similarity between these “thresholds” on the two machines, the
third column of Table 5 reports the percentage deviation of these two
values with respect their mean value. As can be seen, for BML, the

threshold values of 0.311m T for JET and of 0.239m T for AUG are
found, with a deviation of 13.09%, whereas, for BML/Bϑ(0,a), the
threshold values of 0.699 10−3 for JET and of 0.700 10−3 for AUG are
found, with a negligible deviation of 0.07%.

Hence, the proposed normalized signal BML/Bϑ(0,a) allows us to set
a common value of about 0,7·10−3 as upper bound of the pre-locking
values for both the machines. Then, in order to set a common alarm
threshold for BML/Bϑ(0,a) for disruption prediction purposes, an heur-
istic optimization procedure has been performed by minimizing the
prediction error (Error) defined as the weighted sum of the false alarms,
missed alarms and tardy predictions, as reported in (7) :

=
+ +

+
Error n MA TD n FA

n n
·( ) ·D ND

D ND (7)

where nD and nND are the number of disruptive and non-disruptive
shots; FA is the number of false alarms, MA is the number of missed
alarms, TD is the number of tardy detections.

In this case, the training set is the combination of the training sets of
the two machines. Defining the warning time as the difference between
the disruption time tD and the alarm time given by the predictor, for a
disruptive shot, the detection is considered successful (SP) if the
warning time is longer than 10ms for JET (it becomes 2ms for AUG),
otherwise it is tardy; whereas the alarm is missed if the disruption is not
detected at all. For a non-disruptive pulse the false alarm occurs when it
is detected as disruptive. Fig. 7 reports, in green, the prediction error as
a function of the threshold values on BML/Bϑ(0,a) for the combined
training set. An optimal threshold value of 0.737 10−3, corresponding
to the minimum of this error function, is obtained resulting in an overall

Table 3
Results of the analyses of the locking of the mode in the databases of JET and AUG.

Data set JET AUG

DISR NO-DISR DISR NO-DISR

No LM LM time ≤10ms LM Yes Corresponding
to MD

No LM LM time ≤2ms LM Yes Corresponding
to MD

Training 0% 1.85% 0% 0% 0% 0% 0% 0%
Test 1.90% 19.52% 3.97% 90% 7.21% 13.96% 6.69% 88.23%

Table 4
Resulting number of shots for JET and AUG.

Data set JET AUG

DISR NO-DISR DISR NO-DISR

Training 54 84 60 72
Test 206 234 193 235

Fig. 6. a) Distribution of the BML/Bϑ(0,a) va-
lues in the pre-locking phase for JET (blue) and
AUG (red) disruptive shots; b) Distribution of
the absolute values of BML [T] in the pre-
locking phase for JET (blue) and AUG (red)
(For interpretation of the references to colour
in this figure legend, the reader is referred to
the web version of this article).

Table 5
Threshold values at 99.7 percentile.

Signal JET AUG Deviation%

BML 3.11 10−4 2.39 10−4 13.09
BML/Bϑ(0,a) 6.99 10−4 7.00 10−4 0.07
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Error of 9.63% for the combined training set. The same Fig. 7 reports, in
blue, the prediction error for the training sets of JET and, in red, for that
of AUG. Using the previously optimized threshold, an Error of 5.07% for
the JET training set and of 14.39% for the AUG training set is obtained.

Fig. 8 reports the prediction errors as a function of the threshold
values on BML for the combined training set (green), for the JET training
set (blue), and for the AUG training set (red). A threshold value of
0.326m T, which minimizes the prediction error on the combined
training set, results in an overall Error of 10.37%, producing an Error of
3.62% for JET, and bringing up to 17.42% on the AUG training set.
Moreover, Fig. 8 clearly shows that, to improve the performance of
AUG, a lower threshold value has to be chosen to the detriment of the
JET performance: the prediction error on AUG can be reduced to
12.88% with a threshold of 0.272m T, corresponding to an error of
21.01% for JET (the prediction error on the combined training set will
be equal to 17.04%).

This analysis shows, first of all, that both BML and BML/Bϑ(0,a) used
as disruption predictors perform better for JET than for AUG. Moreover,
it demonstrates that, for BML/Bϑ(0,a), a shared alarm threshold can be
set getting a good compromise between the performance on the two
machines. Therefore, BML/Bϑ(0,a) is suitable to be used as a machine
independent predictor or as input to build an indicator that aims to be a
machine independent parameter.

5.1. Locked mode indicator as cross-machine disruption predictor

The aim of the present study is to test the suitability of the proposed
pre-processing algorithm to obtain a robust parameter to be used as
input in a machine independent disruption predictor, possibly including
other signals. To this end, the prediction capability of the proposed LM
indicator has been evaluated and compared with respect to that of the
normalized raw signal BML/Bϑ(0,a).

In particular, an optimal threshold alarm value has been obtained
also for LM-ind by minimizing, as in the previous section, the overall
prediction error as a function of the threshold on the LM-ind. The first
row in Table 6 reports the overall disruption prediction errors, i.e., the
weighted sum of the false alarms, missed alarms and tardy predictions,
obtained using a unique threshold on the BML/Bϑ(0,a) signal for the
training and the test set of JET and AUG, whereas the second row refers
to the performance of LM-ind.

Table 6 reports also the selected optimal thresholds, common for the
two machines. As can be noted, the overall error of LM-ind is smaller for
both the machines even if the relative increase of the error between the
training and the test at AUG is more favourable for BML/Bϑ(0,a).

5.2. Machine-dependent locked mode disruption predictor

The prediction performance of LM-ind can be further improved if
different thresholds are optimized for each device. Regarding JET,
Table 7 reports the prediction performance of both BML/Bϑ(0,a) and
LM-ind for the training and test sets in terms of successful predictions,
missed alarms, and tardy detections on disruptive shots, and false
alarms on non-disrupted shots. The last column reports the overall error
(Error) on the training or test sets.

As expected, the performance of both the normalized raw signal and
the LM indicator deteriorates moving from training to test sets (LM-ind
and BML/Bϑ(0,a) performances deteriorate of about 6 and 8 percentage
points respectively). Nevertheless, LM-ind presents better performance
with respect to BML/Bϑ(0,a) in terms of successful prediction both in the
training and in the test set, even if of few percent.

For the sake of comparison, an alarm threshold optimization pro-
cedure of the signal actually used as disruption prediction at JET (BML/
Ipla) has been performed on the same database; on the test set it
achieves a total error of 11,6%, resulting in 78,6% of correct disruption
predictions and 3% of false alarms.

In the following section, a deep analysis of the possible causes of the
prediction errors has been done in order to separate the intrinsic limits
of the raw signal from that of the considered predictors.

Fig. 9 reports the cumulative warning time distribution for JET test
set for BML/Bϑ(0,a) and LM-ind (in blue and green respectively). The
cumulative warning time distribution is defined as the fraction of cor-
rectly detected disruptions for which the warning time takes values
larger than or equal to the considered one.

In order to assess the relative performance of the two signals, they

Fig. 7. Prediction error as a function of the threshold values on BML/Bϑ(0,a) for
the training set of: AUG (red); JET (blue); JET and AUG (green) (For inter-
pretation of the references to colour in this figure legend, the reader is referred
to the web version of this article).

Fig. 8. Prediction error as a function of the threshold values on BML for the
training set of: AUG (red); JET (blue); JET and AUG (green) (For interpretation
of the references to colour in this figure legend, the reader is referred to the web
version of this article).

Table 6
Comparison of the overall prediction error (Error) between BML/Bϑ(0,a) signal
and LM-ind for JET and AUG using a common threshold.

Signal Threshold TRAINING TEST

JET AUG JET AUG

BML/Bϑ(0,a) 7.37·10−4 5.07% 14.39% 13.68% 19.08%
LM-ind 5.96·10−16 2.90% 5.30% 10.60% 14.92%

Table 7
Comparison of disruption prediction performance between BML/Bϑ(0,a) signal
and LM-ind for JET using a machine-dependent optimized threshold.

Signal Threshold DISR NO-DISR TOT

SP % TD % MA % FA % Error %

TRAINING SET
BML/Bϑ(0,a) 8.808 10−4 92.54 1.85 5.56 0 2.90
LM-ind 3.911 10−17 96.30 1.85 1.85 1.19 2.17

TEST SET
BML/Bϑ(0,a) 8.808 10−4 80.10 5.83 14.08 3.42 11.14
LM-ind 3.911 10−17 84.95 4.85 10.19 2.56 8.41
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are compared with respect to the reference cumulative warning time
distribution defined as the difference between the disruption time and
the manually selected locked mode time (tD-LM-time), (dashed black
line). It can be noted that the LM-ind obtains better results than BML/
Bϑ(0,a), anticipating the correct predictions and, at the same time,
limiting the premature detections. Indeed, according to [7], setting the
limit between correct and premature alarms at 1.5 s before the dis-
ruption time (cyan vertical dashed line in Fig. 9), the achieved per-
centage of premature detections (PDs) is equal to 4.85% for LM-ind and
8.25% for BML/Bϑ(0,a) on the test set. Note that, from the plot of Fig. 9,
the percentage of tardy detections can be also obtained depending on its
definition (dashed magenta line).

Table 8, similar to Table 7, refers to the prediction performance
obtained by the normalized raw signal and by the LM indicator on the
AUG database. As for JET, also for AUG the performance of both BML/
Bϑ(0,a) and LM-ind deteriorates going from training to test set (in this
case LM-ind performance deteriorates of about 10 percentage points
whereas the normalized raw signal deteriorates of 6 percentage points).
However, LM-ind still shows an improvement of the overall perfor-
mance of about 5% with respect to BML/Bϑ(0,a).

For the sake of comparison, for AUG too, the performance of the
signal presently used on the machine as disruption prediction (LM-raw)
has been evaluated on the same database. Thus, an alarm threshold
optimization procedure has been carried out on LM-raw, obtaining an
overall error on the test set of 16.44%, corresponding to 83.07% of
successful predictions and 16% of false alarms.

Fig. 10 reports the cumulative warning time distribution of BML/
Bϑ(0,a), LM-ind and the manually selected LM-time on the AUG test set.
It should be noted that LM-ind obtains better results than BML/Bϑ(0,a),
anticipating the correct predictions and, at the same time, limiting the
premature detections. It can be noted that there is an inversion of such
trend starting at 30ms and back in time until the 500ms. According to
[11,12], 500ms before the disruption time has been set as the limit
between correct and premature alarms (cyan vertical dashed line); ac-
cordingly to this definition the percentages of premature detections
(PDs) are equal to 11.92% for LM-ind and 16.06% for BML/Bϑ(0,a) on
the test set.

5.3. Extrapolation to next-step fusion devices

The predictions of plasma parameters to next-step fusion devices,
such as ITER, can be obtained by extrapolation or interpolation from
present day devices when larger databases are available. Since the
alarm threshold values on LM-ind have been optimized on a large
amount of data, coming from both JET and AUG, the extrapolation
capability of the algorithm as predictor for a larger scale machine
should be investigated. In this paper, this has been performed by using
the LM-ind alarm threshold optimized for the smaller device (AUG) on
the database of the larger one (JET). Table 9 reports the prediction
performance obtained by LM-ind and BML/Bϑ(0,a) on the JET database
using the alarm threshold optimized on the AUG training set. As ex-
pected, the performances of both predictors are worse than those ob-
tained with their own threshold optimized on the JET training set, but
the results are anyway quite encouraging for both indicators.

6. Analysis of prediction errors

This section reports the results of the analysis performed to identify
the causes of FAs, MAs, and TDs for both the normalized raw signal and
the LM indicator. The following analysis shows that some intrinsic
problems in the raw signal such as drifts, offsets, and error field pick up
coils (EFCC), can cause false alarms and incongruous alarms, which are
not related to physical reasons.

The analysis has been made making reference to the different pre-
dictions performed by the two considered predictors, BML/Bϑ(0,a) and
LM-ind. To this purpose, Tables 10 and 11 report the comparison of the
performance of BML/Bϑ(0,a) and LM-ind on JET and AUG, respectively.
In particular, each element in the tables refers to the performance (in
terms of successful-disruptive prediction, tardy detections, missed
alarms, successful predictions on regular terminations and false alarms)
indicated at the corresponding row for BML/Bϑ(0,a) and at the corre-
sponding column for the LM-ind. The elements in the main diagonal are
the number of pulses for which the two predictors provide the same
prediction (successful or wrong), whereas the elements outside that
diagonals contain the number of pulses for which the two predictors
provide a different prediction. For example, the element in the 2nd row
and 1st column of the tables represents the number of shots tardy de-
tected by BML/Bϑ(0,a) that are successfully predicted by LM-ind,
whereas the element in the 4th row and 5th column contains the number
of false alarms of LM-ind that have been correctly recognized as non-
disruptive shots by BML/Bϑ(0,a). On the contrary the number in the 5th

row, 4th column indicates how many non-disrupted pulses successfully
predicted by LM-ind are detected as disruptive by BML/Bϑ(0,a).

Hence, looking through the first row it is possible to read how many
disruptions successfully predicted by BML/Bϑ(0,a) are tardy detected
(2nd column) or missed (3th column) by LM-ind. On the other hand,
looking through the first column it is possible to read how many dis-
ruptions successful predicted by LM-ind are tardy detected (2nd raw) or
missed (3th raw) by BML/Bϑ(0,a).

Fig. 9. Cumulative warning time distribution for the test set of JET (TDs: tardy
detections; SPs: successful predictions; PDs: premature detections).

Table 8
Comparison of disruption prediction performance between BML/Bϑ(0,a) and
LM-ind for AUG using a machine-dependent optimized threshold.

Signal Threshold DISR NO-DISR TOT

SP % TD % MA % FA % Error %

TRAINING SET
BML/Bϑ(0,a) 7.487 10−4 85.00 5.00 10 12.50 13.64
LM-ind 4.754 10−16 93.33 1.67 5.00 1.39 3.79

TEST SET
BML/Bϑ(0,a) 7.487 10−4 70.98 11.40 17.62 11.91 19.63
LM-ind 4.754 10−16 78.24 10.88 10.88 8.09 14.25

Fig. 10. Cumulative warning time distribution for the test set of AUG (TDs:
tardy detections; SPs: successful predictions; PDs: premature detections).
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6.1. Analysis of prediction errors at JET

Table 10 reports the results related to the entire JET database
(training and test). As expected, LM-ind works better than BML/Bϑ(0,a)
both on false alarms and tardy detections. In particular, the LM

indicator recovers 4 TDs and 8 MAs of the BML/Bϑ(0,a), whereas the
BML/Bϑ(0,a) does not recover any MAs or TDs of the LM-ind.

Fig. 11 reports one of the MAs recovered by the LM indicator. For
this pulse the LM-time is at 46.166s (1ms before the disruption time);
LM-ind triggers a premature alarm at 43.767s (2.4 s before the disrup-
tion but, as can be noted, it is due to the information carried out by the
frequency content of the signal, which is neglected by the predictor
based on BML/Bϑ(0,a). It is to be highlighted that, in 100% of the 8
recovered MAs, the sampling frequency increases some hundreds of ms
before the disruption; for 7 of them that is the cause of the LM-ind
recovering. Hence, the algorithm, making use of the combined time-
frequency information, captures a behavior that is not due to physical
reasons, despite what happened for the remaining one, which is cor-
rectly recovered.

Note that, the sampling frequency can increase also in non-dis-
rupted pulses, such as in the example reported in Fig. 12. Because of the
low value of the normalized raw signal amplitude, this effect does not
trigger FAs. In particular, 14.96% of non-disrupted shots in the test set
have at least one change in the sampling frequency, but 94.29% of them
are correctly predicted by the LM-ind. Hence, weighting the amplitude
of the frequency components with the inverse of their squared fre-
quency has a beneficial effect of increasing the successful predictions
and not affects the false alarm rate.

Fig. 13 shows a zoom from a JET pulse, where the growth of the
locked mode starts 20ms before the disruption time and the amplitude
of the normalized raw signal crosses the threshold 9ms before the dis-
ruption time, causing a TD. On the contrary, the LM indicator algo-
rithm, profiting of both amplitude and frequency content, is able to
correctly trigger the alarm 17ms before the disruption time. Only for
one of the four recovered TDs, LM-ind improperly triggers the alarm due
to the changing in the frequency content.

Concerning false alarms, LM-ind is able to recover 6 FAs of BML/
Bϑ(0,a), whereas BML/Bϑ(0,a) recovers 5 FAs triggered by LM-ind.
Fig. 14 shows a JET pulse where no locked mode is present but, due to

Table 9
Comparison of disruption prediction performance between BML/Bϑ(0,a) signal and LM-ind for JET using the AUG optimized threshold.

Signal Threshold DISR NO-DISR TOT

SP % TD % MA % FA % Error %

TRAINING SET
BML/Bϑ(0,a) 7.487 10−4 92.59 3.70 3.70 3.57 5.07
LM-ind 4.754 10−16 92.59 3.70 3.70 0.00 2.90

TEST SET
BML/Bϑ(0,a) 7.487 10−4 82.52 3.88 13.59 10.26 13.64
LM-ind 4.754 10−16 79.13 5.34 15.53 0.85 10.23

Table 10
Comparison of the prediction performance of BML/Bϑ(0,a) and LM-ind on JET.
The main diagonal reports the number of pulses for which the two predictors
provide the same prediction; the elements outside the diagonals report the
number of pulses for which the two predictors provide a different prediction.

LM-ind

SPs-Disr TDs MAs SPs NO-DISR FAs

BML/Bϑ(0,a) SPs-Disr 215 0 0 – –
TDs 4 10 0 – –
MAs 8 1 22 – –
SPs NO-DISR – – – 305 5
FAs – – – 6 2

Table 11
Comparison of the prediction performance of BML/Bϑ(0,a) and LM-ind on AUG.
The main diagonal reports the number of pulses for which the two predictors
provide the same prediction; the elements outside the diagonals report the
number of pulses for which the two predictors provide a different prediction.

LM-ind

SPs-Disr TDs MAs SPs NO-DISR FAs

BML/Bϑ(0,a) SPs-Disr 177 7 4 – –
TDs 11 11 3 – –
MAs 19 4 17 – –
SPs NO-DISR – – – 259 11
FAs – – – 28 9

Fig. 11. Example of a MA for BML/Bθ(0,a) due
to late locking of the mode, recovered by the
LM-ind in a JET pulse: (a) Locked Mode raw
signal BML in [T]; (b) Locked Mode raw signal
normalized with respect to Bθ(0,a) in di-
mensionless units; (c) LM indicator in arbitrary
units [AU]. The figure refers to the phase of
the plasma current flat-top (from the X-point
formation to tD).
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Fig. 12. A JET non-disrupted pulse with a change in the sampling frequency: (a) Locked Mode raw signal BML in [T]; (b) Locked Mode raw signal normalized with
respect to Bθ(0,a) in dimensionless units; (c) LM indicator in arbitrary units [AU]. The figure refers to the phase of the plasma current flat-top.

Fig. 13. Example of a TD for BML/Bθ(0,a) recovered by the LM-ind in a JET disrupted pulse : (a) Locked Mode raw signal BML in [T]; (b) Locked Mode raw signal
normalized with respect to Bθ(0,a) in dimensionless units; (c) LM indicator in arbitrary units [AU]. The figure refers to the last phase of the disruption up to tD.

Fig. 14. Example of a FA for BML/Bθ(0,a) recovered by the LM-ind in a JET non-disrupted pulse: (a) Locked Mode raw signal BML in [T]; (b) Locked Mode raw signal
normalized with respect to Bθ(0,a) in dimensionless units; (c) LM indicator in arbitrary units [AU]. The figure refers to the phase of the plasma current flat-top.
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the offset of the raw signal (Fig. 14a), the normalized raw signal re-
mains always above the optimized threshold causing a FA. On the
contrary, the LM indicator algorithm removes this offset and no alarm is
triggered.

6.2. Analysis of prediction errors at AUG

The same analysis done for JET has been performed also for AUG,
leading more or less to the same considerations. Table 11 shows the
prediction performances made by BML/Bϑ(0,a) and LM-ind for the entire

Fig. 15. Example of an AUG missed alarm of
the LM-ind, which is triggered by the BML/
Bϑ(0,a) signal due to the offset on the raw
signal: (a) Locked Mode raw signal in [V]; (b)
Locked Mode raw signal calibrated in [T] and
normalized with respect to Bθ(0,a) in di-
mensionless units; (c) LM indicator in arbitrary
units [AU]. The figure refers to the last phase
of the disruption up to tD.

Fig. 16. Example of AUG disruption predicted
by the BML/Bϑ(0,a) that is tardy detected by
the LM-ind: (a) Locked Mode raw signal in [V];
(b) Locked Mode raw signal calibrated in [T]
and normalized with respect to Bθ(0,a) in di-
mensionless units; (c) LM indicator in arbitrary
units [AU]. The figure refers to the last phase
of the disruption up to tD.

Fig. 17. Example of a false alarm triggered by the LM-ind due to a minor disruption: (a) Locked Mode raw signal in [V]; (b) Locked Mode raw signal calibrated in [T]
and normalized with respect to Bθ(0,a) in dimensionless units; (c) LM indicator in arbitrary units [AU]. The figure refers to the phase of the plasma current flat-top.
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AUG database.
Table 11 shows that LM-ind works better than BML/Bϑ(0,a) on

missed alarms. In particular, the indicator recovers 19 MAs of BML/
Bϑ(0,a), whereas BML/Bϑ(0,a) recovers 4 MAs of LM-ind. Actually, these
4 shots are erroneously successfully predicted by BML/Bϑ(0,a) due to a
drift and/or off-set on the raw signal. Fig. 15 reports one of the four
recovered MAs; in this pulse the locking of the mode occurs in the last
two milliseconds before the disruption, but BML/Bϑ(0,a) triggers the
alarm well in advance due to an offset on the raw signal (see Fig. 16a).

The LM indicator performs better than the normalized raw signal
also regarding tardy detections: the indicator recovers 11 TDs of the
BML/Bϑ(0,a), whereas the BML/Bϑ(0,a) recovers 7 TDs of the LM-ind.
However, these last are incorrect alarms due to spikes, off-set and/or
drift, such as for the disruptive pulse shown in Fig. 16. For this shot the
locking of the mode takes place 1ms before the disruption time, and the
alarm triggered by BML/Bϑ(0,a) is due to a drift on the raw signal (see
Fig. 16a).

Table 11 highlights that LM-ind outperforms BML/Bϑ(0,a) also on
false alarms recovering 28 false alarms of BML/Bϑ(0,a), whereas BML/
Bϑ(0,a) recovers only 11 FAs of LM-ind. For 5 of these 11 FAs, LM-ind
triggers an alarm in correspondence of a minor disruption as in the case
shown in Fig. 17. For the remaining 6 shots, the trigger of LM-ind is due
to outliers or short transient phenomena as in the example reported in
Fig. 18.

7. Conclusions

The main aim of the paper was to evaluate the advantages and the
limits of the proposed locked mode indicator if used in a disruption
predictor instead of the raw signal, highlighting the possibility of im-
proving the mode locking detection through a suitable processing al-
gorithm exploiting both information in time and frequency domain. The
paper, not only presents the performance of a locked mode based dis-
ruption predictor but also analyses the wrong prediction causes and
investigates the suitability of the proposed algorithm for a multi-ma-
chine approach. This investigation could help to extend the proposed
disruption prediction technique to the next generations of tokamaks,
such as ITER.

Moreover, the present analysis wants to be a contribution toward
the definition of robust indicators characterizing disruptive behaviours,
and that could be scaled to different tokamaks. In particular, it has been
shown that a unique alarm threshold can be found on different ma-
chines by using suitable scaled signals; when the considered devices are
jointly involved in the training, a limited performance deterioration is

observed with respect to machine customized thresholds. Indeed, a
more consistent performance deterioration is achieved when the ex-
trapolation capability of the algorithm, toward a larger scale machine,
is investigated. From the analysis of the prediction errors it results that,
both for JET and AUG disruptive shots, LM-ind recovers both MAs and
TDs thanks to the frequency domain features. Moreover, it is able to
correct inappropriate raw signal alarms triggered by intrinsic drift and
offset problems thanks to detrending and off-set removal of the nor-
malized LM amplitude. For the non-disrupted shots, LM-ind recovers
FAs due to drift and/or offset.

Although prediction performances of the proposed indicator are
quite good, and also better than those reported in the recent literature
[7], the analyses show the intrinsic limits of a possible disruption
predictor based on the unique locked mode signal. Future works will be
focused on using the proposed LM indicator together with other plasma
features as inputs of a multi-signal disruption prediction system, opti-
mised in terms of success rate, warning times and differentiated de-
pending on different disruptions classes.
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