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A B S T R A C T

Particle tracking velocimetry (PTV) is a promising image-based approach for remote streamflow measurements
in natural environments. However, most PTV approaches require highly-defined round-shaped tracers, which are
often difficult to observe outdoors. PTV-Stream offers a versatile alternative to cross-correlation-based PTV by
affording the identification and tracking of features of any shape transiting in the field of view. This nearest-
neighbor algorithm is inherently thought for estimating surface flow velocity of streams in outdoor conditions.
The procedure allows for reconstructing and filtering the trajectories of features that are more likely to pertain to
actual objects transiting in the field of view rather than to water reflections. The procedure is computationally
efficient and is demonstrated to yield accurate measurements even in case of downsampled image sequences.

1. Introduction

In recent years, an increased attention has been devoted to multi-
disciplinarity and innovation in sensing the hydrological cycle (Tauro
et al., 2018). Affordable and versatile sensing systems may in fact help
mitigate the limitations of traditional measurement stations that cur-
rently offer poor spatial coverage but require expensive maintenance
(Gleick, 1998; Hannah et al., 2011). Among the new generation of
experimental instruments, optical methodologies and image analysis
have contributed to advance hydrological observations in several fields.
For instance, precipitation, streamflow, and plant water stress are
routinely monitored using images (Allamano et al., 2015; Muste et al.,
2008; Ludovisi et al., 2017; Abrantes et al., 2018). Integration of optical
methods with unmanned aerial vehicle (UAV) technology (Tauro et al.,
2015; Perks et al., 2016; Manfreda et al., 2018) and participatory sci-
ence has also opened up new frontiers in distributed hydrological ob-
servations (LeBoursicaud et al., 2015; Le Coz et al., 2016).

Streamflow observations have highly benefitted from optical
methods, and the use of image analysis for river monitoring is docu-
mented since the 1990s. For instance, large scale particle image velo-
cimetry (LSPIV) is a promising technique that is vastly adopted in hy-
drology to estimate the surface flow velocity field of water bodies and
may be applied to flash flood observation (Jodeau et al., 2008) and to
the digital mapping of riverine features (Hauet et al., 2009). Other
image-based approaches involve particle tracking velocimetry (PTV)

and optical flow that have also been utilized to investigate diverse
phenomena spanning from irrigation (Félix-Félix et al., 2017) to vol-
canic dynamics (Gaudin et al., 2014). Several image-based streamflow
studies rely on the installation of permanent and cost-effective gauge-
cams in the proximity of the water body of interest to continuously
monitor flow dynamics (Bechle et al., 2012; Tauro et al., 2016; Huang
et al., 2018). These automated systems comprise digital cameras, con-
trolling units, and, in some cases, laser systems for fully remote pho-
tometric calibration. Gauge-cams collect a large volume of images of
the water surface that can be off-line analyzed to inspect the streamflow
regime at high temporal resolution. However, image-based techniques
and gauge-cams are rarely systematically implemented in practical
engineering operations probably due to the lack of consistent image
processing protocols.

In previous streamflow studies in diverse riverine environments
(Tauro et al., 2016; Tauro and Salvatori, 2016; Tauro et al., 2017),
correlation-based PTV has been successfully applied to estimate the
surface flow velocity field. PTV typically revolves around two phases:
particle identification and tracking (Lloyd et al., 1995). In the first
phase, images are enhanced to emphasize the appearance of particles in
the field of view (for instance, by applying filters and thresholds) and
the location of the centroid of the particles in frames is recovered. In the
tracking phase, the centroid of the detected particles is identified in
subsequent images to reconstruct particle trajectory. Several algorithms
have been developed for PTV analysis. In Lloyd et al. (1995), Brevis
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et al. (2011), cross-correlation is implemented for both particle detec-
tion and tracking. In addition, relaxation (Wu and Pairman, 1995),
heuristics based on a priori knowledge of the flow (Tang et al., 2008),
and Voronoï tracking scheme (Aleixo et al., 2011) have also been uti-
lized. Upon PTV processing, particle trajectories are reconstructed
based on velocity vectors that are randomly located in the field of view.
Surface flow velocity maps can be generated by interpolating particle
trajectories.

PTV presents several advantages with respect to alternative ap-
proaches. Firstly, it allows for identifying and reconstructing the tra-
jectory of individual features transiting in the field of view, thus tan-
gibly relating velocity estimations to physical objects. By imposing
conditions on the trajectories, see for instance Hassan and Canaan
(1991), Tauro et al. (2017), velocity measurement accuracy can be
considerably improved. Further, PTV does not involve spatial averaging
and can be successfully adopted in case of velocity gradients (Fuchs
et al., 2017).

PTV is designed for low seeding density flows and does not require
assumptions on flow steadiness nor on the relative position of neighbor
particles. Its applications in hydrological sciences are diverse and in-
volve dispersion in porous media (Moroni and Cushman, 2001), ex-
change processes between rivers and groynes (Uijttewaal et al., 2001;
Yossef and deVriend, 2011) and tidal patterns (Kimura et al., 2011),
and sediment transport (Radice et al., 2017; Ballio et al., 2018). In most
algorithms, PTV is dependent on the presence of tracers whose shape is
a priori known. Such a feature has considerably limited the im-
plementation of PTV in outdoor experimental studies where the con-
trolled deployment of particles may be challenging. In fact, the instance
of naturally occurring round features is rare, and deploying a large
amount of particles in difficult to access riverine environments can be
impractical. On the other hand, the alternative LSPIV approach has
been extensively applied (Fujita et al., 1997). This technique applies the
principles of classical Particle Image Velocimetry (PIV) (Adrian, 1991,
2005; Raffel et al., 2007; Peterson et al., 2008) to recognize and track
patterns on the water surface of natural streams, and may be applied
also without deploying objects in the current (Tauro et al., 2017). For a
comparison between LSPIV and PTV, refer to Tauro et al. (2017).

Experimental PTV applications entail: i) definition and imaging of
the field of view; ii) orthorectifying images through transformation
schemes that rely on the known coordinates of a minimum of six ground
control points (GCPs; in this phase, photometric calibration and camera
lens distortion removal may also occur); and iii) image processing. In
Tauro et al. (2014), image orthorectification and GCPs surveying are
prevented by maintaining the camera optical axis perpendicular to the
field of view and by utilizing medium-power lasers to create reference
points at known distance in images, thus enabling fully remote photo-
metric calibration.

In this work, we propose a novel simple PTV approach, PTV-Stream,
specifically aimed at estimating the surface flow velocity of natural
water bodies in outdoor conditions. The procedure functions as a
nearest-neighbor algorithm, whereby low seeding density is assumed in
the field of view. Tracers of any shapes can be identified and tracked in
images based on their luminance with respect to the background. The
algorithm requires a priori known direction of the flow average velocity
that should be approximately perpendicular to the cross section, and
allows for reconstructing and filtering tracer trajectories that are more
likely to pertain to actual objects transiting in the field of view rather
than to water reflections. The procedure is developed in Java and offers
a computationally efficient alternative to correlation-based PTV
schemes. In this study, we apply PTV-Stream to experimentally con-
trolled videos taken on the Brenta River and to a video of a moderate
flood in the Tiber River. We compare our PTV-Stream findings to the
cross-correlation-based PTV procedure developed by Brevis et al.
(2011) and implemented in Tauro et al. (2017) (correlation-based PTV
in the rest of this manuscript) and to independent benchmark data
collected with a current meter or with radar technology.

2. PTV-Stream

PTV-Stream is a particle tracking procedure that aims at identifying
the trajectories of objects floating on the stream surface and passing
through the field of view. The method can be applied on a sequence of
images recorded at a fixed acquisition frequency with an RGB camera.
The outputs of the procedure include the objects' trajectories and ve-
locities in pixels per frame. The metric dimension of pixels must be
independently estimated to obtain output velocities in meters per
second. The sequence of images may be obtained from video captured
with permanent cameras, mobile setups, and aerial platforms.
Photometric calibration may be attained by a priori determining the
camera intrinsic parameters and through camera geometric calibration
in laboratory conditions. Alternatively, similar to Tauro et al. (2016,
2014), the system of low power lasers may be used.

PTV-Stream is organized in three main phases: particle recognition,
particle tracking, and velocity estimation, see Fig. 1. Different from
traditional PTV approaches, PTV-Stream does not involve interpolation
of results. Rather, trajectory-based average velocities are computed in
the region of interest. This is related to the fact that homogeneously and
densely seeded water surfaces are rarely encountered in field settings.
Therefore, interpolating sparse instantaneous velocities may result in
significant uncertainty. Towards a correct implementation of the algo-
rithm, it is assumed that the camera field of view is directed with its
width along the river cross-section and that the height of the field of
view is approximately orthogonal to the cross-section. Further, particles
are assumed to follow the stream average flow direction and, therefore,
their trajectories should be fairly orthogonal to the river cross-section.
These simple assumptions are consistent with previous work by Hassan
and Canaan (1991) and can be easily verified by properly orienting the
camera in the experimental setup or rotating captured images. It is also
advisable to preliminarily take a look at experimental videos to roughly
determine the average dimension of the tracers transiting in the field of
view, their luminance in varying illumination conditions, and the
average frame-to-frame pixel displacement.

The particle recognition phase is an appearance-based method that
detects objects based on their luminance without searching for specific
geometric shapes. Object detection is directly conducted on RGB
images. Specifically, since floating material can be lighter or darker
than the background, in the experiments, we arbitrarily choose to track
light tracers and discard dark ones, even though the opposite choice is
also possible. Therefore, all pixels whose luminance is higher than a
certain threshold value are regarded as pertaining to a potential

Fig. 1. Flowchart of PTV-Stream.
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particle. It is indeed assumed that particles exhibit a higher luminance
with respect to the image background. Higher luminance pixels are then
grouped based on their relative distance. Such distance value can be
selected through a preliminary inspection of the image sequence, and is
related to the pixel dimensions of the tracers. For instance, if a tracer
can be enclosed in a circle of 10 pixels of diameter, the distance
threshold can be set to 10. Once a tracer is identified, the pixel co-
ordinates of its centroid and its area are computed. Tracers whose area
is below a certain value (determined by the user) are rejected and are
not accounted for in the successive tracking phase. Such a constraint
contributes to limit computational times.

The tracking phase works as follows. Each identified tracer in the
first frame is regarded as a parent of a child tracer in the successive
frame. The association of parent to child tracers is performed by im-
posing the following conditions on their metrics. Firstly, the tracer
should follow the stream average flow and, therefore,
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whereby, Xi and Xi-1 are the position vectors of the child and parent
tracer centroids and j and i are unit vectors oriented parallel and per-
pendicular to the flow (that is, they are aligned to the frame height and
width), respectively. Eq. (1) is valid in case of right-wise deviations of
the average flow direction with respect to the image height. For left-
wise deviations, the equation should be modified to
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. Secondly, the parent and child tracers' areas
should not sensibly change between successive frames. Such a con-
straint can be verified by imposing that parent and child areas should
not differ by more than a threshold percentage (typically, child areas
should not be less than 20% or larger than 120% of parent areas). Fi-
nally, the child tracer should lay within a rectangular search area whose
vertex is the centroid of the parent tracer. This can be implemented by
conducting the tracking procedure within a search area of dimensions
imposed by the users and has the beneficial effect of considerably re-
ducing time for computation. If more than a child tracer satisfies the
above conditions, the child tracer closest to the parent position is se-
lected.

The tracking procedure can be implemented on an entire sequence
of frames. As the computation proceeds, the coordinates of parent and
child tracers are stored. Tracking conditions are not verified if a parent
tracer cannot be associated to a child. This may occur due to sudden
variations in illumination conditions or to submersion effects. In this
case, the eventual instance of the child tracer is verified by computing
the tracking conditions on a number of successive frames selected by
the user.

In case of highly agglomerated tracers, it may be possible to observe
an object that separates into several other shapes in successive frames.

When processed with PTV-Stream, such frames may lead to child tra-
cers having no parent particles in previous frames. In similar cases, the
algorithm treats the unassociated child tracer as a parent for the suc-
cessive frame.

Once the tracking has been implemented on all frames of the se-
quence, parent and child tracer coordinates are saved and trajectories
can be plotted. A filtering procedure is then implemented on the tracer
trajectories as in Tauro et al. (2017). Specifically, velocities are com-
puted from trajectories that cover a significant region of the field of
view and that minimally deviate from the average flow direction. Such
conditions are imposed by setting

− >X X‖ ‖ 1
5
H.end start (2)

whereby H is the image height, and Xend and Xstart indicate the tracer
position vectors in the final and first images of the trajectory, respec-
tively. Further, the orientation of the trajectory is validated through
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for right-wise deviation. In case of left-wise deviations, Eq. (3) should

be modified to − ⎡⎣ ⎤⎦
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. These conditions
aim at retaining reliable trajectories of similar duration (Eq.(2)) and
oriented along the average flow direction.

The trajectory-based velocity is determined by first computing in-
stantaneous velocities along the same trajectory and then calculating
their average. Specifically, for a consistent trajectory, instantaneous
surface streamflow velocity between successive frames, V i-1/2, is then
determined as

= −X XV
t

‖ ‖
Δi-1/2

i i-1

i (4)

where Δti is the time interval between two successive frames. To re-
move eventual velocity outliers, an iterative procedure is implemented
on the computed V i-1/2. Specifically, the trajectory-based average ve-
locity, V , and standard deviation, ̂σ , are calculated over the series of V i-

1/2 of a consistent trajectory. If the condition  ̂ ̂∈ − +V V σ V σ( 5 , 5 )i-1/2

is not verified for a generic V i-1/2 value, then, such a value is cancelled
and the condition again computed until only frame-by-frame velocities
laying in the selected confidence interval are retained.

PTV-Stream is effective at recognizing features of diverse shapes in
images. Here, we report some examples of object recognition for non-
round features. In Fig. 2, two frames recorded at the permanent gauge-
cam station on the Tiber River (Tauro et al., 2016) on March, 5th, 2015
at 20:00 are displayed. In Fig. 2 (a), among various features, a plastic
irregular object and a wood stick are identified by the algorithm. The
inset in (a) shows a close-up of the detected objects and their

)b()a(
Fig. 2. Snapshots recorded at the permanent gauge-cam station on the Tiber River (Tauro et al., 2016) on March 5th, 2015 at 20:00 depicting (a) a plastic irregular
object and a wood stick and (b) a flying bird and a brownish spot. The insets display close-up views of the recognized objects.
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appearance upon applying an RGB threshold. The yellow dot indicates
the position of the object centroid and the pink rectangle the search
window for parent-child association. In Fig. 2 (b), two detected features
are not considered for the tracking procedure. Specifically, the algo-
rithm identifies the reflection of a bird flying above the stream; how-
ever, due to its trajectory, the shadow is not further considered for the
tracking phase. Also, a brownish spot is initially detected as a candidate
tracer but it rapidly disappears in subsequent frames. The wood stick
below the brownish spot is not entirely buoyant and, therefore, its
visible portions are regarded as tracers. However, the luminance and
area of such smaller portions do not satisfy the constraints for tracking
analysis.

3. Comparison analysis

The efficacy of PTV-Stream to estimate surface flow velocity is de-
monstrated by analyzing a dataset previously studied with LSPIV and
correlation-based PTV (Tauro et al., 2017). Specifically, correlation-
based PTV was implemented by adopting a command-line version of
PTVLab (Brevis et al., 2011) and then filtering the obtained trajectories
with the constraints in Eqs. (2) and (3). An additional constraint was
also imposed on the angle between the positions of parent and child
tracers in successive images (see Eq. (1) in Tauro et al. (2017)). Such a
condition aimed at discarding trajectory jumps due to particle ag-
glomerates.

The set of data was collected on the Brenta River in Northern Italy in
2015. Therein, care was taken to continuously and homogeneously
deploy woodchips in the field of view. Based on the work in Tauro et al.

(2017), correlation-based PTV generally led to velocity estimations in
closer agreement with benchmark data obtained from independent
traditional measurement equipment such as current meters and radars,
than well-established LSPIV. Herein, we report velocity estimations
obtained with PTV-Stream and compare them to results gathered with
previous correlation-based PTV analyses.

3.1. Brenta River: study site and materials

The experiment was conducted on June 10th, 2015 at
46°02′20.8122″ North Latitude, 11°24′37.3349″ East Longitude, 464.38
elevation in the WGS84 coordinate system. Videos were recorded with
the telescopic portable apparatus introduced in Tauro et al. (2014),
featuring a GoPro Hero 4 Black edition camera with its optical axis
orthogonal to the water surface, thus preventing image orthorectifica-
tion. Photometric calibration was enabled by a meter-stick placed on
the right-side stream bank at the same level of the water surface. The
field of view captured a horizontal area of 9.5× 5.3 m2. A full HD
(1920× 1080 pixels) RGB video was captured at 50 Hz and then seg-
mented into 12 video sequences of 20 s each. The image sequences were
subsampled at 25 Hz and the field of view was trimmed to 1430× 1080
pixels. The bottom right corner of the images displayed vegetation
leaning from the bridge and, to prevent disturbances in velocity esti-
mation due to vegetation motion, an area of 552× 375 pixels was
masked with a black patch. The fish-eye lens distortion was removed
using the open-source software GoPro Studio.

Benchmark velocity measurements were conducted with the OTT
Hydromet C2 current meter at 3 cm below the water surface at four
locations along the stream cross-section up to 3.5m from the right-side
river bank (A to D in Fig. 3). Additional acquisitions on the left-side
river bank were challenging due to the presence of vegetation in the
stream. Twelve replicates were performed at each location; average
velocities v( )b and standard deviations (σb) are reported in Table 1. On
average, surface flow velocity was estimated to be slightly less than
0.4 m/s.

Correlation-based PTV was executed using a modified version of
PTVLab (Brevis et al., 2011). The algorithm includes particle detection

Fig. 3. Representative processed image depicting the field of view on the Brenta River, locations of the current meter measurements (A to D), and vertical regions
used for comparing velocities.

Table 1
Average benchmark velocities v( )b and standard deviations (σb) measured with
the current meter at locations illustrated in Fig. 3.

A B C D

vb [m/s] 0.46 0.45 0.31 0.32
σb [m/s] 0.04 0.03 0.02 0.02
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via thresholding and cross-correlation with a symmetric Gaussian
kernel thus, the image intensity threshold, the standard deviation of the
Gaussian distribution, and the correlation cutoff threshold were set to
130, 12 pixels, and 0.5, respectively. Particle tracking was implemented
using cross-correlation by interrogation area. The size of the square
interrogation area, the cross-correlation cutoff threshold, and the si-
milarity percentage among neighbor particles were set to 20 pixels, 0.4,

and 20%, respectively. Further details can be found in Tauro et al.
(2017). To compare velocity estimations obtained with PTV-Stream,
correlation-based PTV, and the current meter, the field of view was
divided into vertical regions. Such regions were selected to be homo-
geneous in width. For each vertical region, velocity estimations were
computed according to the procedure in Section 2. Further, to offer a
comprehensive comparison, the velocities obtained in each vertical

Fig. 4. Representative map of the trajectories obtained with PTV-Stream on one of the image sequences of the Brenta River. Black lines are the identified trajectories,
green lines are the filtered trajectories, and red circles are locations of the measurements taken with the current meter. Yellow vertical lines refer to the vertical
regions of the field of view.

Fig. 5. Comparison of the cross-sectional velocities (black line) obtained on the Brenta River with PTV-Stream to benchmark measurements (green squares). The
shaded gray area indicates the standard deviation of velocities obtained with PTV-Stream. Yellow vertical lines refer to the vertical regions of the field of view.
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region for each image sequence were averaged and their mean values
and standard deviation computed. Such values were then compared to
benchmark measurements performed at locations A to D.

3.2. PTV analysis and velocity data comparison

Fig. 4 depicts a representative map obtained with PTV-Stream for
one of the image sequences. All the identified trajectories are illustrated
in black, whereas filtered ones are in green. All of the trajectories
pertain to features actually transited in the field of view. The amount of
green trajectories may be increased based on the user's judgment in
setting less severe constraints on the orientation or the minimum length
of the trajectory.

In Fig. 5, velocities (bold black line) and standard deviations
(shaded gray areas) obtained with PTV-Stream are compared to
benchmark values (green squares) and their standard deviations. PTV-
Stream results correctly capture the higher velocity in the center of the
stream cross-section and are in agreement with benchmark data. PTV-

Stream data are generally slightly higher than benchmark measures: the
mean cross-sectional value is equal to 0.46m/s, whereas the benchmark
cross-sectional mean equals 0.38m/s. Standard deviations are also
larger for PTV-Stream data (on average equal to 7.5 cm/s) than for
benchmark measurements (on average equal to 2.8 cm/s). Such slight
differences are attributed to the fact that image-based measurements
are relative to the stream water surface, whereas current meter-based
data are executed at a few centimeters below the water surface.

In Fig. 6, cross-sectional velocity profiles obtained with PTV-Stream
and PTVLab are compared. The profiles are mostly overlapped, thus
confirming the efficacy of PTV-Stream with respect to correlation-based
PTV. Remarkably, PTV-Stream is coded in a fully scalable java TM
implementation, which takes advantage of CPU power multithreading
and considerably reduces computational times with respect to PTVLab
(on average, on the same computer, PTV-Stream takes 17min with a
deviation of 7min to analyze a video, whereas PTVLab takes 162min
with a deviation of 18min). Also, PTV-Stream runtime can be further
decreased by subsampling the video acquisition frequency. For

Fig. 6. Comparison of the cross-sectional velocities obtained on the Brenta River with PTV-Stream (red line) to correlation-based PTV performed with PTVLab (blue
line). The shaded gray area indicates the standard deviation of velocities obtained with PTV-Stream. Yellow vertical lines refer to the vertical regions of the field of
view.

Fig. 7. Average cross-sectional velocity profiles obtained for image sequences of the Brenta River processed with PTV-Stream (left) and PTVLab (right) sampled at
25 Hz, 12 Hz, and 8 Hz.
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Fig. 8. Snapshot recorded at the permanent gauge-cam station on the Tiber River (Tauro et al., 2016) on February 6th, 2015, at 7:40 illustrating water ripples. The
inset displays a close-up view of the recognized objects.

Fig. 9. Snapshot recorded at the permanent gauge-cam station on the Tiber River (Tauro et al., 2016) on February 6th, 2015, at 7:40 illustrating debris, a plastic
bottle (enclosed in the dashed white rectangle), and wood sticks. The inset displays a close-up view of the recognized objects.

Fig. 10. Map of the trajectories obtained with PTV-Stream on the image sequences of the Tiber River. Black lines are the identified trajectories and green lines are the
filtered trajectories.
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instance, in Fig. 7 (left), PTV-Stream velocity data are reported for the
image sequences of the Brenta River sampled at 25 Hz, 12 Hz, and 8 Hz.
The cross-sectional profiles are largely overlapped, thus supporting the
robustness of the procedure. On the other hand, in Fig. 7 (right),
PTVLab results for similar acquisition frequencies exhibit larger varia-
bility. Specifically, if a frequency of 8 Hz is selected, the velocity at the
center of the stream sensibly decreases. Regarding computational times,
it is noted that PTV-Stream Matlab implementation (a beta version is
freely available upon request) is also more efficient than PTVLab. In
fact, by circumventing the need for computationally expensive cross-
correlation, the procedure runtime is improved.

4. Future challenges

The potential of PTV-Stream is foreseen to aid hydrological mon-
itoring in challenging settings, such as, for instance, floods and high
flow regime, whereby the use of traditional equipment may be ham-
pered. Herein, we report a comparative analysis of a set of data taken
during a moderate flood at the gauge-cam station on the Tiber River in
2015. Naturally occurring features were exclusively present in the field
of view; however, the presence of dishomogeneous objects (agglomer-
ated debris) and the mirror-like river surface posit severe challenges to
image-based analysis. In particular, neither LSPIV nor correlation-based
PTV led to accurate results.

Images on the Tiber River were captured on February 6th, 2015,
through the gauge-cam station described in Tauro et al. (2016), Tauro
and Salvatori (2016). The gauge-cam station enables the acquisition of
one-minute long videos every ten minutes through a Mobotix Flex-
Mount S15 weatherproof internet protocol camera. Only images cap-
tured with the right-side L25 lens (82° angle of view and 4mm focal
length) were analyzed since they depicted a larger field of view
(16.15×12.11 m2). The gauge-cam consists of a MOBOTIX S15 camera
with its optical axis perpendicular to the water surface that minimizes
distortions and circumvents orthorectification. Photometric calibration
is enabled by a system of two< 20mW green (532 nm wavelength)
lasers installed at 50 cm on both sides of the camera. The lasers are
activated for 20 s at the beginning of each video, and generate highly
visible reference points located 1m apart on the water surface. The
frame acquisition frequency of the gauge-cam station is automatically
adjusted based on external illumination conditions and, thus, varies for
each captured clip. Further, each one-minute long video is saved as
numerous highly-compressed and reduced-size clip files (where the
number of clips depends on the size of the video and, in turn, on the
acquisition frequency).

Consistent with Tauro et al. (2017), a one-minute video captured
during the flood peak at 7:40 was analyzed. During the video, the
nearby RVM20 speed surface radar recorded an average surface velo-
city of 2.33m/s. During the flood, debris and diverse objects transited
in the field of view, therefore, tracer deployment was unnecessary. The
selected video was saved as nine different clips whose duration and
acquisition frequency ranged within 4 to 8 s and from 4 to 8.72 Hz,
respectively. The analyzed sequence was obtained by decompressing
each clip and the overall frequency was estimated to 6.95 Hz as a
weighted average of each clip's frequency. Image resolution was
1024×768 pixels and images of the flood on the Tiber River were
affected by barrel distortion due to the wide-angle L25 lens. Fisheye
distortion was removed using the Adobe Photoshop “Lens correction”
filter.

Feature detection with PTV-Stream presented several criticalities.
Figs. 8 and 9 depict two snapshots captured during the flood. Fig. 8
displays several ripples with high luminance variability. The area of
such features varies significantly and, therefore, they were not taken
into account as tracers. In Fig. 9, a large amount of debris and plastic
objects transits in the bottom right of the field of view. In this case, the
debris was discarded since it is below the luminance threshold. A
floating bottle is recognized but its frame-by-frame displacement

exceeds the dimension of the search window and was thus not tracked.
Once the bottle is farther from the bottom of the field of view (where
bridge piers are located), its velocity decreases and was then tracked by
the algorithm. The bright wood sticks on the left of the close-up were
instead successfully recognized and tracked.

Fig. 10 depicts the trajectories identified (black lines) and retained
(green lines) for velocity estimation. In spite of the challenging ex-
perimental conditions, PTV-Stream successfully identified several tra-
jectories. The average surface flow velocity computed based on the
green trajectories is equal to 1.60m/s and the standard deviation to
0.09m/s. This value is higher than the results obtained with PTVLab
(1.4 m/s) but still significantly lower than radar velocity (2.33 m/s).
This fact is attributed to the severe appearance of the water surface
(mirror-like surface with large agglomerated objects transiting in the
field of view) that may negatively affect parent-child association during
tracking. Also, due to the irregular frame acquisition frequency of the
gauge-cam, objects sensibly change their velocity in the field of view
and, therefore, the selection of the size of the rectangular search area is
challenging. Despite such criticalities, the performance of PTV-Stream
is slightly better than traditional PTV and LSPIV, and we expect the
algorithm to lead to improved estimations in case of fixed frame ac-
quisition frequencies.

Another significant challenge entails the implementation of PTV-
Stream for streamflow rate measurements and the development of
rating curves. Though this is still a poorly explored field, PTV-Stream is
expected to beneficially contribute to the noninvasive observation of
flow rate by providing accurate and distributed estimation of surface
flow velocity. Accurate surface flow kinematics description may be
complemented with the methodology by Chiu (1991), Moramarco et al.
(2004) to obtain the mean velocity and, thus, flow rate.

5. Conclusions

PTV-Stream is a simplified particle tracking velocimetry approach
to estimate the surface flow velocity of natural water bodies. The pro-
cedure is a nearest-neighbor algorithm that allows for identifying and
tracking features of any shape, such as the ones naturally occurring in
streams. Tested on several artificially-seeded videos of the Brenta River,
Italy, the algorithm is in good agreement with correlation-based PTV
and benchmark measurements. Computational times are more efficient
than correlation-based PTV and the algorithm is relatively unaffected if
images are subsampled down to a frame frequency of 8 Hz.
Experimental findings on the video of a moderate flood on the Tiber
River are less satisfactory due to the particularly adverse appearance of
the water surface and to irregular frame frequency. Nonetheless, results
are in higher agreement with benchmark radar data than traditional
PTV.

This simple yet computationally efficient procedure may be a valid
alternative to more established methodologies for outdoor hydrological
observations. In particular, the method is robust even at low image
acquisition frequencies and could be easily implemented in gauge-cams
for the real-time analysis of streamflow regime. Future efforts will be
devoted to the analysis of large gauge-cam-based datasets for fine-
tuning and enhancement of the methodology, and to image-based es-
timation of flow rate.
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