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1.0 INTRODUCTION 

Market globalization ensures constant availability of many horticultural products regardless of 

their harvest date. Innovation in both products and processes across the entire agri-food chain yield 

fruit and vegetables with improved shelf-life, organoleptic quality, nutritional value, safety and 

healthfulness. Consequently, preservation methods that enhance food stability by delaying 

physicochemical, biochemical and microbiological spoilage impact the market value of perishable 

commodities (Aghbashlo et al. 2015). In fact, preservation method directly affects processing, 

storage, transportation and distribution costs. 

Drying is an effective and viable preservation process and is among the oldest and most 

widespread of all postharvest operations. Drying significantly extends the shelf-life and nutritional 

quality of fruit, vegetables, spices and herbs as well as meat and fish. The drying process consists of 

three main interlinked steps that can be summarized as: (1) product formulation or treatment selection, 

(2) dehydration process and (3) quality and properties assessment (Aghbashlo et al. 2015). In the 
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absence of sufficient moisture, microorganisms grow slowly and moisture-mediated reactions 

responsible for undesirable chemical changes do not function properly (Mayor and Sereno 2004; 

Demirhan and Özbek 2009). Beyond extending shelf life, drying can substantially reduce storage and 

shipping costs by enabling storage at room temperature and reducing weight and packaging volume 

(Liu et al., 2016, Grabowski et al., 2003).  

Drying technology varies from simple methods such as sun drying to more sophisticated 

techniques such as instant controlled pressure drop drying. Surprisingly, modern drying technology 

does not always produce the highest commodity quality or value. Drying is a relatively complex, 

dynamic, unsteady and nonlinear process that is affected by the properties of the wet material, the 

scale of production and compliance with regulations (e.g. European Organic Regulation), as well as 

operating and environmental conditions (Aghbashlo et al. 2015). Such factors can impact quality 

traits including colour, texture, size and shape as well as organoleptic, nutritional and functional 

properties and thus result in reduced consumer acceptance (Brosnan and Sun 2004; Vega-Gálvez et 

al. 2012). Drying is one of the most energy-intensive processes in the food industry (Akpinar et al. 

2003) and potentially contributes to climate change as most dryers use fossil fuels (Mujumdar 2012).  

In order to alleviate these issues, the goal of new drying technologies should be to simultaneously 

maintain product quality and value, maximize drying rate and minimize environmental impact 

(Mujumdar 2012; Su et al. 2015). “Smart drying”, one of the newest and most promising of emerging 

drying techniques, involves the use of sensors, tools (e.g. emerging non-destructive technologies) and 

practices (e.g. monitor and control of quality and drying parameters and/or the conditions of the dryer, 

etc.) for enhancing drying efficiency. Moreover, smart drying can be cost-effective in both real-time 

monitoring of food quality and dynamic controlling of operating conditions through the entire drying 

process. Smart drying is a multi- and inter-disciplinary sector and its recent developments embrace 

the following R&D areas: artificial intelligence (Aghbashlo et al. 2015), biomimetic (Ghasemi-

Varnamkhasti et al. 2010), computer vision (Brosnan and Sun 2004), microwave/dielectric 

spectroscopy (Jha et al. 2011), hyper-/multispectral imaging (ElMasry and Sun 2010), magnetic 
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resonance imaging (Clarka et al. 1997; Su et al. 2014), ultrasound imaging (Awad et al. 2012), 

electrostatic sensing (Chen et al. 2013) and control systems for the drying environment. In addition, 

visible (Vis) and near-infrared (NIR) spectroscopy are techniques with potential applications in smart 

drying in terms of monitoring quality attributes (Nicolaï et al. 2007). Furthermore, NIR spectroscopy 

is a proven on-/in-line tool with high sensitivity to changes in moisture content, particle size and the 

chemical state of food (Ozaki et al. 2006). 

Carrot (Daucus carota L.) is one of the most nutritious root crops because of its high vitamin, ß-

carotene and fiber content (Demiray and Tulek 2014). Dried carrot is an important raw material for 

the production of ready-to-eat meals such as instant powdered soups, sauces, spices, seasonings, etc. 

(Sánchez-Sáenz et al. 2015), which have become popular in the diet of modern consumers (Yi et al. 

2015) in parallel with the human consumption of organic products (FAO 2011). Although carrot 

quality may be negatively impacted at high temperatures (Demiray and Tulek 2014), it is often 

blanched in hot-water and then dried using hot-air with the potential for subsequent loss of quality. 

Beyond quality degradation, conventional uncontrolled methods such as hot-air drying or freeze-

drying are associated with a number of drawbacks, such as very long drying time and high energy 

demand (Mujumdar 2012). Thus, while proper selection of postharvest treatments both before and 

after carrot drying is critical, careful consideration and monitoring of appropriate drying techniques 

is also a crucial factor to obtain a high-value end product (Negi and Kumar Roy 2001).  

The European Organic Regulation on production and labelling of organic products (i.e. EC No. 

834/2007 and EC No. 889/2008) prohibits certain conventional drying treatments for organically 

grown carrots (e.g. use of restricted chemicals, microwave blanching, etc.). In this case smart drying 

technologies have the potential to optimize allowed drying processes to obtain comparable results to 

conventional methods. 

While research into carrot drying has been widely reported, little insight is available on smart 

drying technology applied to carrots, and research of its potential use in the organic sector is totally 

lacking. Therefore, the objective of this study was to demonstrate the use of near-infrared (NIR) 
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spectroscopy as a smart drying technology that can non-destructively detect and monitor quality 

changes in organic carrot slices, blanched and not blanched, during hot-air drying. 

2.0 MATERIALS AND METHODS 

2.1 Sample preparation 

Organic carrots (Daucus carota L., var. Romance) were purchased from a local organic trader 

(Biobox srl, Viterbo, Italy) and immediately stored at 4 ± 1 °C until processing. Sampling was 

performed by selecting sound carrots with uniform size and thus the same ripening stage. Roots were 

tempered to room temperature for 15 h before use. The batches were standardised by selecting carrots 

with a length of 18-20 cm and diameter of 1.5-2 cm. Carrot slices, without core and peel, were 

prepared by washing and cutting the root into slices (5-mm thick) using a sharp ceramic knife. 

Samples were visually evaluated and only carrot slices free of decay and/or blemishes were selected 

for hot-air drying tests. Samples were divided into two groups, one of which was subjected to a hot-

water blanching pre-treatment at 95°C for 1.45 min before hot-air drying and one that was dried 

without pre-treatment. Determination of appropriate blanching time and temperature is described in 

detail below.  

Two hundred seventy carrot slices for each treatment were randomly arranged into 9 batches 

of 30 samples for the use in drying experiment. Then, carrot slices were subjected to 8-h hot-air drying 

and batch sampling was performed at 0, 1, 2, 3, 4, 5, 6, 7 and 8 h drying. Each batch was subjected 

to both NIR spectral data acquisition and determination of CIELab colour, moisture content (wet 

basis), water activity (aw), soluble solids content and total carotenoid content. 

2.2 Hot-water blanching pre-treatment 

Hot-water blanching consisted of dipping carrot slices in hot-water using a temperature 

controlled water bath (Astor 800D, Astori Tecnica, Brescia, Italy). As a control (i.e. unblanched 

treatment), carrot slices were dipped in distilled water at room temperature.  

2.3 Determination of blanching parameters based on peroxidase activity 
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The experimental plan is reported in Table 1. Treated samples were immediately cooled for 3 

min in ice-water, and the residual Peroxidase (POD) enzymatic activity was evaluated. 

2.3.1 Enzyme extraction 

Enzyme purification was carried out on the basis of the method of Massantini et al. (2009) 

with some modifications. Carrot slices were collected after each blanching treatment, frozen with 

liquid nitrogen and then immediately ground into frozen powder using an analytic mill (IKA A11 

basic; IKA Labortechnik, Staufen, Germany). Three grams of carrot powder were homogenized with 

15 mL of chilled phosphate buffer solution (PBS, 0.1 mol L-1, pH 6.5) containing 3% (w/v) of 

polyvinylpolypyrrolidone. The mixture was centrifuged at 13,800 × g for 20 min at 4 °C and the 

supernatant was used in the experimentation. 

2.3.2 Enzyme activity measurement 

POD activity was measured following the method of Moscetti et al. (2012) with slight 

modifications. The assay was performed using an UV-Vis scanning spectrophotometer (Lambda 25; 

PerkinElmer, Massachusetts, United States). Changes in the absorbance at 460 nm were monitored 

for 3 min upon oxidation of the substrates catalysed by the enzyme. Guaiacol (Sigma-Aldrich, St. 

Louis, Missouri, United States) was used as substrate. The final reaction mixture contained 1 mL of 

crude enzyme, 1 mL of PBS (0.1 mol L-1, pH 6.5), 1 mL of guaiacol (0.25% v/v) and 0.01 mL of 

hydrogen peroxide (0.75% v/v). One unit of enzyme activity (1 UEA) was defined as an increase in 

absorbance of 0.001 min-1. Enzyme activity was measured in triplicate. 

2.3.3 Enzyme thermal inactivation 

The rate constant for first-order inactivation (k) was computed from the slope of the linear 

regression of the natural log of residual activity versus time of thermal treatment, according to Eq. 1 

(1) 0ln( / )tE E kt   

where E0 is the initial enzyme activity (UEA), Et is the activity after heating for time t (UEA), 

t is the time of heating (min) and k is the inactivation rate constant (min-1). The regression coefficient 

(R) of each regression line was also computed. 
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A POD inactivation of 90% was fixed as a threshold in order to consider the produce stable 

for the industrial requirements (Benlloch-Tinoco et al. 2013). Consequently, inactivation time was 

computed as D-value (or decimal reduction time) as treatment time required to reduce the enzyme 

activity to at least 0.1 (i.e. 10% of its original value), according to Eq. 2. 

(2) 1 2

0 0/ (1/ 2)
t t

tE E E  

2.4 Hot-air dehydration process 

The hot-air drying experiment was performed in a 5-tray dryer (Biosec, Tauro Essicatori srl, 

Vicenza, Italy). The dryer consisted of a temperature controller and a centrifugal fan that was used to 

blow air into the heating unit through a 15-cm duct. The air flow was parallel to the drying surface of 

the carrot slice. The dehydration process was conducted at 40°C for 8 h on the basis of screening 

results obtained from tests conducted in the range from 40 to 60 °C. Drying tests at temperatures 

higher than 40 °C were discarded due to an excessive case hardening effect and the development of 

a very compact structure. The investigation is in agreement with Xiao et al. (2010). 

2.5 Near infrared spectroscopy 

2.5.1 Spectral acquisition 

Diffuse reflectance spectra were acquired using a Luminar 5030 Acousto-Optic Tunable 

Filter-Near Infrared (AOTF-NIR) Miniature ‘Hand-held’ Analyzer coupled with the bundled ‘SNAP! 

2.04’ software (Brimrose Corp., Baltimore, USA). The instrument was equipped with a reflectance 

post-dispersive optical configuration, a pre-aligned dual beam lamp assembly and an indium gallium 

arsenide (InGaAs) array (range 1100-2300 nm, 2-nm resolution) with an integrating time of 60 msec. 

The reference spectrum was automatically measured by the instrument following the method used by 

(Moscetti et al., 2015a). Each sample was measured in duplicate on two opposite sides of each carrot 

slice (i.e. 4 spectra per sample). Reflectance spectra were converted to absorbance (A = log R-1) and 

the average spectrum was used for further computations. 

2.5.2 Spectral pre-treatments 
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Each carrot slice was modelled as a ‘data vector’, where the spectral absorbance values 

(otherwise called features) were vector components. Chemometric analysis was performed following 

spectral pre-treatments including Standard Normal Variate (SNV), Multiplicative Scatter Correction 

(MSC), and Savitzky-Golay first and second derivatives (D1f and D2f, respectively) with a second or 

third order polynomial fitted over a window of five (S5), seven (S7), nine (S9) or eleven (S11) 

features (Savitzky and Golay 1964; Boysworth and Booksh 2008). For each dataset, Mean Centering 

(MC) was also tested as spectral pre-treatment. Every possible combination of pre-processing was 

also tested and only best results, in terms of model performances, were retained. 

2.5.3 Prediction of chemical and physicochemical changes (regression models development) 

Regression models were computed using the partial least squares (PLS) regression through 

the SIMPLS algorithm (de Jong 1993). PLS is a regression technique used to find useful linear 

combinations of the original independent variables, thus discarding irrelevant and unstable 

information, solving any problems with collinearity and, finally, obtaining a more stable regression. 

In addition, the Interval PLS (iPLS) algorithm was also used to select a subset of wavelengths which 

could achieve superior prediction compared to PLS models based on all features dataset (Xing et al. 

2008). The iPLS algorithm was configured in stepwise forward mode for the selection of a maximum 

of 10 wavelengths. 

As PLS and iPLS regressions perform a dimensionality reduction, it is essential to test each 

model and select the correct number of latent variables to find the optimal trade-off between under-

fitting and over-fitting. Thus, the samples were randomly split as follows: 75% and 25% of the 

samples were assigned to the calibration set (C) and the prediction set (P), respectively. Every PLS 

and iPLS model was optimized by computing a venetian blinds cross-validation with 10 data splits. 

This cross-validation method was preferred because it is simple and easy to implement, relatively 

fast, generally safe and capable of providing a better representation when the dataset contains many 

samples, as is the case here (Naes et al. 2004; Wise 2009). Root Mean Square Error for calibration, 

cross-validation and prediction calculations (RMSEC, RMSECV and RMSEP, respectively) were 
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employed to evaluate each regression model with the purpose of selecting the optimal number of 

latent variables and thus circumvent unrealistic results (Moscetti et al. 2015b). Model performances 

were also evaluated in terms of BIAS and coefficient of determination (R2). 

PLS and iPLS models were both computed to predict changes in chemical and 

physicochemical attributes during 8-h dehydration process. 

2.5.4 Prediction of the drying phases (classification models development) 

Classification models were developed using K-means and Partial Least Squares Discriminant 

Analysis (PLS-DA) algorithms in sequence (Fig. 1). As the initial step, K-means was employed to 

determine the number of drying phases (i.e. classes) and to label each sample as belonging to a 

specific class on the basis of the observed changes in moisture content, water activity, CIELab colour 

and soluble solids content. K-means is a partitional clustering method belonging to the group of the 

unsupervised hierarchical cluster analyses. The selection of the most appropriate cluster solution was 

performed by computing both actual and random sum of square errors (SSE) for a maximum of 9 

clusters (i.e. 9 times of dehydration). Random SSEs were computed from 300 randomized versions 

of the original dataset. To determine the optimal cluster level, the scree plots of both (1) the actual 

SSE versus the cluster solutions and (2) the difference between the actual and random SSEs against 

the cluster solutions, were investigated. The best cluster level was chosen as solution at which the 

plot of the actual SSE versus clusters produced an “elbow” and the actual SSE differed the most from 

the average of the random SSEs. 

As a final step, the identified class membership was used as the response variable (Y) for the 

development of PLS-DA models in which the predictor variables (X) were spectral profiles. Thus, 

PLS-DA was used to assign each carrot slice to a specific dehydration phase on the basis of its spectral 

profile. Moreover, the Interval PLS-DA (iPLS-DA) algorithm was used to identify and test a 

maximum of 10 features. As in the PLS regression model, the RMSE analysis was performed to select 

the optimal number of latent variables also for both PLS-DA and iPLS-DA classification models 

(Goodarzi et al. 2013). The classification performance of each PLS-DA and iPLS-DA model was 
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determined in terms of sensitivity (Eq. 3), selectivity (Eq. 4) and accuracy (Eq. 5) rates (Dejaegher et 

al. 2011). The accuracy rate was used to mainly select models in terms of predictivity, while 

sensitivity and specificity rates were jointly employed to perform a model sub-selection in terms of 

robustness (i.e. the capability of the model to resist to small changes in test conditions). 

(3) 
True Positives

Sensitivity rate
True Positives False Negatives




 

(4) 
True Negatives

Selectivity rate
False Positives True Negatives




 

(5) 
True Positives True Negatives

Accuracy rate
Total Positives Total Negatives





 

As previously described for the development of regression models, the dataset was randomly 

split in calibration and prediction sets (75% and 25% of samples, respectively) and every PLS-DA 

model was optimized by computing a venetian blinds cross-validation with 10 data splits. 

2.6 Chemical and physicochemical attributes 

Both chemical and physicochemical attributes were measured immediately after the NIR 

spectral acquisitions. Carrot slice colour was measured with a spectrophotometer (CM-2600d, Konica 

Minolta, Osaka, Japan) with CIE Standard Illuminant D65 (Daylight), Observer 10° and 6-mm 

diameter of measurement aperture mode. Four replications were performed for each sample by 

performing two colour measurements on two opposite sides of each carrot disc. The results were 

expressed according to the CIELab colour space and thus in terms of lightness (L*), redness (a*), 

yellowness (b*), hue angle (h) and chroma (C*) (Moscetti et al. 2013). 

Moisture content was measured following the official method ‘Moisture in Dried Fruits’ - 

AOAC 934.06 and was expressed as a percentage by mass (grams per 100 grams) (Horwitz 2005). 

Water activity (aw) was determined with an Aqua Lab (3TE, Decagon Devices Inc., 

Washington, USA). 

Soluble solids content (SSC) was measured with a digital refractometer mod. WM-7 (Atago, 

Tokyo, Japan) by following the method of Lavelli and Kerr (2012) with slight modifications. The 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



10 

 

vortexed and centrifuged extract of 350 mg of freeze-dried sample with 10 mL of distilled water was 

measured. Results were then converted on a fresh weight basis and expressed as °Brix (grams of 

sucrose per 100 g of fresh product). 

Carotenoids were extracted by incubating 500 mg of freeze-dried carrot tissues in 10 mL of 

2:1:1 hexane, acetone and ethanol mixture for 24 h at room temperature in darkness. The total 

carotenoid content was determined by measuring absorbance at wavelength of 450 nm, using the Eq. 

6 (Scott 2001). 

(6) 1 1%1

1%

A V
g carotenoid mL C

A
  

   

where A is the absorbance reading of the sample, V1 is the dilution factor, A1% is the extinction 

coefficient of the 1% solution (i.e. 2500 AU) and C1% is the concentration of the 1% solution (10 mg 

mL-1). The total carotenoid content was converted in μg g-1 of fresh tissue. 

Analyses were performed in triplicate. 

2.7 Data handling and data mining 

One-way analysis of variance (ANOVA) was performed to evaluate statistical differences 

among the drying times. The Tukey’s pairwise comparison method was performed, and the Honestly 

Significant Difference (HSD) was calculated for an appropriate level of interaction (P ≤ 0.05) 

(Montgomery 2001). Results were reported as the mean and deviation standard of the mean. Before 

statistical analysis, results relative to moisture content were subjected to angular transformation (i.e. 

y = arcsine [x]1/2) to homogenize the variance (Bartlett’s test) (Gomez and Gomez 1984). The data 

reported were back transformed. 

Data handling and ANOVA were both performed using R v3.3.3 software in combination with 

‘dplyr’ v0.5.0 and ‘agricolae’ v1.2-4 R-packages (CRAN 2017). Chemometrics was performed using 

Matlab software R2015a coupled with PLS_Toolbox software v8.1 (Eigenvector Research Inc., WA, 

USA). 

3.0 RESULTS AND DISCUSSION 
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In the present work, the carrot drying process was monitored using NIR spectroscopy. NIR-

based regression and classification models were computed and the impact of the hot-water pre-

treatment as enzyme inactivator on model performance was also investigated. 

3.1 Thermal pre-treatment selection 

The effect of thermal treatment on carrot slices was evaluated for hot-water blanching over 

the pre-established range of temperature (Table 1). To monitor the thermal treatment, peroxidase was 

used as indicator enzyme due to its higher thermal stability and easiness in being assayed. In fact, the 

POD inactivation allows the reasonable assumption that other quality-deteriorative enzymes (e.g. 

pectinesterase, lipoxygenase, etc.) are also inactivated (Sergio et al. 2007). 

Inactivation kinetics was determined through semi-log plot of residual POD activity versus 

time. Results showed excellent linear fits (R = -0.98÷-1.00) at all temperatures studied, consistent 

with inactivation occurring by first-order kinetics (Fig. 2). Although all treatments reached the 

inactivation threshold (decimal reduction, 90%), considerably faster reductions in POD activity were 

only achieved at 90 and 95°C. In fact, both hot-water blanching at 80 and 90°C were less effective, 

showing slowest inactivation rate constants (k) (0.20 and 0.57 min-1, respectively) in comparison with 

90 and 95°C (0.77 and 1.60 min-1, respectively). Moreover, hot-water blanching at 90 and 95°C led 

to more vivid and pleasant colour (data not shown). Similar results were reported by Sims et al. (1993) 

and Bao and Chang (1994), which observed greater hue angle and chroma, and thus better colour than 

those from unblanched carrots. The colour of carrots is deeply affected by the presence of α- and ß-

carotenes, which are known to be relatively heat-stable at combination of temperature and time used 

in our experiments (Behsnilian and Mayer-Miebach 2017). In fact, carotenoids degradation and 

isomerization into cis-isomers are responsible for loss of vivid colour and a shift from orange to more 

red colour (Howard et al. 1996), which is not our case. 

Finally, the lowest decimal reduction time (D) among treatments was achieved by using hot-

water blanching at 95°C for 1.44 min of dipping. Thus, considering that the evaluation of the effects 

of treatment on nutritional value of product was not part of the present study, hot-water blanching at 
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95°C for approx. 1.45 min was selected as the most adequate treatment to obtain colour-stable carrot 

slices to use further in the experimentation. 

3.2 Spectral data overview 

Fig. 3 depicts the resulting mean relative absorbance spectra obtained from the AOTF-NIR 

spectrophotometer in the 1100-2300-nm spectral range. Fig. 3a and 3b provide information about 

spectral differences between treatments (i.e. control and blanching treatments, respectively) and 

among drying times. Changes in the spectral profiles during the drying process were evident to the 

naked eye for both control and blanching treatments. In fact, it should be noted that drying time 

heavily affected the spectral characteristics in the water absorption bands (1450 and 1940 nm) (Saeys 

et al. 2008) and, more generally, in the higher wavelength region (1900-2300 nm), which is notably 

associated with carbohydrates, sugars and proteins (Ambrose et al. 2016). On the other hand, 

blanched samples apparently showed more changes in spectral shape during the drying process and 

pronounced shoulders on either side of the two principal water absorption bands (1450 and 1940 nm). 

These results suggest that the differences in spectral profile should be mainly due to both water loss 

and changes in forward scattering and backscattering by flesh tissue as a consequence of the blanching 

treatment. 

3.3 Chemical and physicochemical changes during drying 

Table 2 summarizes changes in chemical and physicochemical parameters on blanched and 

unblanched (i.e. control) carrot slices subjected to 8-h drying. ANOVA indicates a significant effect 

of drying time on each quality parameter. Moisture content and water activity gradually decreased 

during drying time, while both SSC and total carotenoids content increased due to decline in water 

content. Results were perfectly in agreement with those of other authors (Suvarnakuta et al. 2005; 

Lavelli et al. 2007; Markowski and Zielińska 2011). However, different drying behaviours between 

treatments were noted. In fact, blanched samples showed a faster decrease in moisture content during 

drying and a lower experimental variability for SSC, lightness and hue angle. The data also revealed 

that the colour of blanched carrot slices was significantly different from the untreated slices. Hot-
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water blanching entailed a lower initial (0-h drying) and final (8-h drying) lightness (L*) as well as a 

higher initial and lower final hue angle (h). Thus, hot-water blanching better retained the colour due 

to reduction in white blush. However, the variation in L* value was not totally clear, similar to results 

reported by Krokida et al. (1998, 2001). Moreover, increased drying time was found to decrease hue-

angle (h) when the hot-water blanching was applied. 

The chemical and physicochemical features of 270 carrot slices per treatment were clustered 

using the K-means algorithm. A cluster analysis was performed in each treatment group. On the basis 

of the results obtained, the optimal cluster level was identified as three and thus samples were split 

into three main classes (also named ‘Drying phase I’, ‘Drying phase II’ and ‘Drying phase III’), each 

one characterized by a specific drying period (Table 2). Results showed that the duration of drying 

phases did not differ between treatments. In fact, both treatments were characterized by the ‘Drying 

phase I’ starting from 0 to 2 h of drying, the ‘Drying phase II’ starting from 3 to 5 hours of drying 

and the ‘Drying phase III’ from 6 to 8 h of drying. 

Data from the analysis of quality parameters and labels from the K-means analysis were both 

used as Y-vector for the development of regression and classification models, respectively. 

3.3 Regression models 

The complete calibration and prediction performances of the regression models are 

summarized in Table 3. Poor results (R2 < 0.70) were obtained for the prediction of the soluble solids 

content for the unblanched treatment. Conversely, regression models with good (R2 ≥ 0.80), very 

good (R2 ≥ 0.90) or excellent (R2 ≥ 0.95) predictability were obtained to monitor changes in soluble 

solids content (only for blanched carrots); and aw (Fig. 4a), moisture content (Fig. 4b), total 

carotenoids content (Fig. 4c) and colour changes (Fig. 4d) of carrot slices during drying, regardless 

of thermal treatment and number of features used in the model. In detail, except for calibration model 

for colour changes, the coefficient of determination (R2) was higher than 0.90 for the aforementioned 

parameters. Thus, for the test set validation with one quarter of the data (randomly selected) RMSEPs 

ranging from 0.03-0.04 for aw, 0.03-0.04 for moisture content and 22.62-29.51 for total carotenoids 
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content were obtained. Moreover, although results from colour analysis showed good fittings, 

development of colour prediction models was totally affected by the pre-treatment used. In fact, 

blanched samples showed the best fitting metrics in predicting changes in hue angle (h), while for 

unblanched carrot slices, which were prone to the white blush discoloration, multivariate models were 

successfully computed only for the monitoring of changes in lightness (L*). 

The aforementioned performance parameters were comparable with both calibration and 

cross-validation results. Moreover, models obtained from feature selection (i.e. iPLS model) usually 

allowed the use of a lower number of latent variables in comparison with a full-spectrum model (i.e. 

PLS model). 

Although the colour models resulted in R2 below 0.85, good performance were still obtained 

with RMSEP values ranging from 1.66 to 1.79 for the lightness (L*) and from 1.34 to 1.46 for hue 

angle (h). Considering that the 1100-2300-nm spectral band is not directly related to colour 

information, results obtained by the indirect measurement of changes in both L* and h can be 

considered acceptable. However, it can be speculated that by including the visible range the model 

performance might be improved considerably. 

Generally, with respect to the treatment, iPLS algorithm led to a higher number of selected 

features for blanched samples, which also differed from the unblanched treatment in terms of selected 

wavelengths. Results suggest that the effect of hot-water blanching on water loss and changes in 

microstructure was pronounced, affecting the model development. 

Table 3 also gives an overview of the spectral pre-treatments effectively used in the selected 

models. In general, reducing and/or removing uninformative variance from the raw spectral data was 

essential for the development of well-performing regression models as all best models use spectral 

pre-treatments. In fact, it can be inferred that SNV scatter correction was necessary to minimize the 

RMSE and thus obtain the highest R2. This may mean that the variation in light scattering negatively 

interfered with spectral information related to chemical and physicochemical parameters. Savitzky-

Golay smoothing improved the prediction performance for most of the regression models. Thus, the 
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need for smoothing suggests that spectral data were slightly affected by noise. Mean centering was 

effective in improving regression performance through spectral resolution enhancement; in fact, this 

technique led to superior results as compared to those obtained from non-mean-centered spectra (data 

not shown). 

3.4 Classification models 

The combinations of spectral pre-treatments, discriminant algorithms and features which gave 

the best classification performance for the assignment of each carrot slice to a specific drying phase 

on the basis of its spectral profile are summarized in Table 4. The optimal combination of spectral 

pre-processing treatments was similar to those previously selected for the development of regression 

models. Pre-treatment methods such as SNV (for baseline correction), Savitzky-Golay smoothing 

filter (for noise reduction) and Mean Centering (for resolution enhancement) were selected as best 

combination for removing/reducing unwanted background information (i.e. light scattering and noise 

arising from various physical and/or chemical processes). 

All models yielded good (> 85%) to excellent (> 95%) sensitivity and specificity for all drying 

phases (i.e. ‘Drying Phase I’, ‘Drying Phase II’ and ‘Drying Phase III’). Thus, the models had greater 

ability to discriminate between the classes with respect to another class. In particular, all models had 

the highest sensitivity and specificity for ‘Drying Phase I’ and ‘Drying Phase III’. This indicates that 

the classification of carrot slices as belonging or not belonging to both initial and final drying phases 

was the most accurate. Moreover, it should be noted that the worst predictive ability was always 

paired to ‘Drying Phase II’. This can probably be explained by the fact that the variation in the 

properties of carrot slices classified as ‘Drying Phase II’ was much higher than variation in properties 

of carrot slices classified as belonging to ‘Drying Phase I’ or ‘Drying Phase III’. In addition, as 

already observed for the case of regression models, discriminant analysis classifiers using blanched 

carrots resulted in better prediction ability than those from unblanched samples. 

Finally, models obtained from a reduced number of features (i.e. iPLS-DA) showed 

discriminant performances very similar to models computed from the full spectrum (i.e. PLS-DA). 
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Moreover, iPLS-DA models were always characterized by a higher variance explained by a lower 

number of latent variables (data not shown). This is confirmed by both Fig. 5a and 5b, which show 

pattern similarity between scores from PLS-DA and iPLS-DA models. Finally, yet importantly, the 

results demonstrated a remarkable effect of hot-water blanching treatment on the performances of 

both PLS-DA and iPLS-DA models. Moreover, feature selection seems to be affected by the thermal 

treatment as selected wavelengths were slightly different between treatments. Thus, prior to 

implementation in industry, this approach should be further validated on a larger sample size covering 

the most important variations expected from structural changes in carrots due to the effect of thermal 

treatment and drying process. 

4.0 CONCLUSIONS 

In this study, the potential of near-infrared (NIR) spectroscopy in the 1100-2300-nm spectral 

range was evaluated to proactively and non-destructively detect and monitor changes in quality 

parameters (i.e. water activity, moisture content, total carotenoids content, colours and SSC) of carrot 

slices (Daucus carota L. var. Romance) during hot-air drying. For this purpose, regression and 

classification models were developed and the impact of the hot-water blanching (at 95°C for 1.45 

min) as enzyme inactivator on model performance was also investigated. Optimal features were also 

selected for both regression (PLS) and discriminant (PLS-DA) analysis by using the interval PLS 

algorithm configured in stepwise forward mode. Both iPLS and iPLS-DA models showed similar o 

better performances than model obtained using the full spectrum. 

In general, both PLS and PLS-DA models obtained either very good or excellent results. 

Specifically for regression analysis, models characterized by remarkable performances were obtained 

for water activity (R2 = 0.91-0.96; RMSEP = 0.03-0.04), moisture content (R2 = 0.97-0.98; RMSEP 

= 0.03-0.04), total carotenoids content (R2 = 0.92-0.96; RMSEP = 22.62-29.51 μg g-1 fresh sample), 

lightness for unblanched carrots (R2 = 0.80-0.83; RMSEP = 1.66-1.79) and hue angle for blanched 

samples (R2 = 0.85-0.87; RMSEP = 1.34-1.46). In addition, while soluble solids content was poorly 

predicted for both treatments (RMSEP = 3.43-4.40), blanched carrots showed better coefficients of 
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determination (i.e. R2 > 0.85) than unblanched samples (i.e. R2 < 0.70). Regarding the discriminant 

analysis, PLS-DA algorithms obtained high accuracy in classifying drying phases based on the 

spectral profile. However, better results were obtained for models computed using blanched carrots. 

Specifically, NIR spectroscopy showed an excellent classification accuracy (> 0.90) for carrot slices 

belonging to ‘Drying phase I’ and ‘Drying phase III’. On the other hand, misclassified carrot slices 

were primarily assigned to ‘Drying phase II’, which however showed accuracy greater than 0.85. It 

should be noted that the development of regression and classification models were affected by the 

blanching treatment in terms of number of features, selected wavelengths and model performances. 

Consequently, the proposed method should be further validated to circumvent model robustness 

issues due to both water loss and microstructural changes in carrots due to thermal treatments. 

Finally, the approach presented in this research lays the foundation for an accurate smart-

drying system based on NIR spectroscopy in terms of regression and classification performances, 

non-destructive analysis and automation. However, the number of wavelengths required in an online 

drying device would depend on the spectral pre-treatment used. Consequently, future research should 

include wavebands not covered by the spectrophotometer used for this study, increasing the light-

beam intensity, and/or combining other chemometric methods, as these could improve the 

performance and the robustness of the smart-drying system. 

These promising results encourage additional research to develop low-cost dynamic multi 

factorial process control strategies (based on a Quality by Design approach) using machine learning 

architectures to produce quality dried products while reducing the environmental impact of the drying 

processes. 
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FIGURE CAPTIONS 

Figure 1. Flowchart of the development of classification model for drying phases detection using K-

means clustering (unsupervised learning) paired to PLS-DA algorithm (supervised 

learning). (*) Unlabelled data corresponds to changes in water activity, moisture, colour 

and soluble solids content values collected during 8-h drying. (**) NIR labelled data 

corresponds to spectral data (X) acquired during 8-h drying and paired to class membership 

(i.e. response variable, Y) becoming from K-means. 

Figure 2. Semi-log (a) and non-linear (b) first-order plots for carrot slices’ peroxidase heat-

inactivation at 70, 80, 90, and 95°C. D-value states for decimal reduction time, which is the 

treatment time required to reduce the residual peroxidase activity to at least 0.1. 

Figure 3. Mean relative absorbance spectra for control (a) and hot-water blanching (b) treatments at 

different drying times (i.e. from 0- to 8-h drying with step of 1-h drying). 

Figure 4. PLS regression plots of Y-measured (reference) and Y-predicted (NIR) values for water 

activity (column a), moisture (column b), total carotenoids content (column c) and colour 

changes (column d) monitored during 8-h drying in both unblanched (row 1) and blanched 

(row 2) carrots. PLS regression plots refer to models based obtained from the full spectrum. 

Figure 5. Drying phases’ spatial distribution plots obtained from PLS-DA (a) and iPLS-DA (b) 

models for ‘0-2 h’, ‘3-5 h’ and ‘6-8 h’ classes (i.e. drying phases) of the unblanched 

treatment. Percentages of the explained variance are reported in parentheses on the axes. 

Red point with green outline corresponds to ‘Drying Phase II’ sample erroneously classified 

as belonging to ‘Drying Phase I’. Green point with red outline corresponds to ‘Drying Phase 

I’ sample erroneously classified as belonging to ‘Drying Phase II’. Green point with blue 

outline corresponds to ‘Drying Phase III’ sample erroneously classified as belonging to 

‘Drying Phase II’. Blue point with green outline corresponds to ‘Drying Phase II’ sample 

erroneously classified as belonging to ‘Drying Phase III’. 
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TABLE CAPTIONS 

Table 1. Experimental design for the hot-water blanching treatment. 

Table 2. Main effect of drying time on the chemical and physicochemical quality parameters of 

carrot slices. Mean values with no common letters are statistically different according to 

HSD (p ≤ 0.05). Drying times were clustered in drying phases (i.e. I, II and III) according 

to the results obtained from the K-means cluster analysis. 

Table 3. Summary of performance metrics for the combinations of treatment, spectral pre-processing 

and regression algorithm (i.e. PLS and iPLS) complexity which gave the best results during 

8-h drying. 

Table 4. Summary of performance metrics for the combinations of treatment, spectral pre-processing 

and classification algorithm (i.e. PLS-DA and iPLS-DA) complexity which gave the best 

results during 8-h drying. 
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TABLE 1 

Temp. 
(°C) 

 Time (min) 

 0.0  0.5  1.0  1.5  2.0  3.0  5.0  10.0  20.0 

70     

80     

90     

95     
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TABLE 2 

 

Treatment 

 

Drying phase        
(K-means) 

 
Drying 
time 

(hour) 

 

Water activity   
(aw) 

 

Moisture    
(relative) 

 

SSC (°Brix) 

 

Lightness 
(L*) 

 

Hue angle            
(h) 

 

Total carotenoids      

  

           

           

 Control  

I 

 0  0.88 ± 0.04 a  0.90 ± 0.02 a  6.35 ± 1.43 f  53.61 ± 1.47 f  51.82 ± 0.37 bc  50.75 ± 3.05 d   

 

  1  0.84 ± 0.04 ab 0.86 ± 0.01 ab 8.58 ± 0.99 ef  57.38 ± 1.36 e  53.43 ± 0.50 ab 52.90 ± 5.66 d   

 

  2  0.82 ± 0.05 b  0.85 ± 0.01 ab 8.56 ± 1.27 ef  58.70 ± 1.60 de 53.32 ± 0.62 bc  66.26 ± 15.09 d   

 

 

II 

 3  0.64 ± 0.03 c  0.82 ± 0.03 b  10.57 ± 1.64 de 61.65 ± 4.28 bcd 50.40 ± 1.38 c  154.88 ± 37.01 c   

 

  4  0.62 ± 0.03 c  0.67 ± 0.09 c  14.69 ± 3.15 bc  64.67 ± 2.14 ab 50.18 ± 0.95 c  205.63 ± 87.36 bc   

 

  5  0.45 ± 0.03 d  0.72 ± 0.05 c  12.02 ± 3.54 cde 62.86 ± 2.68 abc 53.17 ± 1.93 bc  261.22 ± 81.76 ab  

 

 

III 

 6  0.46 ± 0.04 d  0.49 ± 0.15 d  14.09 ± 5.80 cd  65.12 ± 1.49 a  55.16 ± 2.32 ab 294.65 ± 61.04 a   

 

  7  0.45 ± 0.04 d  0.45 ± 0.09 d  18.67 ± 5.25 ab 58.86 ± 2.69 de 51.89 ± 1.17 bc  297.32 ± 44.30 a   

 

  8  0.42 ± 0.02 d  0.25 ± 0.07 e  20.02 ± 7.25 a  60.63 ± 2.23 de 50.52 ± 0.96 c  178.68 ± 29.63 c   

 

   p value  < 0.001  < 0.001  < 0.001  < 0.001  < 0.001  < 0.001   

    HSD  0.04  0.06  3.99  2.72  1.84  71.30   

 Hot-water 
blanching 

 

I 

 0  0.91 ± 0.03 a  0.91 ± 0.01 a  5.75 ± 0.51 c  49.00 ± 1.89 c  56.55 ± 1.98 a  35.74 ± 6.25 d   

 

  1  0.90 ± 0.02 a  0.89 ± 0.01 a  5.35 ± 0.75 c  50.55 ± 2.33 c  56.12 ± 1.66 a  45.27 ± 11.11 d   

 

  2  0.88 ± 0.03 a  0.86 ± 0.02 a  7.13 ± 2.21 c  51.42 ± 1.84 bc  55.00 ± 1.41 a  65.18 ± 17.70 cd   

 

   3  0.77 ± 0.03 b  0.63 ± 0.07 b  7.40 ± 1.69 c  59.91 ± 2.72 a  51.86 ± 1.36 b  89.97 ± 24.46 cd   

 

 
II 

 4  0.70 ± 0.08 c  0.44 ± 0.14 c  15.96 ± 6.14 b  60.13 ± 2.33 a  49.77 ± 2.30 cd  239.58 ± 47.43 b   

 

  5  0.68 ± 0.07 c  0.49 ± 0.08 c  19.55 ± 7.37 b  60.96 ± 2.25 a  50.61 ± 2.01 bc  234.04 ± 78.81 b   

 

 

III 

 6  0.50 ± 0.07 d  0.20 ± 0.07 d  35.79 ± 8.08 a  54.82 ± 7.16 b  48.79 ± 1.89 de 292.47 ± 69.77 a   

 

  7  0.49 ± 0.08 d  0.19 ± 0.03 d  31.68 ± 6.09 a  52.63 ± 3.47 bc  47.50 ± 1.38 e  275.45 ± 27.87 ab  

 

  8  0.40 ± 0.02 e  0.17 ± 0.02 d  32.71 ± 8.72 a  54.72 ± 6.27 c  47.66 ± 1.08 e  304.57 ± 31.62 a   

 

   p value  < 0.001  < 0.001  < 0.001  < 0.001  < 0.001  < 0.001   

    HSD  0.05  0.06  5.53  3.83  1.71  42.54   
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TABLE 3 

Treatment Parameter Algorithm 
Number 

of 
features 

Wavelengths (nm) 

Spectral pre-
treatment LVsi 

RMSEl Bias R2 

SGe SCf MCg Cm Pn C P C P 

               

Control aw
a PLSc 601 1100-2300 9 SNVh Yes 4 0.03 0.04 4.4E-16 -4.7E-04 0.92 0.91 

 iPLSd 5 1134, 1408, 1724, 2166, 2224    3 0.03 0.03 3.0E-16 -6.2E-05 0.93 0.93 

Moisture (w.b.) PLS 601 1100-2300 - SNV Yes 4 0.04 0.04 4.0E-04 4.0E-04 0.97 0.97 

 iPLS 5 1100, 1396, 1558, 1726, 1930    5 0.03 0.03 -1.0E-16 2.6E-05 0.98 0.98 

SSCb PLS 601 1100-2300 7 SNV Yes 3 3.59 3.68 0.0E+00 1.6E-02 0.63 0.61 

 iPLS 8 1108, 1128, 1166, 1320, 1392, 1874, 2088, 2114    6 3.29 3.43 1.2E-13 -3.4E-02 0.69 0.66 

Luminance (L*) PLS 601 1100-2300 9 SNV Yes 6 1.55 1.79 0.0E+00 6.2E-03 0.85 0.80 

 iPLS 8 1292, 1548, 1778, 1842, 2042, 2160, 2250, 2286    6 1.56 1.66 7.3E-15 -1.1E-02 0.85 0.83 

 Carotenoids PLS 601 1100-2300 9 SNV Yes 5 27.95 29.51 2.8E-14 -3.0E-02 0.93 0.92 

  iPLS 5 1100, 1474, 1868, 2050, 2256    4 27.38 28.17 -1.1E-13 1.2E-01 0.93 0.93 

               

Hot-warter 
blanching 

aw PLS 601 1100-2300 7 SNV Yes 5 0.04 0.04 4.4E-16 -2.8E-04 0.96 0.96 

 iPLS 6 1126, 1268, 1400, 1514, 1868, 2300    4 0.04 0.04 -2.7E-17 9.3E-05 0.96 0.96 

Moisture (w.b.) PLS 601 1100-2300 7 SNV Yes 5 0.04 0.04 -1.7E-16 -3.9E-04 0.98 0.98 

 iPLS 6 1118, 1388, 1588, 1870, 1894, 2216    4 0.04 0.04 -1.8E-16 -2.0E-04 0.99 0.98 

SSC PLS 601 1100-2300 7 SNV Yes 3 4.32 4.40 0.0E+00 1.0E-02 0.88 0.88 

 iPLS 6 1116, 1278, 1376, 1378, 2098, 2118    4 4.13 4.19 -3.1E-14 1.3E-02 0.89 0.89 

Hue angle (h) PLS 601 1100-2300 - SNV Yes 3 1.40 1.46 -7.1E-15 -1.0E-02 0.86 0.85 

 iPLS 8 1316, 1372, 1544, 2186, 2236, 2256, 2270, 2278    6 1.28 1.34 -1.8E-14 5.1E-03 0.88 0.87 

 Carotenoids PLS 601 1100-2300 9 SNV Yes 6 21.75 23.10 -2.8E-14 -3.4E-01 0.96 0.96 

  iPLS 6 1100, 1394, 1754, 1900, 2038, 2236    4 22.17 22.62 2.0E-01 2.4E-01 0.96 0.96 

               
a Water activity, b Soluble Solids Content, c Partial Least Squares regression, d Interval Partial Least Squares regression, e Savitzky-Golay filter 

window, f Scatter correction algorithm, g Standard Normal Variate, h Mean Centering, i Latent Variables, l Root Mean Squared Error, m Calibration, n 

Prediction. 
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TABLE 4 

Treatment Algorithm 
Number of 

features 
Wavelengths (nm) 

Spectral pre-
treatment LVsg 

Drying 
phase (K-
means) 

Drying time 
(hours) 

Sensitivity Specificity Accuracy 

SGc SCd MCf Ch Pi C P C P 

                

Control PLS-DAa 601 1100-2300 9 SNVe Yes 3 I 0-2 0.87 0.86 0.94 0.94 0.91 0.90 

       II 3-5 0.91 0.91 0.59 0.59 0.75 0.75 

       III 6-8 0.85 0.85 0.87 0.87 0.86 0.86 

iPLS-DAb 5 1868, 2152, 2248, 
2290, 2294 

9 SNV Yes 5 I 0-2 0.89 0.89 0.96 0.96 0.93 0.92 

      II 3-5 0.92 0.91 0.64 0.63 0.78 0.77 

      III 6-8 0.90 0.90 0.90 0.90 0.90 0.90 

                

Hot-water 
blanching 

PLS-DA 601 1100-2300 9 SNV Yes 4 I 0-2 0.96 0.96 0.96 0.96 0.96 0.96 

       II 3-5 0.86 0.86 0.89 0.88 0.87 0.87 

       III 6-8 0.96 0.96 0.94 0.94 0.95 0.95 

iPLS-DA 6 1376, 1386, 1540, 
1980, 2042, 2264 

9 SNV Yes 5 I 0-2 0.97 0.97 0.97 0.97 0.97 0.97 

      II 3-5 0.88 0.89 0.91 0.91 0.90 0.90 

      III 6-8 0.97 0.97 0.93 0.94 0.95 0.95 

                
a Partial Least Squares Discriminant Analysis, b Interval Partial Least Squares Discriminant Analysis, c Savitzky-Golay filter window, d Scatter 

correction, e Standard Normal Variate, f Mean Centering, g Latent Variables, h Calibration, i Prediction. 

Table 4 Click here to download Table Table 4.docx 
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ABSTRACT 1 

The worldwide consumption of dried carrot (Daucus carota L.) is on a growing trend. 2 

Conventional methods for drying carrots include hot-water blanching followed by hot-air drying, 3 

which is usually uncontrolled and therefore prone to product quality deterioration. Thus, there is a 4 

need for innovative drying systems that yield high-value end products. In this study, the efficacy of 5 

NIR spectroscopy for the non-destructive monitoring of physicochemical changes and drying 6 

behaviour in organic carrot slices during 8-h hot-air drying at 40°C was demonstrated using Partial 7 

least squares (PLS) regression and PLS Discriminant Analysis (PLS-DA). The impact of hot-water 8 

blanching pre-treatment (at 95°C for 1.45 min) for enzyme inactivation on performances of both 9 

regression and classification models was also evaluated. PLS regression models were successfully 10 

developed to monitor changes in water activity (R2=0.91-0.96), moisture content (R2=0.97-0.98), total 11 

carotenoids content (R2=0.92-0.96), lightness for unblanched carrots (R2 = 0.80-0.83) and hue angle 12 

for blanched samples (R2=0.85-0.87). Soluble solids content prediction was poor for both treatments 13 

(RMSEP=3.43-4.40). Classification models were developed to recognise dehydration phases of carrot 14 

slices on the basis of their NIR spectral profile using K-means and PLS-DA algorithms in sequence. 15 

The performance of each PLS-DA model was defined based on its accuracy, sensitivity and 16 

specificity rates. All of the selected models provided from good (>0.85) to excellent (>0.95) 17 

sensitivity and specificity for the predefined drying phases. Feature selection procedures yielded both 18 

regression and classification models with performances very similar to models computed from the 19 

full spectrum. 20 

Abstract


