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Abstract: High-throughput techniques for the compositional analysis of 

lignocellulosic biomass are essential to allow the genetic analysis and 

genetic improvement of bioenergy feedstocks. In this study, we 

investigated the feasibility of using near-infrared (NIR) spectroscopy 

for rapid assessment of wood chemical traits in a large sample of Populus 

nigra L. individuals evaluated in clonal trials at two contrasting sites. 

Spectra were acquired from 5,799 wood samples collected in 3 harvests 

corresponding to two coppice rotations at one site and one coppice 

rotation at the second. Calibrations were developed and validated using 

120 reference samples, representing spectral and chemical variations in 

the samples. The resulting global and site specific calibrations for most 

of the traits were at least good enough for ranking of genotypes, 

demonstrating the usefulness of NIR analysis for phenotyping the studied 

population. Clonal repeatability (H²c) estimates of the studied traits 

based on all samples were moderate to high (H²c ranging from 0.57 to 0.89 

in the 3 harvests). When data were pooled over coppice rotations or 

sites, the genotype × environment interaction was more evident across 

sites than across rotations. However, the interaction was smaller than 

the genotype main effect for all traits, except for glucose and 

extractives contents. Importantly, the interaction resulted more from re- 

ranking of a few genotypes than from scale changes, which may encourage 

breeding for improved main wood components. Optimization of the NIR 

analysis for assessing clonal trials would facilitate the exploitation of 

standing genetic variation in tree breeding by enabling multivariate 

indirect prediction, evaluation of potential trade-offs and detection of 

marker-trait associations. 
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Highlights 
 

 Near-infrared (NIR) spectroscopy calibrations modelswere built for wood chemical 

traits in black poplarwere developed and yielded good correlations between predicted 

and reference values for most of the studied traits. 

 Genetic analysis revealed that the NIR-predicted wood chemical traitsThese traits 

showed substantial expression of genetic variation in two siteswere under moderate to 

high genetic control. 

 The gGenotype × environment E interaction effect across sites was more important 

across sites than across coppice rotations, but it was smaller than the genotype main 

effect for significant for all the studied traits, except glucose and extractives contents. 

 The interactionG × E effect was mainly resulted from re-ranking of a few genotypes 

between the two sites. 

 Optimization of the NIR prediction is powerful to screen analysis for assessing clonal 

trials would facilitate the exploitation of standing genetic variation under clonal 

selection in poplar tree breeding. 



1  

*Manuscript 

Click here to view linked References 
 
 
 

1 Near-infrared spectroscopy enables the genetic analysis of chemical properties in a 
 

2 large set of wood samples from Populus nigra (L.) natural populations 
 

3 Mesfin Nigussie Gebreselassiea, Kévin Adera,b, Nathalie Boizota,b, Frédéric Milliera,b, Jean- 

4 Paul Charpentiera,b, Ana Alvesc, Rita Simõesc, José Carlos Rodriguesc, Guillaume Bodineaud, 

5 Francesco Fabbrinie,f, Maurizio Sabattie, Catherine Bastiena, Vincent Seguraa,* 
 

6 aINRA, UR588 Amélioration, Génétique et Physiologie Forestières, Orléans, France. 

7 bINRA, Plateforme régionale Génobois, Orléans, France. 

8 cCentro de Estudos Florestais, Instituto Superior de Agronomia, 1349-017 Lisboa, Portugal. 

9 dINRA, UE995 Génétique et Biomasse Forestières, Orléans, France. 

10 eDepartment for Innovation in Biological, Agro-food and Forest systems, University of 
 

11 Tuscia, 01100 Viterbo, Italy. 
 

12 fAlasia Franco Vivai s.s., Strada Solerette 5/A, 12038 Savigliano, Italy. 

13 *corresponding author: vincent.segura@inra.fr 

 
14 

http://ees.elsevier.com/indcro/viewRCResults.aspx?pdf=1&docID=30127&rev=1&fileID=579496&msid=%7B076FA9E7-4EB1-44D2-9852-C324CA71B952%7D
mailto:vincent.segura@inra.fr


2  

𝑐 

𝑐 

15 Abstract 
 

16 High-throughput techniques for the compositional analysis of lignocellulosic biomass are 
 

17 essential to allow the genetic analysis and genetic improvement of bioenergy feedstocks. In 
 

18 this study, we investigated the feasibility of using near-infrared (NIR) spectroscopy for rapid 
 

19 assessment of wood chemical traits in a large sample of Populus nigra L. individuals 
 

20 evaluated in clonal trials at two contrasting sites. Spectra were acquired from 5,799 wood 
 

21 samples collected in 3 harvests corresponding to two coppice rotations at one site and one 
 

22 coppice rotation at the second. Calibrations were developed and validated using 120 
 

23 reference samples, representing spectral and chemical variations in the samples. The resulting 
 

24 global and site specific calibrations for most of the traits were at least good enough for 
 

25 ranking of genotypes, demonstrating the usefulness of NIR analysis for phenotyping the 
 

26 studied population. Clonal repeatability (𝐻2) estimates of the studied traits based on all 

 

27 samples were moderate to high (𝐻2 ranging from 0.57 to 0.89 in the 3 harvests). When data 

 

28 were pooled over coppice rotations or sites, the genotype × environment interaction was more 
 

29 evident across sites than across rotations. However, the interaction was smaller than the 
 

30 genotype main effect for all traits, except for glucose and extractives contents. Importantly, 
 

31 the interaction was resulted more from re-ranking of a few genotypes than from scale 
 

32 changes, which may encourage breeding for improved main wood components. Optimization 
 

33 of the NIR analysis for assessing clonal trials would facilitate the exploitation of standing 
 

34 genetic variation in tree breeding by enabling multivariate indirect prediction, evaluation of 
 

35 potential trade-offs and detection of marker-trait associations. 
 

36 Keywords: Populus nigra L., Near-infrared spectroscopy, Cell wall composition, Genetic 
 

37 variation, Clonal repeatability, Genotype × Environment interaction 

 
38 
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39 1. Introduction 
 

40 There is currently a considerable interest in moving to alternative and sustainable sources of 
 

41 energy because of the increasing global energy demand, depletion of fossil fuel reserves, 
 

42 fossil fuel-derived climate change and energy related geopolitical tensions. To circumvent 
 

43 some of the prevailing challenges, special focus has recently been given to the production of 
 

44 biofuels from lignocellulosic biomass. Lignocellulosic ethanol is expected to provide a large 
 

45 share of global transportation fuel needs with much less adverse effects than fossil fuels 
 

46 (Schubert, 2006; Sticklen, 2008). However, realizing this potential will require the 
 

47 synchronized occurrence of genetically improved material, suitable biomass production 
 

48 systems and bioconversion technologies that efficiently convert biomass into bioethanol 
 

49 (Ragauskas et al., 2006; Rubin, 2008). 
 

50 Candidate biomass feedstocks for the production of second generation bioethanol comprise 
 

51 perennial grasses (e.g., switchgrass and Miscanthus) and forest trees (e.g., poplars, 
 

52 Eucalyptus and willow) (Abramson et al., 2010). Comparative advantages of poplars 
 

53 (Populus spp. and hybrids) in the impending green economy include their rapid growth rates 
 

54 (Bradshaw et al., 2000), good coppicing ability (Ceulemans and Deraedt, 1999) and 
 

55 favourable cell wall chemistry (Guerra et al., 2013; Porth et al., 2013; Wegrzyn et al., 2010). 
 

56 In particular, Populus nigra possesses many important characteristics such as adaptability, 
 

57 rooting ability of stem cuttings and resistance to diseases that make it attractive as parent in 
 

58 several hybrid breeding programs in Europe (Cagelli and Lefevre, 1995; Frison et al., 1994). 
 

59 The major source of lignocellulosic biomass is the plant cell wall, a heterogeneous complex, 
 

60 mainly composed of cellulose, hemicelluloses and lignin, with the cellulose microfibrils and 
 

61 the hemicellulosic chains being embedded in lignin (Rubin, 2008). For bioethanol production, 
 

62 the polysaccharides (cellulose and hemicelluloses) are of particular interest because their 
 

63 enzymatic hydrolysis hydrolyses releases fermentable monomeric sugars during 
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64 saccharification. Poplars show substantial variability in cell wall composition, with cellulose 
 

65 content ranging from 42 to 49 %, hemicellulose from 16 to 23 %, and lignin from 21 to 29 % 
 

66 (Sannigrahi et al., 2010). More recently, substantial genetic variation in cell wall chemical 
 

67 traits has been reported for black cottonwood (P. trichocarpa) (Guerra et al., 2016; Porth et 
 

68 al., 2013; Wegrzyn et al., 2010) and black poplar (P. nigra) (Guerra et al., 2013). 
 

69 A critical bottleneck in efficient and cost-effective biomass saccharification for bioethanol 
 

70 production is the natural recalcitrance of plant cell walls to enzymatic hydrolysis (Rubin et 
 

71 al., 2007). The most obvious way to reduce biomass recalcitrance is through genetic 
 

72 improvement of trees for wood chemical composition. Poplar breeding for bioenergy can take 
 

73 advantage of past improvements in growth and disease resistance. However, current poplar 
 

74 clonal varieties have not been selected and bred for the qualitative characteristics of the 
 

75 biomass. Thus, there is a need to explore the potential for improvement of cell wall 
 

76 composition to release fermentable sugars and subsequently integrate biorefinery related 
 

77 selection criteria into poplar tree breeding programs. More specifically, development of 
 

78 dedicated bioenergy poplar for future biorefineries requires an understanding of the genetic 
 

79 architecture (extent of genetic variation and covariation, degree of genetic control, underlying 
 

80 polymorphisms/alleles) of both biomass production and biomass composition. This, in turn, 
 

81 accelerates the selection or development of new clones that produce high biomass yields, 
 

82 which are more amenable to bioconversion. 
 

83 A recent approach to dissect the genetic architecture of “hard-to-measure” complex traits, 
 

84 such as lignocellulosic biomass quality, is to combine high-throughput phenotyping and 
 

85 genomics (Yang et al., 2014). The discovery and analysis of genetic information have been 
 

86 facilitated by the advances in high-throughput sequencing and genotyping platforms together 
 

87 with the availability of reference genome sequences for model forest tree species (Neale and 
 

88 Kremer, 2011). However, high-throughput phenotyping is lagging behind genomics (Araus 
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89 and Cairns, 2014). Standard methods, such as wet chemistry, used for assessing the chemical 
 

90 composition of wood are costly and low-throughput, which limit their use for assaying of 
 

91 large number of samples as required in genetic studies and breeding programs. As a 
 

92 consequence, the genetic analysis and genetic improvement of cell wall composition may be 
 

93 hindered. 
 

94 Near-infrared (NIR) spectroscopy is a high-throughput technology for that can be applied 
 

95 towards the rapid characterization of a large number of lignocellulosic biomass samples with 
 

96 minimal cost. It is an indirect method based on multivariate statistical analysis to establish 
 

97 relationship between NIR absorption absorbance spectra and reference values of properties of 
 

98 interest using a representative sample set. NIR spectroscopy has been successfully used to 
 

99 predict wood chemical traits in many forest tree species (Tsuchikawa and Kobori, 2015), 
 

100 including Populus (Robinson and Mansfield, 2009; Zhang et al., 2014; Zhou et al., 2011), 
 

101 Eucalyptus (Alves et al., 2012, 2011; Baillères et al., 2002; Poke and Raymond, 2006; 
 

102 Raymond and Schimleck, 2002), and Pinus (Alves et al., 2006; Jiang et al., 2014; 
 

103 Schwanninger et al., 2011; Schwanninger and Hinterstoisser, 2011). Indeed, some studies 
 

104 have utilized NIR predictions for estimating genetic parameters of wood properties, mainly in 
 

105 Pinus (Da Silva Perez et al., 2007; Gaspar et al., 2011; Isik et al., 2011) and Eucalyptus 
 

106 (Costa e Silva et al., 2008; Hamilton et al., 2009; Kube et al., 2001; Poke et al., 2006; 
 

107 Raymond et al., 2001; Raymond and Schimleck, 2002; Schimleck et al., 2004; Stackpole et 
 

108 al., 2011, 2010). 
 

109 To our knowledge, the evaluation of calibration models covering standing genetic variation 
 

110 available in natural and breeding populations of poplar is limited. NIR calibration is useful in 
 

111 genetic studies and selection/breeding activities because such applications require assessment 
 

112 of phenotypes in a large number of samples collected in multi-site environments. In this 
 

113 context, development of calibrations mainly depends on the range of variation of the traits of 
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114 interest within and across environments. For poplars, this range may be defined not only by 
 

115 the genetic composition of the study population but also by the environmental conditions of 
 

116 the plantation site, short rotation coppice (SRC) management and the age of the tree at 
 

117 sampling time. The purpose of this study was to develop NIR calibration models to predict 
 

118 wood chemical properties, with the aim of applying the predictions to evaluate their genetic 
 

119 variability in natural populations of European black poplar covering the range of the species 
 

120 in Western Europe. Also, the resulting calibrations could be used for rapid screening of elite 
 

121 P. nigra clones from natural populations to be used in breeding programs. More specifically, 
 

122 this paper addresses the following objectives: (1) to develop and evaluate calibrations for 
 

123 predicting phenotypes of wood chemical traits in a large sample size (n = 5,799) based on 
 

124 NIR spectra, (2) to estimate genetic variation in wood chemical properties of young trees and 
 

125 the degree of their genetic control, and (3) to quantify the magnitude and investigate the 
 

126 nature of genotype × environment (G × E) interaction of the same traits measured across 
 

127 coppice rotations as well as across sites. 

 

128 2. Materials and Methods 
 

129 2.1. Wood samples and sample preparation 
 

130 Clonally replicated trials of a P. nigra association population were established in 2008 at two 
 

131 contrasting sites located in central France (Orléans, ORL) and northern Italy (Savigliano, 
 

132 SAV) under a SRC system. At each site, a randomized complete block design (RCBD) was 
 

133 used, with a single tree per block and six replicates per genotype. The P. nigra population 
 

134 assayed in this study represent the natural range of the species in Western Europe, as it was 
 

135 composed of a diverse set of 1,160 cloned genotypes (hereafter, each cloned genotype 
 

136 referred to as genotype) sampled in 14 natural metapopulations across 11 river catchments of 
 

137 four European countries (Table 1). More details concerning the experimental design, site 
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138 characteristics (soil, climate) and plantation management practices can be found in Guet et al. 
 

139 (2015). 
 

140 [insert Table 1 here] 

 

141 For the analysis of wood chemical properties, a total of 5,799 wood samples were taken at 1 
 

142 m above the ground from 2-yr-old trees in three different harvests (rotations/sites): (i) 289 
 

143 genotypes in 3 blocks resulting in 795 samples harvested in ORL in March, 2010 (end of first 
 

144 coppice cycle, 2008-2009) (hereafter referred to as ORL2010); (ii) 1,066 genotypes in 3 
 

145 blocks resulting in 2,805 samples harvested in ORL in February, 2012 (end of second coppice 
 

146 cycle, 2010-2011) (hereafter referred to as ORL2012); and (iii) 777 genotypes in 3 blocks 
 

147 resulting in 2,199 samples harvested in SAV in January, 2011(end of second coppice cycle, 
 

148 2009-2010) (hereafter referred to as SAV2011). Circumference at 1m was measured on all 
 

149 trees of the two sites just before harvest. For each harvest, the final number of biological 
 

150 replicates per genotype ranged between 2 and 3 because of mortality. The samples collected 
 

151 in ORL in 2010 and 2012 have been harvested during two successive 2-yr rotations of the 
 

152 same stool. The wood samples were oven dried at 30°C for several days until a constant 
 

153 weight was reached, shredded into small pieces with a big cutter and milled using RETSCH 
 

154 SM 2000 cutting mills (SM2000, Retsch, Haan, Germany) to pass through a 1 mm metal 
 

155 sieve in order to get biomass powders onto which NIR spectra were collected. The wood 
 

156 samples were not debarked and both NIR measurements and biochemical analysis were made 
 

157 on non-debarked wood samples. 

 

158 2.2. NIR spectra collection, pretreatment and selection of reference samples 
 

159 Once established, NIR calibration models can be an inexpensive and high-throughput method 
 

160 for accurate estimation of wood chemical properties. However, their initial development 
 

161 involves several steps, including spectral data collection, spectral data pretreatment, selection 
 

162 and analysis of reference samples, application of a multivariate calibration method, model 
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163 selection and model validation. The NIR spectra of 5,799 wood powder samples were 
 

164 measured with a spectrometer Spectrum 400 (Perkin Elmer, Waltham, MA, USA) over 45 
 

165 days between the end of April 2015 and the beginning of July 2015. Prior to analysis, 
 

166 samples were stabilized in a climatized chamber (20 %RH) at 24°C for a minimum of 1 day. 
 

167 Samples in quartz cups were placed in a rotating device above the integration sphere window 
 

168 and spectra acquired in a temperature controlled room (24°C). All measurements were done 
 

169 in diffuse-reflectance mode and the obtained spectra were computed as Log (1/R) and 
 

170 expressed in absorbance. The scanning range for all samples was from 10,000 cm-1 to 4,000 

171 cm-1 (1,000-2,500 nm) with a spectral resolution of 8 cm-1 and a zero filling factor of 4 

172 resulting in a number of data points at every 2 cm-1. For each wood sample, 64 scans were 
 

173 acquired and averaged. Background was carried out regularly using Spectralon® as reference. 
 

174 Undesirable sources that likely affect the quality of spectral data include sample moisture 
 

175 content, particle size, temperature and humidity of the spectrometer laboratory, batch effects 
 

176 (e.g., date of spectral data collection) and so on. Before applying multivariate analysis 
 

177 methods such as partial least squares (PLS) regression, it is important to reduce or remove 
 

178 undesired variations in the recorded sample spectra to reduce noise and enhance calibrations. 
 

179 For this reason, several common spectral pretreatment techniques (normalization, detrend, 
 

180 first and second derivatives on raw or normalized spectra) were applied to the raw spectra for 
 

181 comparisons or to find the best combination. Absorption spectra were first restricted to the 
 

182 wavenumber range of 8,000-4,000 cm-1 since spectra recorded within 10,000-8,000 cm-1 has 
 

183 mainly noise. For illustration, plot of raw spectra of wood powder samples from ORL2012 
 

184 harvest is shown in Figure S1. The spectra pretreatment was performed with R software (R 
 

185 Core Team, 2015). The R packages prospectr (Ruedin, 2013) and signal (signal developers, 
 

186 2013) were used to perform detrend and derivations, respectively. Since spectral data 
 

187 pretreatment can improve exploratory analysis, principal component analysis (PCA) was 
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188 performed on the resulting 7 spectra modalities (raw, pretreated) to explore the data for 
 

189 potential outlying spectra and clustering of the samples according to genotypes, date of 
 

190 spectral data collection, temperature and humidity of the spectrometer laboratory and 
 

191 operators (not shown). In this initial exploratory analysis, no samples were removed as 
 

192 outliers. 
 

193 Careful selection of representative samples (reference samples) is a prerequisite to develop 
 

194 NIR spectra based calibrations. We chose to select 120 reference samples based on spectral 
 

195 data because the NIR spectra basically contains information about several properties of a 
 

196 wood sample for which the calibration is carried out. These samples should therefore be 
 

197 selected in order to represent most of the spectral variation of a large population of wood 
 

198 samples (n = 5,799) collected from a multi-environment experiment. Also, the reference 
 

199 samples should best represent the sources of variation likely to occur in future samples such 
 

200 as plantation site, coppice rotation and genotype, which could enhance the robustness of the 
 

201 resulting calibrations. To do so, we first calculated the mean spectrum for each genotype 
 

202 within harvest. PCA was then performed on the resulting genotypic spectra across all 
 

203 harvests. The results obtained provided two types of information. First, compared to other 
 

204 spectra modalities, first derivative spectra (first derivative on raw spectra) showed a more 
 

205 uniform distribution of the genotypic spectra on the first 2 PCs (Figure S2) and were thus 
 

206 chosen to be used for the selection of reference samples. Second, the genotypic spectra 
 

207 showed clear clusters in the space of the first 2 PCs according to harvests (Figure S2). We 
 

208 thus decided to select an equal number of genotypes from each harvest to constitute the 
 

209 reference sample set. Euclidean distances were computed between the genotypic spectra 
 

210 within harvests. Subsequently, a representative subset of genotypes was selected within each 
 

211 harvest following the Kennard-Stone algorithm which allows to select samples with a 
 

212 uniform distribution over the predictor space  (Kennard and Stone, 1969). A total of 45 
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213 genotypes (i.e., 14-16 genotypes per harvest) were selected in order to reach a total of 120 
 

214 samples when considering the 2 to 3 biological replicates of each genotype in each harvest. 

 

215 2.3. Wood chemical analysis of reference samples 
 

216 This section is described in detail in Supplementary Information Text (SI Text). The 120 
 

217 selected samples were analyzed for chemical composition following standard analytical 
 

218 methods (wet chemical analysis, HPLC, analytical pyrolysis) to generate reference values 
 

219 used to develop dedicated calibrations to predict wood chemical traits in all the samples (n = 
 

220 5,799). Wood chemical traits included: (i) extractives content; (ii) lignin content (Klason 
 

221 lignin, acid-soluble lignin); and (iii) the content of the two most abundant cell wall sugars 
 

222 (glucose, xylose) content. Analytical pyrolysis was used to assess lignin composition [relative 
 

223 proportion of p-hydroxyphenyl (H), guaiacyl (G) and syringyl (S) units] according to 
 

224 Rodrigues et al. (2001, 1999) and Alves et al. (2006). Except for analytical pyrolysis, at least 
 

225 two technical replicates were performed per sample. For analytical pyrolysis, technical 
 

226 replicates were done only for a few samples to estimate the root mean square error (RMSE) 
 

227 of the method for further comparison with the RMSE of the corresponding NIR calibration. 

 

228 2.4. Development of NIR calibration models using partial least squares (PLS) regression 
 

229 R software was used for PLS regression model development (R Core Team, 2015). To 
 

230 perform the calibrations, we used the R package pls (Mevik and Wehrens, 2007). Various 
 

231 home-made functions were also used to carry out the calibrations with PLS regression in a 
 

232 cross-validation scheme with an optional detection of potential outlier observations. 
 

233 Moreover, the function "carspls_LOO" was used for automatically selecting a subset of 
 

234 wavenumbers to be included in the PLS regression as proposed by Li et al. (2009). The 
 

235 selection is based on an iterative exclusion of wavenumbers according to their weight in a 
 

236 PLS regression and following an exponential decreasing function. Consequently, the selected 
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237 wavenumbers are specific to the trait being calibrated. More details about this method are 
 

238 given in Li et al. (2009). 
 

239 Prior to a final calibration step, we detected potential outlying observations within the 120 
 

240 reference samples using either box-and-whisker plots or P-value thresholds of z-tests on the 
 

241 cross-validation residuals of PLS calibrations. The final calibration step involved splitting of 
 

242 the 120 reference samples into a calibration set (n = 99, ~ 5/6) and a validation set (n = 21, ~ 
 

243 1/6) using Kennard-Stone algorithm (Kennard and Stone, 1969) per harvest on first derivative 
 

244 spectra. Next, outliers detected in the previous step were removed from both calibration and 
 

245 validation data sets. The resulting calibration set was then used to build the model with a 
 

246 leave-one-out (LOO) cross-validation with or without automatic wavenumber selection using 
 

247 the CARS algorithm (Li et al., 2009). The optimal number of  components in the PLS 
 

248 regression model was optimized within the cross-validation using Wold's criterion (Li et al., 
 

249 2002), which was set up at 1. The following statistics were calculated for each model both 
 

250 within the training (cross-validation) and validation sets: 
 

251 - The coefficient of determination defined as 𝑅2 = 1 − (𝑅𝑆𝑆/𝑇𝑆𝑆), where RSS is the 

252 residual sum of squares (sum of squares of differences between observed and 
 

253 predicted values), and TSS is the total sum of squares (sum of squares of differences 
 

254 between observations and their mean); 

 

255 - The root mean square error defined as 𝑅𝑀𝑆𝐸 = √(𝑅𝑆𝑆/𝑛), where RSS is defined as 

 

256 above and n is the number of observations; 
 

257 - The ratio of prediction to standard deviation defined as 𝑅𝑃𝐷 = 𝑆𝐷/𝑅𝑀𝑆𝐸, where SD 

258 is the standard deviation of the observations, and RMSE is defined as above. 
 

259 The models with best statistics were selected and, when validated, validated (Table 2). 
 

260 Finally, the models were used to predict all samples (n = 5,799) included in the study. 
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261 2.5. Estimation of genetic parameters for NIR-predicted wood chemical traits 
 

262 The NIR-predicted wood chemical traits were all approximately normally distributed and 
 

263 data transformations were not considered necessary prior to genetic analysis. In order to 
 

264 estimate variance components of traits, linear mixed models (Henderson, 1984) involving 
 

265 spatial effects were fitted using breedR package (Muñoz and Sanchez, 2015) in software R 
 

266 for the analysis of all predicted traits within harvests. Both block and spatial effects account 
 

267 for the environmental variation within the experimental field. Block effects account for 
 

268 global field variations, while spatial effects capture the environmental heterogeneity not 
 

269 accounted by the block effects because of the relatively large size of each block. Furthermore, 
 

270 spectra data have been collected according to the ordered field positions of the trees. So 
 

271 spectra collection date is likely to contribute to the so called spatial variation revealed by the 
 

272 variograms. Accounting for the date effect could help to interpret the spatial effects, if 
 

273 necessary. 
 

274 For each of the traits, the following spatial mixed model was fitted: 
 

275 𝑦 = X𝛽 + 𝑍𝑢 + 𝑅𝑏 + 𝑁𝑑 + 𝐶𝑠 + 𝑒 (1) 
 

276 where 𝑦 is a vector of individual tree data for a predicted wood chemical trait, 𝛽 is a vector of 
 

277 fixed effects (over all mean or intercept), 𝑢 is a vector of random effects of genotypes 
 

278 (genetic effects of genotypes or genotypic values), 𝑏 is a vector of random effects of blocks, 
 

279 𝑑 is a vector of random effects of the dates of NIR spectra collection, 𝑠 is a vector of random 
 

280 spatial effects and 𝑒 is a vector of random effects of spatially independent residuals. X, 𝑍, 𝑅, 
 

281 and 𝑁, and 𝐶 are known incidence matrices relating the observations to the fixed effects in 
 

282 vector 𝛽 and random effects in vectors 𝑢, 𝑏, and 𝑑, and 𝑠, respectively, assuming 
 

283 𝑢∼𝑁(0, 𝜎2𝐼), 𝑏∼𝑁(0, 𝜎2𝐼), 𝑑∼𝑁(0, 𝜎2𝐼), 𝑠∼𝑁(0, 𝜎2𝐻), 𝑒∼𝑁(0, 𝜎 2𝐼𝑅), where 𝜎2 is the 
𝐺 𝑏 𝑑 𝑠 𝑒 𝐺 

 

284 genotypic variance, 𝜎2 is the block variance, 𝜎2 is the date variance,  𝑅 is the residual 𝑏 𝑑 
 

285 covariance matrix 𝜎 2 is the spatial residual variance, 𝜎 2 is the spatially independent residual 
 

𝑠 𝑒 
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i 

286 variance, and 𝐼 is an identity matrix. A spatial residual structure was implemented in order to 
 

287 decompose 𝑒 into . For the spatially dependent (£) and spatially independent (5) residuals, a 
 

288 covariance structure 𝐻 that assumes separable first-order autoregressive processes in rows 
 

289 and columns was used as described in (Dutkowski et al., (2002). , leading to the following 
 

290 decomposition of 𝑅: 

 
291 𝑅 = 𝜎2[𝐴𝑅1(𝜌𝑐𝑜𝑙)    𝐴𝑅1(𝜌𝑟𝑜w)] + 𝜎2𝐼 (2) 

£ 𝑦 
 

292 where 𝜎2 is the spatially dependent residual variance, 𝜎2 is the spatially independent residual 
£ 𝑦 

 

293 variance, 𝐼 is an identity matrix and 𝐴𝑅1(𝜌) is a first-order autoregressive correlation matrix. 
 

294 The spatial mixed model described in model 1 was compared with a model without 
 

295 decomposition of the residual term into spatially dependent and independent effects based on 
 

296 the Akaike information criterion (AIC) and was found to have a lower AIC (i.e., better 
 

297 performance) in all data sets (i.e., ORL2012 and SAV2011 harvests) for all predicted 
 

298 phenotypes. However, spatial trends were not modelled for ORL2010 harvest because the 
 

299 number of genotypes per harvested block was not large enough to capture the within block 
 

300 spatial variation. Moreover, the level of sampling within each block induced heterogeneity in 
 

301 the spatial distribution of the corresponding samples, so estimation of spatial effects over the 
 

302 trial could be biased. 
 

303 Within each harvest and for each phenotype, reduced models (dropping block or spectra 
 

304 collection date effect) were also fitted and compared to the corresponding full models based 
 

305 on the AIC. Finally, the model yielding the best fit (lowest AIC) was selected for variance 
 

306 component estimation and to adjust the phenotype for non-genetic random effects (block, 
 

307 date, spatially dependent residuals). 
 

308 Variance components from the selected mixed model were further used to estimate broad- 
 

309 sense heritabilities of the NIR-predicted wood chemical traits within harvests. Individual tree 
 

310 broad-sense heritability (𝐻2) was calculated using the following equation: 
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𝑐 

𝜎 
= 

 
311 311 𝐻2 𝜎2 

=   𝐺/ 2 2 (23) 
 

 
 (𝜎𝐺 + 𝜎𝑒 ) 

 
312 where 𝜎2 and 𝜎2 are the genotypic and residual variance components, respectively. Clonal 

𝐺 𝑒 
 

313 mean broad-sense heritability or clonal repeatability (𝐻2) was calculated as: 
 

 

314 314 
2 

2 𝐺 
𝑐 / 

2 

 

𝜎2 

 

(34) 

(𝜎𝐺 + 𝑒 /𝑟) 

 

 

315 where r is the average number of replicates per genotype for a trait under consideration for a 
 

316 given harvest. Standard errors for heritability were calculated using the Delta method (Lynch, 
 

317 M, Walsh, 1998). Standard errors were multiplied by 1.96 to construct the 95 % confidence 
 

318 interval (CI) for heritability. 
 

319 Finally, we used genotypes shared between coppice rotations or sites for fair comparisons of 
 

320 genetic parameter estimates and for assessing stability of genetic parameters between 
 

321 rotations as well as between sites or characterizing G × E interaction. A set of 289 genotypes 
 

322 were shared between rotations within Orleans’ trial (ORL2010 vs ORL2012 harvests), while 
 

323 683 genotypes were shared between sites (ORL2012 vs SAV2011 harvests). 
 

324 For analysis within harvests based on shared genotypes, the following model was fit: 
 

325 𝑦 = X𝛽 + 𝑍𝑢 + 𝑒 (45) 
 

326 Where 𝑦 is a vector of individual tree data for a predicted wood chemical trait that was 
 

327 adjusted for block, date and spatially dependent effects with the previously selected spatial 
 

328 mixed model (model 1) and the remaining parameters were assigned as described in model 1. 
 

329 In order to test and evaluate the extent of G × E interaction across rotations and sites, the 
 

330 following G × E mixed model was fitted: 
 

331 𝑦 = X𝛽 + 𝑍𝑢 + 𝑀𝑝 + 𝑒 (56) 
 

332 where 𝑦 is a vector of individual tree data for a predicted wood chemical trait that was 
 

333 adjusted for block, date and spatially dependent effects with model 1, 𝛽 is a vector of fixed 

i 

𝐻 
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𝐺×𝐸 

𝐺×𝐸 

334 effects (over all mean and rotations or sites), 𝑝 is a vector of random effects of G × E 
 

335 interaction. X, 𝑍 and 𝑀 are incidence matrices relating the observations to the fixed effects in 
 

336 vector 𝛽 and random effects in vectors 𝑢 and 𝑝, respectively, assuming, 𝑝∼𝑁(0, 𝜎2 𝐼), 

 

337 where 𝜎2 is the G × E interaction variance. The remaining parameters were assigned as 

 

338 described in model 1. Likelihood ratio tests (LRT) between the full model and a reduced 
 

339 model without G × E interaction effect were performed to test the significance of G × E 
 

340 interaction effect. Correlations between adjusted genotype means were also estimated using 
 

341 the Spearman’s rank correlation to further characterize the stability of genotype means 
 

342 between rotations or sites. Finally, when the extent of G × E variance was found to be 
 

343 relatively large by comparison to the between genotypes variancemore than 50% of the 
 

344 genotypic variance (Shelbourne, 1972), a further decomposition of the G × E interaction was 
 

345 carried out following method 1 of Muir et al. (1992). Such decomposition enables to partition 
 

346 the G × E sum of squares into scaling effect and genotype rank change. 

 

347 3. Results 
 

348 3.1. Variability in wood chemical properties of reference samples 
 

349 The descriptive statistics for traits analyzed in the laboratory of the 120 reference samples are 
 

350 presented in Table 2. The range of variation in most of the traits analyzed was considerable, 
 

351 and provided the potential to develop reliable calibrations. For example, Klason lignin 
 

352 content ranged from 16.8 % to 26.5 %, whereas glucose content ranged from 30.6 % to 50.3 
 

353 %. Overall, the range of wood chemical traits within our reference data set was 5 to 21 times 
 

354 the RMSE of the standard methods, making this reference data set acceptable for building 
 

355 near-infrared multivariate calibration models (Table 2). 

 

356 [insert Table 2 here] 

 

357 3.2. Calibration, validation and prediction 
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358 The absorption spectra modalities (with or without pretreatment) and reference values of the 
 

359 reference samples were used to develop NIR calibration models at a global scale for a 
 

360 majority of the traits, except for lignin contents, where site specific models showed higher 
 

361 predictive performance than the global ones (Table 3). The reference values in the calibration 
 

362 and validation data sets for the wood chemical traits of black poplar were comparable (i.e., 
 

363 had similar means and ranges), which means that reliable models can be developed and 
 

364 effectively verified (Figure S3). 
 

365 Summary statistics that demonstrate the performance of the models in calibration and 
 

366 validation data sets are reported in Table 3 and plots of the predicted versus measured 
 

367 component values for selected calibrations are shown in Figure S4. Pretreated spectral data 
 

368 provided better calibrations than raw spectra. Automatic wavenumber selection improved 
 

369 model performance, for some of the traits, compared with full range. 
 

370 Global calibration models developed for the prediction of H-lignin, lignin H/G and S/G 
 

371 ratios, xylose/glucose, C5/C6 and extractives were good, with coefficients of determination 
 

372 (R2) ranging from 0.75-0.91 and 0.72-0.83 in calibration and validation data sets, respectively 

373 (Table 3, Figure S4). The R2 values for calibration and validation sets of glucose were 0.76 
 

374 and 0.64, respectively. The models for G-lignin and S-lignin had moderate performance in 

 

375 cross-validation (R2
cv = 0.68 and 0.64, respectively), while the model for S-lignin showed a 

376 higher accuracy of prediction (R2
val = 0.77). The model for xylose showed inadequate fit in 

377 the calibration data set (R2
cv = 0.48) as well as a poor prediction performance in the 

378 validation data set (R2
val = 0.29). 

 

379 On the other hand, global models for lignin content (Klason lignin, Py-lignin and acid-soluble 
 

380 lignin) were very specific (i.e., they were good in predicting samples included in the models 
 

381 but very poor in predicting samples of an independent validation set) (Table 3). Therefore, we 
 

382 followed the site specific approach to model these characteristics (Table 3, Figure S4). For 
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383 Klason lignin, the model developed for Orleans site (R2
cv = 0.78, R2

val = 0.60) had a better fit, 

384 whereas good models for Py-lignin and acid-soluble lignin were obtained at Savigliano (R2
cv 

385 = 0.79, R2
val = 0.73 and R2

cv = 0.77, R2
val = 0.79, respectively). 

 

386 With the exception of Klason lignin, Py-lignin, acid-soluble lignin and xylose global models, 
 

387 the remaining global models described in Table 3 and Figure S4 were used to predict wood 
 

388 chemical properties for the entire sample set (n = 5,799) to study phenotypic the variability, 
 

389 degree of genetic control and G × E interaction. Klason lignin at Orleans and Py-lignin and 
 

390 acid-soluble lignin at Savigliano were predicted with the site specific models because of the 
 

391 poor prediction performance of their corresponding global models. On the other hand, Klason 
 

392 lignin at Savigliano and Py-lignin and acid-soluble lignin at Orleans were not predicted since 
 

393 their corresponding site specific models had poor performances, especially in validation sets. 
 

394 Xylose was not predicted since the quality of the model was considered poor as mentioned 
 

395 before. 
 

396 Boxplots of the distributions of NIR-predicted wood chemical traits (without adjustment for 
 

397 micro-environmental effects) are presented in Figure S5. The range of phenotypic variation in 
 

398 most predicted wood traits was considerable. For example, the predicted Klason lignin 
 

399 content ranged from 16.1 % to 27.9 %, whereas predicted glucose content ranged between 
 

400 30.2 % and 49.7 %. All the predicted values were in line with the results obtained for the 
 

401 reference data set (i.e., they were pretty much close to the limits or within the range of 
 

402 variation observed for the reference data set) (Table 2). Moreover, based on comparisons of 
 

403 the RMSE of the models (Table 3) to the RMSE of the standard methods (Table 2), the 
 

404 uncertainties associated with the predictions can be regarded as acceptable. It is worth 
 

405 mentioning, however, that the predicted S/G values (0.69-1.43) didn’t fall within the range of 
 

406 values reported for other populations of P. nigra (1.3-2.1) (Guerra et al., 2013) and P. 
 

407 trichocarpa (1.5-2.4) (Guerra et al., 2016) despite variations of almost the same magnitude. 
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408 [insert Table 3 here] 

 

409 3.3. Variance components and broad-sense heritability of wood chemical traits within 
 

410 harvests using shared genotypes 
 

411 Due to some unbalance in genotype representation across harvests, the genetic analysis of 
 

412 individual harvests using only the shared genotypes was done to ensure fair comparisons of 
 

413 genetic parameters for the same traits. Thus, a set of 289 genotypes were shared between 
 

414 ORL2010 and ORL2012 harvests (i.e., between coppice rotations), while 683 genotypes were 
 

415 shared between ORL2012 and SAV2011 harvests (i.e., between sites). 
 

416 Based on analysis using 289 genotypes, high clonal repeatability (𝐻2) values were found for 
 

417 lignin monomers (H, G, S) (0.74 ± 0.05 to 0.81 ± 0.04), lignin composition (H/G, S/G) (0.75 
 

418 ± 0.05 to 0.81 ± 0.04), Klason lignin (0.75 ± 0.05 to 0.80 ± 0.04) and cell wall sugars (0.72 ± 
 

419 0.06 to 0.80 ± 0.04) in the 2 rotations (Figure 1, Table S1). The exception was extractives 
 

420 content, for which the 𝐻2 values were moderate to high (0.57 ± 0.09 to 0.72 ± 0.06). Using 

 

421 683 genotypes, high 𝐻2 values were found for all traits except extractives, namely, lignin 

 

422 monomers (0.74 ± 0.04 to 0.88 ± 0.02), lignin composition (0.77 ± 0.03 to 0.89 ± 0.01) and 
 

423 cell wall sugars (0.70 ± 0.04 to 0.81 ± 0.02) in the two sites (Figure 2, Table S2). For 
 

424 extractives, the 𝐻2 values were moderately high (0.62 ± 0.05 to 0.70 ± 0.04). At Savigliano, 

 

425 where trees grew more rapidly, the genetic control over all the chemical traits was generally 
 

426 stronger with the exception of C5/C6. For example, 𝐻2 for lignin S/G ratio was higher (0.89 

 

427 ± 0.01) at Savigliano compared to 𝐻2 = 0.77 ± 0.03 at Orleans. These differences in 

 

428 heritability of the same traits between the two sites can be explained by scale effects (i.e., 
 

429 both increased expression of genetic variation and decreased residual variation at Savigliano 
 

430 as compared to Orleans) (Table S2). In comparison to site, rotation effects on 𝐻2 were rather 

 

431 low for all traits with the exception of extractives, suggesting differences in magnitude of G × 
 

432 E interaction between rotations and sites. For extractives content, 𝐻2 varied more between 
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𝑐 

433 rotations than between sites. Next, in order to reflect the genetic variation in wood traits that 
 

434 could be present in the entire population, we repeated the genetic analysis using all genotypes 
 

435 available in each harvest. 
 

436 [insert Figure 1 & Figure 2 here] 

 

437 3.4. Variance components and broad-sense heritability of wood chemical traits within 
 

438 harvests using all genotypes 
 

439 To estimate genetic parameters for the NIR-predicted wood chemical traits for each single 
 

440 harvest using all genotypes available, data were analyzed with a full mixed model accounting 
 

441 for spatial effect. Variance components, their standard errors and heritability (i.e., individual 
 

442 tree broad-sense heritability and clonal mean broad-sense heritability together with their 95 % 
 

443 confidence intervals) estimates for NIR-predicted wood chemical traits for the three harvests 
 

444 using all genotypes are provided in Table S3. High clonal repeatability values were found for 
 

445 lignin monomers (0.72 ± 0.03 to 0.88 ± 0.02), lignin composition (0.75 ± 0.05 to 0.88 ± 
 

446 0.02), xylose/glucose (0.72 ± 0.06 to 0.79 ± 0.03) and C5/C6 (0.72 ± 0.03 to 0.80 ± 0.04) in 3 
 

447 harvests (Table S3). A moderate to high 𝐻 2 values were obtained for extractives (0.61 ± 0.04 

 

448 to 0.72 ± 0.06) and glucose (0.67 ± 0.04 to 0.76 ± 0.03) in 3 harvests. Analyses of variation in 
 

449 lignin contents involved either of the two sites. The clonal repeatability for Klason lignin was 
 

450 high and varied from 𝐻 2 = 0.72 ± 0.03 to 𝐻 2 = 0.80 ± 0.04 in 2 harvests at Orleans 
 

𝑐 𝑐 
 

451 (ORL2012 and ORL2010, respectively). At Savigliano, Py-lignin and acid-soluble lignin had 
 

452 high clonal repeatability values, with 𝐻 2 = 0.70 ± 0.04 and 𝐻 2 = 0.82 ± 0.02, respectively. 
 

𝑐 𝑐 
 

453 The precision of broad-sense heritability estimates both at individual tree and clonal mean 
 

454 levels in this study was generally high, with two-sided confidence intervals (95 %) ranging 
 

455 from 0.01 (S/G ratio at Savigliano) to 0.09 (extractives for ORL2012 harvest) (Table S1-S2). 
 

456 Overall, the clonal repeatability estimates were highly comparable between the two analyses, 
 

457 i.e., all genotypes versus shared genotypes (Figure 1-2, Table S1-S3). We conclude that the 
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458 genotypes shared between the harvests were adequate enough to capture the genetic variation 
 

459 existing in the entire population. This is interesting because we would not miss important 
 

460 information when analysing the G × E interaction both across rotations and sites using the 
 

461 shared genotypes. 

 

462 3.5.3.4. Genotype × environment (G × E) interaction effect on wood chemical traits 
 

463 using shared genotypes 
 

464 To assess the stability of genetic parameters or characterize G × E interaction for the NIR- 
 

465 predicted wood chemical traits, genotypes shared between rotations (ORL2010 vs ORL2012 
 

466 harvests) or between sites (ORL2012 vs SAV2011 harvests) were used. Two strategies were 
 

467 adopted to assess G × E interaction including estimation of variance components and 
 

468 correlation between environments. 
 

469 Combined mixed model analysis of variance of 289 genotypes evaluated across rotations at 
 

470 Orleans showed that the G × E interaction effect was significant (LRT P-values < 0.001, 
 

471 0.01) for all traits, except for H-lignin and lignin H/G ratio (Table S4). However, the 
 

472 magnitude of the G × E interaction variance was rather low, compared to the genotypic 
 

473 variance component for all traits. The G × E interaction variance component explained only 
 

474 1-18 % of the total phenotypic variance, whereas the genotype main effect accounted for 30- 
 

475 53 % (Figure 3, Table S4). Based on the 683 genotypes tested across sites, for all traits highly 
 

476 significant (LRT P-value < 0.001) G × E interaction was found for all traits (Table S5) and 
 

477 the GxE variance reached more than 50% of the corresponding genetic variance , with the 
 

478 exception for extractives and glucose, it explained 19-27 % of the total variation, whereas the 
 

479 genotype main effect accounted for 34-43 % (Figure 4, Table S5). Importantly, for glucose 
 

480 and extractives, the G × E interaction variance component (27 % and 26 %, respectively) was 
 

481 even larger than the genetic variance component (24 % and 14 %, respectively) and this was 
 

482 somewhat mirrored in the relative values of the clonal repeatability, especially for extractives. 
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483 Compared to extractives, glucose content is a key wood chemical trait in term of bioethanol 
 

484 production. During bioethanol production, glucose is released from cellulose in the plant cell 
 

485 walls via enzymatic hydrolysis of lignocellulosic biomass and could then be converted into 
 

486 bioethanol via fermentation. To assess if the observed G × E interaction for glucose in 
 

487 particular and all biochemical traits extractives in general would have practical implications 
 

488 for poplar tree breeding for bioethanol production, it is noteworthy to further decompose the 
 

489 corresponding interaction variance components. Because the G × E interaction was in general 
 

490 more evident over sites than over rotations for all traits, we sought to zoom into the nature of 
 

491 the G × E interaction across sites. 
 

492 [insert Figure 3 & Figure 4 here] 
 

493 Thus, G × E interaction was dissected according to the method 1 described by Muir et al. 
 

494 (1992). Results of the partitioning of the G × E interaction sum of squares into sources due to 
 

495 scaling effects (heterogeneity of variances) and re-ranking indicated that the G × E 
 

496 interaction for all traits was dominated by changes in genotype ranking over the two sites 
 

497 (Table 4). Nevertheless, it appeared that only 9-134 % of the genotypes, which correspond to 
 

498 the most interactive ones, were found to explain 50 % of the G × E interaction sum of 
 

499 squares. Whereas the impact of G × E interaction seemed higher for glucose and extractives 
 

500 on the basis of the relative magnitude of their variance components, the proportion of 
 

501 interactive genotypes were found to be quite similar to those for other traits, suggesting less 
 

502 practical importance of the observed interaction. Extractives had some level of scale effect 
 

503 (14.9 %) and still high re-ranking (85.1 %), whereas glucose had little or no scale effect (0.23 
 

504 %) and high re-ranking (99.77 %) (Table 4). Similarly, the genetic variances, expressed in 
 

505 terms of genetic standard deviation (𝜎𝐺), were not similar between the two sites for 

 

506 extractives, with higher variation at Orleans (i.e, some level of scale effect), whereas, for 
 

507 glucose, the genetic variances were more homogeneous between Orleans and Savigliano 
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508 (1.24 and 1.26, respectively) (i.e., little or no scale effect). Although H-lignin and extractives 
 

509 had similar patterns of partitioning of G × E interaction sum of squares, the Spearman’s rank 
 

510 correlation was much weaker for extractives, which was consistent with the relatively 
 

511 stronger G × E effect on this particular trait, as shown by the ratio of 𝜎2 to 𝜎2 (Table 4). 
 

512 5
1
2 

 
[insert Table 4 here] 

𝐺 𝐺×𝐸 

 

513 Furthermore, we assessed the stability of genotype ranking across rotations or sites on a 
 

514 genotypic mean basis for each wood trait using Spearman’s rank correlation coefficients (𝑟𝑠). 

515 Thus, (𝑟𝑠) between the two rotations were stronger than 0.60 (𝑟𝑠 = 0.64 − 0.71) for all traits 

 

516 except C5/C6, glucose and extractives (Table S4), which was consistent with the relatively 
 

517 low level of G × E interaction observed across rotations for most traits (1-9 %). For C5/C6, 
 

518 glucose and extractives, the correlations were in the range of 0.48-0.50, which was consistent 
 

519 with the relatively higher proportion of G × E interaction variances for these three traits (12- 
 

520 18 %) (Figure 3, Table S4). By contrast, the Spearman’s rank correlations of genotypic 
 

521 means between the two sites were lower than 0.60 for most of the traits (𝑟𝑠 = 0.45 − 0.56), 

522 and has turned out to be much weaker for extractives (𝑟𝑠 = 0.23) and glucose (𝑟𝑠 = 0.34) 
 

523 (Table 4), which corroborated the relatively high level of G × E interaction observed across 
 

524 sites compared to across rotations (Figure 4, Table S5). 

 

525 4. Discussion 
 

526 A study of this scale would not have been possible using the standard method of wood 
 

527 compositional analysis because of the high cost and time required. For example, to analyze 
 

528 the 120 reference samples in two technical replicates using the wet chemistry method, it took 
 

529 about two months. It means that, it would have taken around 8 years to analyze about the 
 

530 6,000 samples included in our study. A way to circumvent such technical limitation is to use 
 

531 an attractive technique that combines NIR spectroscopy with multivariate statistical analysis. 
 

532 NIR spectroscopy is an inexpensive and high-throughput technique for phenotyping large- 
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533 scale wood samples required for the genetic analysis of biofuel related traits and, 
 

534 consequently, it can provide the opportunity to select or develop biofuel-type poplar clones. 
 

535 Nevertheless, NIR spectroscopy is an indirect method which is reliable only if calibration 
 

536 models are provided. In this study, chemical composition data from standard methods and 
 

537 NIR spectra of reference samples were used to develop and validate calibrations taking into 
 

538 consideration the phenotypic variation induced by multi-environment evaluation. The models 
 

539 based on a 120-samples reference set were then used to predict the composition of the 5,799 
 

540 black poplar samples covering the range of the species in Western Europe. Using NIR 
 

541 predictions, we evaluated their genetic variability and the extent of G × E interaction across 
 

542 coppice rotations and sites. To our knowledge, this is the first work to evaluate large-scale 
 

543 clonal trials of P. nigra for wood chemical traits using an indirect method of measurement. 

 

544 4.1. Calibration reliability 
 

545 When global calibration models developed for the prediction of 6 wood chemical traits (H- 
 

546 lignin, S/G, H/G, xylose/glucose, C5/C6, extractives) in samples of European black poplar 
 

547 were tested on an independent validation data set, they gave good fits, with R2
val = 0.72-0.83 

548 and RPDval = 2.0-2.5 (Table 3, Figure S4), suggesting their potential use in genetic analysis 
 

549 of large data sets or for ranking of genotypes with respect to their predicted phenotypic 
 

550 performances in initial selection steps in breeding programs. RPD values of ~ 1.5 indicate 
 

551 that the models are acceptable as initial screening tools, whereas RPD greater than 2.5 
 

552 suggest that the models are good for screening candidates in breeding programs (Yeh et al., 
 

553 2005). Although site effects were apparent on some traits such as xylose/glucose ratio, we 
 

554 were able to develop non-site specific calibrations for such parameters. 
 

555 By contrast, global models for lignin content (Klason lignin, Py-lignin, acid-soluble lignin) 
 

556 showed clearly poorer performance in the validation set than in the calibration set (Table 3). 
 

557 There is no obvious explanation for these apparent differences in global model performance 
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558 between calibration and validation sets. However, it might be related to differences in bark 
 

559 content (bark to wood ratios) of the samples between the two sites since spectra  were 
 

560 recorded on non-debarked wood samples in this study. Although we did not measure the 
 

561 samples bark content, diameter of harvested trees might indicate the bark content of the 
 

562 corresponding samples. The wood samples from Savigliano had larger mean circumference 
 

563 (172.2 mm at 1 m aboveground at harvest) than those from Orleans (45.3 mm and 58.2 mm at 
 

564 ORL2010 and ORL2012 harvests, respectively). Consequently, samples from Savigliano 
 

565 might had less bark content than those from Orleans. We further examined if model fit was 
 

566 better for site specific calibration than global ones for lignin content and found that site 
 

567 specific models were performed only in one of the two sites. Tthe Klason lignin model had a 
 

568 good fit at Orleans, while Py-lignin and acid-soluble lignin models had good fits at 
 

569 Savigliano, which does explain why we could not have global   models for these 
 

570 characteristics. 
 

571 Only a few studies have investigated the efficiency of NIR calibration models for prediction 
 

572 of poplar wood composition and these focused on hybrid poplars instead of natural 
 

573 populations. Robinson and Mansfield (2009) used NIR spectra of 267 wild and transgenic 
 

574 hybrid poplar samples coupled with a modified thioacidolysis protocol for predicting lignin 
 

575 monomer proportions (S, G, and H). The authors reported highly accurate calibrations with 
 

576 prediction R2 values of 0.96, 0.96, and 0.71 for S, G and H, respectively. More recently, Zhou 
 

577 et al. (2011) used Fourier transform infrared spectroscopy (FTIR) and acetyl bromide method 
 

578 to develop a calibration model for predicting lignin content in hybrid poplar wood samples. 
 

579 They reported a strong calibration with cross-validation R2 of 0.81 and prediction R2 of 0.88. 

580 Our global model for H-lignin had higher prediction R2 than the local model developed by 

581 Robinson and Mansfield (2009). However, we found lower prediction R2 values for the 
 

582 predominant G and S lignin monomers. Compared with the lignin model developed by Zhou 
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583 et al. (2011), our local models for Klason lignin, Py-lignin and acid-soluble lignin had 
 

584 slightly lower R2 values. The differences between these previous studies and our work may 
 

585 be largely related to differences in study population and standard laboratory methods. 
 

586 However, as mentioned before, in this study spectra were recorded on non-debarked and non- 
 

587 extracted wood samples because it is practically difficult to debark and extract a large amount 
 

588 of samples (n = ~ 6,000). Although the presence of bark and extractives may disturb the 
 

589 spectra, we still attained sufficiently accurate models for a majority of the traits analysed. 
 

590 Furthermore, the R2 value may be misleading as it depends not only on the model error but 
 

591 also on the range of variation of the trait of interest within or across sites. For example, in this 
 

592 study the effect of site on the range of variation of some of the traits analyzed was quite high 
 

593 (Figure S5). Consequently, different R2 values can be obtained for calibrations for the same 

594 trait at the two sites while still having the same prediction error. Higher R2 values can be 
 

595 obtained for calibrations at site that is more variable than other. 

 

596 4.2. Variabilities, G × E interactions and broad-sense heritability of wood chemical 
 

597 properties 
 

598 In this study, using NIR predictions of a large number of wood samples from P. nigra clonal 
 

599 trials, we assessed variabilities, G × E interaction and broad-sense heritability for wood 
 

600 chemical traits. Yet, the contents of H-lignin, G-lignin, S-lignin, H/G, S/G, Klason lignin, Py- 
 

601 lignin, acid-soluble-lignin, glucose, xylose/glucose, C5/C6 and extractives in wood samples 
 

602 of 5,799 2-yr-old trees were predicted (Figure S5) by the corresponding final NIR calibration 
 

603 models (Table 3). The range of phenotypic variation in most NIR-predicted wood chemical 
 

604 traits in the black poplar populations studied was substantial. Guerra et al. (2013) used 
 

605 Pyrolysis molecular beam mass spectrometry (pyMBMS) to determine C6 sugars, total lignin 
 

606 content and S/G ratio in wood samples of 2-yr-old trees, representing 17 open-pollinated 
 

607 families of P. nigra. Porth et al. (2013) used wet laboratory approaches to determine xylose, 



26  

608 glucose, Klason lignin and acid soluble lignin in wood samples of 9-yr-old trees, representing 
 

609 natural populations of P. trichocarpa. The range of variation observed for predicted glucose 
 

610 content (30.2-49.7 %) in the present study is in accordance with that reported for C6 sugars 
 

611 (27.7-39.7 %) by Guerra et al. (2013) and for glucose (40.7-61.7 %) by Porth et al. (2013). 
 

612 We obtained predicted Klason lignin content (16.1-27.9 %) that is well comparable to the 
 

613 results of total lignin content (Klason and soluble lignin) reported by Guerra et al. (2013) 
 

614 (19.5-26.5 %) and Porth et al. (2013) (14.7-25.7 %). The range of variation of the predicted 
 

615 lignin S/G ratio (0.69-1.43) described in this study doesn’t mirror the range between 1.3 and 
 

616 2.1 reported by Guerra et al. (2013) despite almost the same magnitude of variations, which 
 

617 might arise from the differences in the standard methods of lignin monomers determination. 
 

618 The effects of harvest on some of the predicted wood chemical traits are evident in Figure S5. 
 

619 This motivated us to ask whether there is a significant influence of G × E interaction on the 
 

620 wood chemical traits. Understanding the magnitude and nature of G × E interaction would be 
 

621 useful for establishing breeding objectives. To estimate the importance of G × E interaction, 
 

622 we examined variance contributions of G × E interaction for the wood traits and correlations 
 

623 of same traits between environments based on genotype means. In this study, significant G × 
 

624 E interaction was observed across rotations as well as across the two sites for a majority of 
 

625 the traits assessed, suggesting differential responses of genotypes to the environmental 
 

626 conditions. The G × E interaction variance component explained accounted for 1-18 %a 
 

627 lower proportion of the total variance across rotations, whereas it accounted for 19-27 % than 
 

628 across sites (Figure 3-4, Table S4-S5). T and this was consistent with the rank correlations of 

629     genotype means between rotations (𝑟𝑠 = 0.64 − 0.71) and sites (𝑟𝑠 = 0.45 − 0.56) obtained 

630 for most traits examined (Table S4, Table 4). Together, it implies that genotype ranking was 

631 relatively more maintained between rotations than between sites. The observed differences in 
 

632 the magnitude of interactions between rotations and sites were not surprising, since the clonal 
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633 trials were established at two contrasting sites, particularly in terms of soil fertility. 
 

634 Savigliano is characterized by a higher soil fertility compared to Orleans (Guet et al., 2015). 
 

635 Given the differences in edaphic factors between the trial sites, the significant G × E effect 
 

636 revealed for wood chemical traits across sites could result indirectly from the effects of 
 

637 edaphic factors on tree growth. 
 

638 When the contributions of G × E interaction and genotype main effects to the total 
 

639 phenotypic variances of predicted wood traits were compared, all the traits had a higher 
 

640 percentage of variance due to genetic variance component, suggesting less consequences of 
 

641 interaction in poplar tree breeding for improved wood quality. The exceptions were the 
 

642 glucose and extractives contents across sites, for which the G × E variance components (27 % 
 

643 and 26 %, respectively) were larger than the genetic variance components (24 % and 14 %, 
 

644 respectively), which was also consistent with the relatively lower rank correlations of 
 

645 genotype means between sites for these two traits. Since glucose is one of the key wood 
 

646 chemical traits in term of cellulosic ethanol production, we assessed whether the observed 
 

647 interaction for this trait should be of concern for poplar tree breeders. For this, we partitioned 
 

648 the G × E sum of squares and calculated the number of genotypes contributing to 50 % of the 
 

649 G × E sum of squares for glucose and the other traits. The partitioning of G × E sum of 
 

650 squares across sites for all wood traits indicated that the interaction was mainly caused by re- 
 

651 ranking of a few genotypes between the two sites (Table 3), with a core set of 72 genotypes 
 

652 (10.5 %) out of 683 explained 50 % of G × E sum of squares for half of the traits 
 

653 investigated. Although the G × E interaction seemed more important for glucose and 
 

654 extractives on the basis of the relative magnitude of the variance componentsNevertheless, 
 

655 the partitioning of the G × E sum of squares revealed that the G × E effect they were was 
 

656 mainly caused by a few interactive genotypes as for the other traits. This suggests that the 
 

657 interaction would have less consequences in the poplar tree breeding programs for biofuel 
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658 production because there exists a high possibility to identify genotypes with stable wood 
 

659 quality across the two sites. To test this assumption, we have further computed the relative 
 

660 loss in genetic gain that would arise when selecting the best 5% genotypes for some relevant 
 

661 traits (S/G, H/G, glucose, xylose/glucose, C5/C6) on their genotype mean across the 2 sites 
 

662 instead of their genotype mean within each targeted site. We found that this loss would be 
 

663 fairly low relatively to the maximum expected gain in the two targeted sites (13.1 and 14.3% 
 

664 on average at Orléans and Savigliano, respectively). 
 

665 To date, only a few studies have investigated the effect of G × E interaction on wood 
 

666 chemical properties, especially in poplars. Kačík et al. (2012) studied poplar hybrid clones 
 

667 and reported the presence of significant clone × site interaction for wood chemical traits 
 

668 (lignin content, cellulose, holocellulose, extractives, S/G ratio). However, the authors did not 
 

669 provide further information about the implications of the observed interaction for poplar tree 
 

670 breeding for wood quality. Similarly, Zhang et al. (2015) found significant clone × site 
 

671 interaction for lignin content and extractives in triploid hybrid clones of P. tomentosa. 
 

672 However, clone by site variance exceeded clonal variance only for holocellulose content, for 
 

673 which the authors did not detect significant interaction, and not for lignin content or 
 

674 extractives. 
 

675 Consistent with the observed G × E interaction, extractives content showed had relatively low 
 

676 within-site broad-sense heritability estimates in this study. Compared to the main wood 
 

677 components, extractives content may be of less interest as a direct selection trait in poplar 
 

678 breeding programs for biofuel production. Since chemical analysis was carried out on non- 
 

679 debarked wood samples in the present study, we wondered if such particular pattern of 
 

680 variation for extractives content would be somehow related to variation in bark proportion. 
 

681 To test this hypothesis, we sought to use the diameter of the samples as a proxy of bark 
 

682 proportion: samples with relatively large diameter are expected to have less bark, and 
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683 consequently, less extractives. Clearly, extractives content tended to decrease with increasing 
 

684 tree diameter (not shown). We thus extended our G × E analyses to tree circumference at 1 m 
 

685 aboveground at harvest in order to check if it could explain the particular pattern of variation 
 

686 observed for extractives in comparison with the other wood chemical traits. Interestingly, we 
 

687 found that, albeit highly significant, the G × E interaction effect accounted for much less 
 

688 variation than the genotype main effect, resulting in G to G × E variances ratio of 3.90 and 
 

689 1.31, as well as rank correlations between genotype means of 0.68 and 0.53 across rotations 
 

690 and sites, respectively (Table S6). This pattern of G × E across rotations and sites was pretty 
 

691 much consistent with the pattern observed for all wood chemical traits, but did not explain the 
 

692 exceptionally interactive aspect of extractives. We thus conclude that, of all the traits 
 

693 evaluated in this study, extractives content was the most interactive trait with moderate 
 

694 heritability and we found no evidence for our hypothesis that the G × E effect on extractives 
 

695 is confounded by G × E effect on tree circumference. This result is also supported by the fact 
 

696 that we developed a good global calibration for extractives regardless of the differences in 
 

697 sample bark content between the two sites. 
 

698 We also quantified the extent of genetic variation present within the European populations of 
 

699 black poplar in the clonal trials using the NIR predictions. Broad-sense heritability was 
 

700 estimated at both individual tree and clonal mean levels. For clonal selectionpopulations, 
 

701 clonal mean broad-sense heritability (clonal repeatability) is more meaningful. Genetic 
 

702 analysis with NIR predictions revealed that the studied wood chemical traits were under 
 

703 moderate to  high genetic control,  . However, care must be taken when interpreting the 
 

704 heritability estimates reported in the present study because they were estimated from 
 

705 phenotypic data that had been adjusted for within-site non-genetic random effects like block, 
 

706 date and spatially dependent residuals. Consequently, they were overestimated to an extent 
 

707 that corresponds to an omission of non-genetic random variances in the denominator of the 
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708 heritability ratio when estimated from the first model (using all genotypes within each 
 

709 harvest, as reported in Table S3). with clonal repeatability varied from 0.57 ± 0.09 
 

710 (extractives at ORL2012) to 0.89 ± 0.01 (lignin S/G ratio at SAV2011) in the 3 harvests 
 

711 based on shared genotypes and an average number of 2.7-2.8 replicates per genotype (Figure 
 

712 1-2, Table S1-S2). Useful heritability estimates were obtained with high precision. TheseStill, 
 

713 our results suggested that satisfactory genetic gains could be realized in wood chemical traits 
 

714 through clonal selection using a minimum fairly  low number of replicates (2.7-2.8 per 
 

715 genotype on average) when NIR analysis is integrated in a breeding program to evaluate large 
 

716 sets of candidate clones. In this regard, the information produced in this research could be 
 

717 used for screening individuals with desirable traits from large-scale clonal trials as future 
 

718 potential parent trees for hybrid breeding programs aimed at cellulosic ethanol production. A 
 

719 general trend was observed for the studied traits in terms of clonal repeatability. Lignin 
 

720 monomers and lignin composition had the highest values, followed by lignin contents, cell 
 

721 wall sugars and extractives (Figure 1-2, Table S1-S2). However, the estimated clonal 
 

722 repeatability differed more between sites than between rotations for the same traits, which 
 

723 was in agreement with the G × E interaction results. The higher clonal repeatability estimates 
 

724 obtained for most of the traits at Savigliano may be explained by the existence of a relatively 
 

725 favourable growth conditions for poplar trees at this site, which resulted in both increased 
 

726 expression of genetic variation and reduced residual variation. Savigliano could be a suitable 
 

727 growth site to apply the clonal evaluation as it provided the genotypes relatively suitable 
 

728 conditions for expressing their genetic potential compared to Orleans. 
 

729 Using direct method of measurements, previous studies in P. nigra (Guerra et al., 2013) and 
 

730 P. trichocarpa (Guerra et al., 2016; Porth et al., 2013; Wegrzyn et al., 2010) have also shown 
 

731 that wood chemical properties are under moderate to high genetic control. For example, 
 

732 Guerra et al. (2013) studied 17 cloned open-pollinated families of P. nigra and reported 
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733 individual broad-sense heritability (𝐻2) values of 0.46, 0.58 and 0.70 for C6 sugars, lignin 

734 and S/G, respectively. In the current report, the estimated 𝐻2 values of 0.47 ± 0.05-0.55 ± 

735 0.04, 0.52 ± 0.07-0.59 ± 0.06 and 0.55 ± 0.04-75 ± 0.03 for glucose, Klason lignin and S/G, 

736 respectively, compares favourably well with 𝐻2 values reported by these previous authors 

 

737 (Figure 1-2, Table S1-S2). More recently, Guerra et al. (2016) studied P. trichocarpa clones 
 

738 sampled in provenances and reported the clonal repeatability (𝐻2) estimates of 0.22, 0.33 and 

 

739 0.81 for C6 sugars, lignin and S/G, respectively, with an average number of 3 biological 
 

740 replicates per clone. In comparison with the results of S/G reported by these authors, we 
 

741 found similar 𝐻2 values for S/G (0.77 ± 0.03-0.89 ± 0.01) (Figure 1-2, Table S1-S2). Porth et 
 

742 al. (2013) studied the narrow-sense heritability of several wood properties in natural 
 

743 populations of P. trichocarpa using molecular markers to measure relatedness and reported 
 

744 values of 0.46, 0.66, 0.97 for glucose, Klason lignin and soluble lignin, respectively. We 
 

745 found higher clonal repeatability for glucose (0.70 ± 0.04-0.77 ± 0.03) and Klason lignin 
 

746 (0.75 ± 0.05-0.80 ± 0.04), but a lower value for acid-soluble lignin (0.83 ± 0.02), indicating 
 

747 that acid-soluble lignin may be under relatively lower genetic control in P. nigra than P. 
 

748 trichocarpa (Figure 1-2, Table S1-S2). 

 

749 4.3. Adapting the NIR method to clonal trials 
 

750 An initial step to harness the standing genetic variation in poplar is to evaluate natural 
 

751 populations in multi-site clonal trials. This allows to study the relative importance of genetic, 
 

752 environment and G × E interaction of genotype by environment on important biomass 
 

753 production and biomass composition related traits. In parallel, screening good candidates 
 

754 from clonal trials as future parents would increase the genetic diversity available for breeding 
 

755 poplar trees for cellulosic ethanol production. The goal of bioenergy poplar breeding program 
 

756 is to simultaneously improve biomass production and biomass composition. To incorporate 
 

757 wood quality traits into breeding programs, however, tree breeders need a low-cost and high- 
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758 throughput techniques for determination of biomass composition. Standard methods for 
 

759 analysis of biomass composition such as wet chemistry are useful for evaluating small sample 
 

760 sets, but they had have limitations to be used in tree breeding programs, where screening of a 
 

761 large number of samples is mandatory to identify those possessing desirable traits. Standard 
 

762 methods are laborious, costly and time consuming. An alternative way is to use NIR 
 

763 spectroscopy coupled with multivariate statistical approaches. NIR spectroscopy is a high- 
 

764 throughput technique for screening a large population. It is easy to operate, allows non- 
 

765 destructive analysis, needs little sample preparation, provides reliable information, requires 
 

766 less time and minimal cost for assessing large number of samples and captures multiple 
 

767 features of the samples with one operation (Lupoi et al., 2014). 
 

768 The moderate to high heritability estimates and the detection of G × E interaction in this 
 

769 study are encouraging for NIR determination of wood chemical traits and for use in poplar 
 

770 breeding programs for cellulosic ethanol production. Integration of NIR analysis in multi-site 
 

771 clonal trials would allow simultaneous multi-trait evaluation and gives access to identify 
 

772 potential trade-offs between biomass production and biomass composition, which in turn, 
 

773 supports poplar breeding programs to better monitor multi-trait selection and exploit the large 
 

774 variation present in natural gene pools. As a first check at the genotypic level, we have 
 

775 computed the correlations within each harvest between growth and wood properties and 
 

776 haven’t found any adverse correlation within our dataset (Table S7). These results are 
 

777 encouraging towards the development of performing clones dedicated to biomass and biofuel 
 

778 production. 
 

779 Despite its importance, optimal procedures for developing NIR calibrations for rapid 
 

780 prediction of wood composition in multi-site poplar clonal trials are not well established. In 
 

781 the present study, we developed NIR calibration models and successfully applied this indirect 
 

782 method to analyze the sources and extent of variability and sources of variability for wood 
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783 chemical traits in large-scale clonal trials of P. nigra, which is the first work, as far as we 
 

784 know. Finally, future work on development of new calibration models would be useful to 
 

785 further establish the NIR calibration protocols for clonal trials. Some of the important points 
 

786 to consider will be the number of technical replicates for the reference samples to reduce the 
 

787 uncertainties associated with the standard methods and the number of biological replicates 
 

788 per genotype to reach enough accuracy on a clonal basis. 

 

789 5. Conclusions 
 

790 From our study of wood chemical traits in clonal trials of European black poplar at two 
 

791 contrasting sites, three important conclusions can be drawn. (1) We successfully developed 
 

792 global and site specific NIR calibration models for predicting wood chemical traits in natural 
 

793 populations of European black poplar with reasonable accuracy. (2) We demonstrated the 
 

794 high throughput nature of the NIR method, by applying the calibrations to predict the wood 
 

795 chemical composition of the 5,799 trees and by the analyses of these NIR predictions to 
 

796 estimate trait variance components and broad-sense heritabilities. (3) We further used the 
 

797 NIR predictions to test and evaluate the extent of G × E interaction across coppice rotations 
 

798 within a single site as well as across sites. 
 

799 In this study, the moderate to high heritability estimates and the detection of G × E 
 

800 interaction suggests that the NIR-based technique can efficiently be used for dissecting the 
 

801 genetic basis of wood chemical properties in a multi-environment large-scale poplar clonal 
 

802 trials and for screening elite individuals from such trials as future parents for interspecific 
 

803 hybridization. Integration of such indirect method in poplar tree breeding programs would 
 

804 allow the exploitation of standing genetic variation in poplars for developing poplar 
 

805 genotypes that combine high biomass yield with superior wood quality for cellulosic ethanol 
 

806 production. Furthermore, the observed moderate to strong genetic control over the NIR- 
 

807 predicted wood chemical traits should pave the way for more detailed dissection of the 
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808 genetic and molecular basis of the NIR-predicted wood compositional variation through 
 

809 molecular marker analysis of the NIR predictions. In particular, it would be useful to extend 
 

810 such analysis to association mapping aimed at identifying individual loci controlling the 
 

811 predicted phenotypic variation in the studied population of P. nigra. 
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1010 FIGURES CAPTIONS 

 

1011 

 
1012 

Figure 1. Estimated clonal mean broad-sense heritability (clonal repeatability) (𝐻2) with 

error bars corresponding to the 95 % confidence intervals (CIs) for NIR-predicted wood 

1013 chemical traits evaluated in 2-yr-old Populus nigra trees grown in a clonal trial at Orleans 
 

1014 (France). Trees grown over two successive 2-yr rotations (2008-2009, 2010-2011) of the 
 

1015 same stool. ORL2010 and ORL2012 represent harvests from the first and second coppice 
 

1016 rotations, respectively, within a trial at Orleans. For trait abbreviations see the caption of 
 

1017 

 
1018 

Table 2. 

 

1019 

 
1020 

Figure 2. Estimated clonal mean broad-sense heritability (clonal repeatability) (𝐻2) with 

error bars corresponding to the 95% confidence intervals (CIs) for NIR-predicted wood 

1021 chemical traits evaluated in 2-yr-old Populus nigra trees grown in clonal trials at two 
 

1022 contrasting sites (Orleans, France; Savigliano, Italy). Trees grown over two successive 2-yr 
 

1023 rotations at Orleans (2008-2009, 2010-2011) and 1-yr and 2-yr rotations at Savigliano (2008, 
 

1024 2009-2010) of the same stool. Results are based on the data from the second rotations at the 
 

1025 two sites. ORL2012 and SAV2011 represent harvests from Orleans and Savigliano, 
 

1026 

 
1027 

respectively. For trait abbreviations see the caption of Table 2. 

 

1028 Figure 3. Decomposition of total phenotypic variance for NIR-predicted wood chemical 
 

1029 traits evaluated in 2-yr-old Populus nigra trees grown in a clonal trial at Orleans (France). 
 

1030 Stacked barplot of the percentage of the total phenotypic variance explained by the genotype 
 

1031 main effect (𝜎2), genotype × environment (G × E) interaction effect (𝜎2 ) and residual 
𝐺 𝐺×𝐸 

 

1032 

 
1033 

effect (𝜎2) variance components for 10 wood chemical traits evaluated across first and 

second coppice rotations within a trial at Orleans (ORL2010 and ORL2012 harvests, 

1034 respectively) using 289 shared genotypes. For trait abbreviations see the caption of Table 2. 
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𝑒 

1035 
 

1036 Figure 4. Decomposition of total phenotypic variance for NIR-predicted wood chemical 
 

1037 traits evaluated in 2-yr-old Populus nigra trees grown in clonal trials at two contrasting sites. 
 

1038 Stacked barplot of the percentage of the total phenotypic variance explained by the genotype 
 

1039 main effect (𝜎2), genotype × environment (G × E) interaction effect (𝜎2 ) and residual 
𝐺 𝐺×𝐸 

 

1040 

 
1041 

effect (𝜎2) variance components for 9 wood chemical traits evaluated across sites (Orleans 

and Savigliano) using 683 shared genotypes. ORL2012 and SAV2011 represent harvests 

1042 from Orleans and Savigliano, respectively. For trait abbreviations see the caption of Table 2. 
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1043 TABLES 

 

1044 Table1. Location, river management and number of studied genotypes in ORL and SAV for the 14 P. nigra metapopulations. Where metapopulations were 

1045 represented by individual trees sampled in different stands distributed along one river, a range of latitudes, longitudes and altitudes is given. Metapopulations 

1046 were ordered by country according to the latitude of origin. Altitude is expressed in metres a.s.l. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1Juvenile trees were defined as non-reproductive trees. 

2Regulated if water flows have been regulated to facilitate navigation or to prevent floods; dynamic if water flows are not regulated and allow some 

flooding events. 

 

1047 

 
Country 

River 
catchment 

 
Metapopulation 

 
Latitude 

 
Longitude 

 
Altitude 

 
Cohorts1 

River 
management2 

Number of studied 
  genotypes  

        ORL SAV Common 

France Adour Adour 42°53′N–43°23′N 0°02′W–00°56′W 52-902 Mature Partially 
regulated 

62 52 49 

Italy Basento Basento 40°24’N-40°38’N 15°56’E-16°39’E 37-286 Juvenile/mature Partially 
regulated 

26 15 14 

France Dranse Dranse 46°23′N 06°30′E 374 Juvenile/mature Dynamic 40 42 39 

France Durance Durance 43°51’N 04°59’E 60 Juvenile/mature Partially 

regulated 

14 8 1 

Germany Kuhkopf Kuhkopf 49°49’N 08°30’E 91 Juvenile/mature Regulated 53 46 37 

France Loire Loire 47°00’N-47°51’N 00°44’W-02°58’E 29-154 Juvenile/mature Dynamic 215 197 165 

Netherlands NL NL 50°31’N-52°37’N 03°35’E-06°23’E 0-287 Mature Regulated 47 42 37 

France Nohèdes Nohede 42°37′N 02°17′E 820 Mature Dynamic 43 38 35 

Italy Paglia Paglia 42°45′N–42°52′N 11°45′E–11° 55′E 235-358 Juvenile/mature Dynamic 47 42 41 

France Drôme Ramieres 44°41′N–44°45′N 04°55′E–05°24′E 145 Juvenile/mature Dynamic 178 99 91 

France Rhin Rhin 48°16′N–48°37′N 07°41′E–07°49′E 135-160 Mature Regulated 66 50 48 

Italy Stura Stura 44°17’N-44°23’N 06°56’E-07°12’E 825-1699 Juvenile/mature Dynamic 25 29 25 

Italy Ticino Ticino 45°12′N–45°16′N 08°59′E–09°04′E 60-70 Juvenile/mature Dynamic 103 78 62 

France Allier ValAllier 46°24′N 03°19′E 220 Juvenile/mature Dynamic 147 39 39 
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1048 Table 2. Descriptive statistics for lignin monomers (H, G, S), lignin composition (H/G, S/G), 
 

1049 lignin content (Klason lignin, Py-lignin, acid-soluble lignin), cell wall sugars (xylose, 
 

1050 glucose, xylose/glucose, C5/C6) and extractives analyzed by standard laboratory methods for 
 

1051 the 120 reference wood samples of 2-yr-old Populus nigra trees grown in clonal trials at two 
 

1052 contrasting sites. Values are based on individual trees. 
 

1053 DW: dry weight; CWR: cell wall residue (extractives-free dry weight); RMSE: root mean 
 

1054 square error of the standard methods for replicate analysis. 

 
1055  

 Trait Unit RMSE Min. Max. Mean 

  %     

  
H-lignin 

CWRLi 

gnin 

 
0.60 

 
2.80 

 
11.0 

 
5.00 

  %     

  
G-lignin 

CWRLi 

gnin 

 
0.84 

 
41.20 

 
53.10 

 
46.40 

  %     

  
S-lignin 

CWRLi 

gnin 

 
1.01 

 
39.50 

 
54.90 

 
48.60 

 H/G fold 0.01 0.05 0.25 0.11 

 S/G fold 0.03 0.86 1.34 1.06 

 Klason lignin % CWR 1.61 16.80 26.5 21.50 

 Py-lignin % CWR 1.49 20.20 27.00 23.10 

 Acid-soluble lignin % CWR 0.32 4.60 7.00 6.10 

 Xylose % CWR 1.15 13.10 18.70 15.30 

 Glucose % CWR 1.87 30.60 50.30 40.40 

 Xylose/Glucose fold 0.03 0.29 0.48 0.38 

 C5/C6 fold 1.14 17.9 29.30 23.90 

 Extractives % DW 0.54 6.20 17.70 10.40 

1056       
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cv 

val val 

1057 Table 3. NIR calibration models (leave-one-out cross-validation) and validation statistics for 
 

1058 the wood chemical properties of 2-yr-old Populus nigra trees grown in clonal trials at two 
 

1059 contrasting sites based on NIR spectroscopy measurements of 120 reference samples. For 
 

1060 

 
1061 

 
1062 

 
1063 

 
1064 

 
1065 

trait abbreviations see the caption of Table 2. 

 

nblambda: wavenumber; nbcomp: number of PLS components; R2 : coefficient of 

determination of cross-validation; RMSEcv: root mean square error of cross-validation; 

RPDcv: ratio of performance to deviation of cross-validation; nobs: number of samples 

statistically analyzed; R2 : coefficient of determination of validation; RMSE : root mean 

square error of validation; RPDval: ratio of performance to deviation of validation; norm: 

1066 normalized spectra; dt: detrending spectra; der1: first derivative spectra; der2: second 
 

1067 

 
1068 

 
1069 

derivative spectra; norm-der1: first derivative on normalized spectra; norm-der2: second 

derivative on normalized spectra; Full range spectrum: 8,000-4,000 cm-1. 
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1070 
 

 

 

Trait Model type 

Calibration set 

(n = ~ 5/6) 

Validation set 

(n = ~ 1/6) 

nblambda Pretreatment nbcomp 
2 

RMSE RPD nobs 
nb.

 2 RMSE RPD nobs 
nb.

 
R cv cv cv outliers 

R val 
val val 

outliers 
 

 

H-lignin Global Full range der2 9 0.75 0.80 2.0 91 8 0.80 0.89 2.3 21 0 

G-lignin Global 29 der2 5 0.68 1.26 1.8 94 5 0.51 1.33 1.5 20 1 

S-lignin Global Full range norm-der2 13 0.64 1.25 1.7 90 9 0.77 1.02 2.2 20 1 

H/G Global 652 der2 8 0.82 0.02 2.4 92 7 0.83 0.02 2.5 19 2 

S/G Global 947 norm-der2 12 0.84 0.03 2.5 91 8 0.72 0.04 2.0 21 0 

Global Full range der1 5 0.61 1.17 1.6 91 8 0.27 1.44 1.2 20 1 

Klason lignin 

 

 

Py-lignin 

 

 
Acid-soluble 

lignin 

Site: ORL Full range dt 6 0.78 0.94 2.2 56 10 0.60 1.31 1.6 13 1 

Site: SAV Full range der2 5 0.25 1.43 1.2 33 0 -4.33 1.22 0.5 7 0 

Global Full range norm-der2 7 0.75 0.59 2.0 97 2 -0.18 0.78 1.0 21 0 

Site: ORL Full range norm-der2 7 0.72 0.65 1.9 65 1 -1.43 0.87 0.7 14 0 

Site: SAV Full range der1 8 0.79 0.39 2.2 26 7 0.73 0.35 2.1 6 1 
 

Global Full range der2 7 0.61 0.23 1.6 92 7 0.35 0.29 1.3 18 3 

Site: ORL Full range norm-der2 6 0.49 0.25 1.4 61 5 0.21 0.29 1.2 13 1 

 

 

 

 

 

 

 

1071 

 Site: SAV Full range norm-der2 8 0.77 0.16 2.1 30 3 0.79 0.15 2.4 6 1 

Xylose Global Full range der1 6 0.48 0.73 1.4 88 11 0.29 0.85 1.2 21 0 

Glucose Global 46 norm-der1 6 0.76 1.49 2.0 94 5 0.64 1.25 1.7 18 3 

Xylose/Glucose Global 28 norm 8 0.79 0.02 2.2 90 9 0.75 0.02 2.0 20 1 

C5/C6 Global 129 der2 6 0.85 0.89 2.6 91 8 0.81 1.08 2.4 21 0 

Extractives Global 326 der1 9 0.91 0.74 3.3 91 8 0.74 1.03 2.0 20 1 
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1072 Table 4: Partitioning of genotype × environment (G × E) interaction sum of squares (SS G × 

1073 E) across sites for NIR-predicted wood chemical traits evaluated in 2-yr-old Populus nigra 

1074 trees grown in clonal trials at two contrasting sites using 683 shared genotypes according to 

1075 Method 1 of Muir et al. (Muir et al., 1992). Proportion of genotypes explaining 50 % of the G 

1076 

 
1077 

× E SS was calculated according to their relative stability ecovalence based on the first 

 
definition of this stability parameter given by Lin et al. (Lin et al., 1986). For trait 

1078 

 
1079 

 
1080 

abbreviations see the caption of Table 2. 

 

𝑟𝑠: Spearman's rank correlation coefficient. 

 
 

 

% SS G × E 

Proportion of 

genotypes 

𝜎2 
𝐺/ 2

 Scale Re- explaining 50 

 
𝐺 0𝑅𝐿 

 
𝐺 𝑆𝐴𝑉 

𝜎𝐺×𝐸 
𝑠  Trait 𝜎 𝜎  𝑟 effect ranking % of G × E SS 

H-lignin 0.52 0.79 1.66 0.56 14.61 85.39 12.30 

G-lignin 0.80 0.77 1.49 0.46 1.46 98.54 10.25 

S-lignin 1.29 1.83 1.50 0.51 6.53 93.47 10.69 

H/G 0.01 0.02 1.57 0.53 11.33 88.67 13.47 

S/G 0.05 0.07 1.59 0.54 2.52 97.48 9.22 

Glucose 1.24 1.26 0.91 0.34 0.23 99.77 10.25 

Xylose/Glucose 0.01 0.01 1.47 0.45 0.02 99.98 11.71 

C5/C6 0.76 0.77 1.95 0.49 0.01 99.99 11.13 

Extractives 1.06 0.68 0.54 0.23 14.92 85.08 10.69 

1081        
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Figure S5 

Click here to download Video Still: FigureS5.eps 
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Figure S6 

Click here to download Video Still: FigureS6.eps 
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Table S1 

Click here to download Video Still: TableS1.xlsx 
 
 
 

Trait Harvest NbGenot NbRep σ2 
G ± SE σ2 

e ± SE H2 
i 

H-lignin Orl2010 289 2.8 0.36 0.04 0.35 0.02 0.51 

H-lignin Orl2012 289 2.7 0.25 0.03 0.17 0.01 0.59 

G-lignin Orl2010 289 2.8 0.67 0.08 0.63 0.04 0.52 

G-lignin Orl2012 289 2.7 0.70 0.08 0.59 0.04 0.54 

S-lignin Orl2010 289 2.8 2.10 0.22 1.31 0.08 0.61 

S-lignin Orl2012 289 2.7 1.76 0.20 1.51 0.10 0.54 

H/G Orl2010 289 2.8 0.00 0.00 0.00 0.00 0.52 

H/G Orl2012 289 2.7 0.00 0.00 0.00 0.00 0.57 

S/G Orl2010 289 2.8 0.00 0.00 0.00 0.00 0.61 

S/G Orl2012 289 2.7 0.00 0.00 0.00 0.00 0.55 

Klason lignin Orl2010 289 2.8 0.90 0.10 0.62 0.04 0.59 

Klason lignin Orl2012 289 2.7 0.64 0.07 0.60 0.04 0.52 

Glucose Orl2010 289 2.8 1.44 0.17 1.50 0.09 0.49 

Glucose Orl2012 289 2.7 1.65 0.19 1.62 0.10 0.50 

Xyl/Glu Orl2010 289 2.8 0.00 0.00 0.00 0.00 0.49 

Xyl/Glu Orl2012 289 2.7 0.00 0.00 0.00 0.00 0.59 

C5/C6 Orl2010 289 2.8 0.79 0.08 0.53 0.03 0.60 

C5/C6 Orl2012 289 2.7 0.56 0.06 0.51 0.03 0.52 

Extractives Orl2010 289 2.8 1.90 0.23 2.05 0.13 0.48 

Extractives Orl2012 289 2.7 0.91 0.14 1.84 0.12 0.33 

http://ees.elsevier.com/indcro/download.aspx?id=579514&guid=67f439ea-3476-416a-9209-d31b0f8f353c&scheme=1


 

Table S2 

Click here to download Video Still: TableS2.xlsx 
 
 
 

Trait Harvest NbGenot NbRep σ2 
G ± SE σ2 

e ± SE H2 
i 

H-lignin Orl2012 683 2.7 0.27 0.02 0.17 0.01 0.62 

H-lignin Sav2011 683 2.8 0.62 0.04 0.23 0.01 0.73 

G-lignin Orl2012 683 2.7 0.65 0.05 0.62 0.03 0.51 

G-lignin Sav2011 683 2.8 0.59 0.04 0.32 0.01 0.64 

S-lignin Orl2012 683 2.7 1.65 0.12 1.48 0.06 0.53 

S-lignin Sav2011 683 2.8 3.36 0.21 1.25 0.05 0.73 

H/G Orl2012 683 2.7 0.00 0.00 0.00 0.00 0.59 

H/G Sav2011 683 2.8 0.00 0.00 0.00 0.00 0.69 

S/G Orl2012 683 2.7 0.00 0.00 0.00 0.00 0.55 

S/G Sav2011 683 2.8 0.00 0.00 0.00 0.00 0.75 

Py-lignin Orl2012 NA NA NA NA NA NA NA 

Py-lignin Sav2011 683 2.8 0.14 0.01 0.16 0.01 0.46 

Soluble lignin Orl2012 NA NA NA NA NA NA NA 

Soluble lignin Sav2011 683 2.8 0.05 0.00 0.03 0.00 0.64 

Glucose Orl2012 683 2.7 1.54 0.12 1.74 0.07 0.47 

Glucose Sav2011 683 2.8 1.58 0.11 1.30 0.05 0.55 

Xyl/Glu Orl2012 683 2.7 0.00 0.00 0.00 0.00 0.53 

Xyl/Glu Sav2011 683 2.8 0.00 0.00 0.00 0.00 0.61 

C5/C6 Orl2012 683 2.7 0.58 0.04 0.51 0.02 0.53 

C5/C6 Sav2011 683 2.8 0.60 0.04 0.47 0.02 0.56 

Extractives Orl2012 683 2.7 1.12 0.10 1.87 0.08 0.38 

Extractives Sav2011 683 2.8 0.47 0.04 0.57 0.02 0.45 

http://ees.elsevier.com/indcro/download.aspx?id=579515&guid=be84d6cb-c7b1-4ea7-ab4b-88d7d0f9fec9&scheme=1


 

Table S3 

Click here to download Video Still: TableS3.xlsx 
 

 

Var.  genot Var.   bloc Var.  date 
 

G b 
Trait Harvest 

(σ2 ) 
± SE 

(σ2 ) 
± SE (σ2 ) 

d 

H-lignin ORL2010 0.36 0.04 0.05 0.08 0.09 

H-lignin ORL2012 0.26 0.01 0.01 0.02 0.07 

H-lignin SAV2011 0.62 0.04 NA NA 0.11 

G-lignin ORL2010 0.67 0.08 NA NA 0.10 

G-lignin ORL2012 0.64 0.04 NA NA 0.18 

G-lignin SAV2011 0.59 0.04 NA NA 0.07 

S-lignin ORL2010 2.09 0.22 NA NA 0.14 

S-lignin ORL2012 1.63 0.10 NA NA 0.09 

S-lignin SAV2011 3.30 0.19 NA NA 0.25 

H/G ORL2010 0.00 0.00 0.00 0.00 0.00 

H/G ORL2012 0.00 0.00 NA NA 0.00 

H/G SAV2011 0.00 0.00 NA NA 0.00 

S/G ORL2010 0.00 0.00 0.00 0.00 0.00 

S/G ORL2012 0.00 0.00 0.00 0.00 0.00 

S/G SAV2011 0.00 0.00 0.00 0.00 0.00 

Klason lignin ORL2010 0.90 0.10 NA NA 0.10 

Klason lignin ORL2012 0.65 0.04 NA NA 0.03 

Klason lignin SAV2011 NA NA NA NA NA 

Py-lignin ORL2010 NA NA NA NA NA 

Py-lignin ORL2012 NA NA NA NA NA 

Py-lignin SAV2011 0.14 0.01 NA NA 0.03 

Soluble lignin ORL2010 NA NA NA NA NA 

Soluble lignin ORL2012 NA NA NA NA NA 

Soluble lignin SAV2011 0.04 0.00 NA NA 0.01 

Glucose ORL2010 1.44 0.17 0.05 0.08 0.06 

Glucose ORL2012 1.50 0.10 0.20 0.32 0.13 

Glucose SAV2011 1.55 0.11 NA NA 0.06 

Xyl/Glu ORL2010 0.00 0.00 0.00 0.00 0.00 

Xyl/Glu ORL2012 0.00 0.00 NA NA 0.00 

Xyl/Glu SAV2011 0.00 0.00 NA NA 0.00 

C5/C6 ORL2010 0.79 0.08 0.02 0.02 0.01 

C5/C6 ORL2012 0.55 0.04 NA NA 0.01 

C5/C6 SAV2011 0.61 0.04 NA NA 0.04 

Extractives ORL2010 1.89 0.23 0.17 0.20 0.07 

Extractives ORL2012 1.19 0.09 NA NA 0.06 

Extractives SAV2011 0.47 0.04 0.25 0.28 0.08 
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Table S4 

Click here to download Video Still: TableS4.xlsx 
 

 

NbRep/G 

enot/Har 
 

Trait NbGenot vest σ2 
G ± SE σ2 

GxE ± SE σ2 
e ± SE 

H-lignin 289 2.7 0.30 0.03 0.00 0.01 0.26 0.01 

G-lignin 289 2.7 0.62 0.06 0.07 0.03 0.61 0.03 

S-lignin 289 2.7 1.70 0.18 0.22 0.07 1.42 0.06 

H/G 289 2.7 0.00 0.00 0.00 0.00 0.00 0.00 

S/G 289 2.7 0.00 0.00 0.00 0.00 0.00 0.00 

Klason lignin 289 2.7 0.64 0.07 0.13 0.03 0.61 0.03 

Glucose 289 2.7 1.13 0.14 0.40 0.09 1.56 0.07 

Xyl/Glu 289 2.7 0.00 0.00 0.00 0.00 0.00 0.00 

C5/C6 289 2.7 0.45 0.06 0.21 0.04 0.52 0.02 

Extractives 289 2.7 1.01 0.14 0.39 0.10 1.95 0.09 
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Table S5 

Click here to download Video Still: TableS5.xlsx 
 

 

NbRep/G 

enot/Har 
 

Trait NbGenot vest σ2 
G ± SE σ2 

GxE ± SE σ2 
e ± SE 

H-lignin 683 2.8 0.28 0.02 0.17 0.01 0.20 0.01 

G-lignin 683 2.8 0.37 0.03 0.25 0.02 0.46 0.01 

S-lignin 683 2.8 1.52 0.13 1.01 0.08 1.36 0.04 

H/G 683 2.8 0.00 0.00 0.00 0.00 0.00 0.00 

S/G 683 2.8 0.00 0.00 0.00 0.00 0.00 0.00 

Glucose 683 2.8 0.75 0.09 0.82 0.08 1.51 0.04 

Xyl/Glu 683 2.8 0.00 0.00 0.00 0.00 0.00 0.00 

C5/C6 683 2.8 0.39 0.03 0.20 0.02 0.49 0.01 
Extractives 683 2.8 0.28 0.05 0.52 0.05 1.20 0.03 
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G e 

Table S6 

Click here to download Video Still: TableS6.xlsx 
 
 

 
Nb. Of 

 
Var. genot 

 
Var. GxE 

 
Var. resid 

Trait Environment 
Genot (σ2  ) 

± SE 
(σ2 

 
GxE 

± SE 
) (σ2  ) 

± SE 

 

Circ-sqrt Rotation 1078 0.56 0.03 0.14 0.01 0.68 0.01 

Circ-sqrt Site 708 0.98 0.08 0.75 0.05 1.05 0.02 
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