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Abstract 10 

In this study the capabilities of seven multispectral and hyperspectral satellite imagers to 11 

estimate soil variables (clay, sand, silt and organic carbon content) were investigated using 12 

data from soil spectral libraries. Four current (EO-1 ALI and Hyperion, Landsat 8 OLI, 13 

Sentinel-2 MSI) and three forthcoming (EnMAP, PRISMA and HyspIRI) satellite imagers 14 

were compared. To this aim, two soil spectra datasets that simulated each imager were 15 

obtained: (i) resampled spectra according to the specific spectral response and resolution of 16 

each satellite imager and (ii) resampled spectra with declared or actual noise (radiometric and 17 

atmospheric) added. Compared with those using full spectral resolution data, the accuracy of 18 

Partial Least Square Regression (PLSR) predictive models generally decreased when using 19 

resampled spectra. In the absence of noise, the performances of hyperspectral imagers, in 20 

terms of Ratio of Performance to Interquartile Range (RPIQ), were generally significantly 21 

better than those of multispectral imagers. For instance the best RPIQ for sand estimation was 22 

obtained using EnMAP simulated data (2.56), whereas the outcomes gained using 23 

multispectral imagers varied from 1.56 and 2.28. The addition of noise to the simulated 24 

spectra brought about a decrease of statistical accuracy in all estimation models, especially for 25 
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Hyperion data. Although the addition of noise reduced the performance differences between 26 

multispectral and hyperspectral imagers, the forthcoming hyperspectral imagers nonetheless 27 

provided the best RPIQ values for clay (2.16–2.33), sand (2.10–2.17), silt (2.77–2.85) and 28 

organic carbon (2.48–2.51) estimation. To better understand the impact of spectral resolution 29 

and signal to noise ratio (SNR) on the estimation of soil variables, PLSR models were applied 30 

to resampled and simulated spectra, iteratively increasing the bandwidth to: 10, 20, 40, 80 and 31 

160 nm. Results showed that, for a bandwidth of 40 nm, i.e., a spectral resolution lower than 32 

that of current and forthcoming imagers, the estimation accuracy was very similar to that 33 

obtained with a higher spectral resolution. 34 

Forthcoming hyperspectral imagers will therefore improve the accuracy of soil variables 35 

estimation from bare soil imagery with respect to the results achievable by current 36 

hyperspectral and multispectral imagers. This work provides useful indications for the future 37 

application of satellite data in Soil Science, and for the estimation of the most important soil 38 

variables by next generation satellite imagers. 39 

Keywords: imaging spectroscopy, sand, clay, spectral library, SNR, PLSR, PRISMA, EnMAP, 40 

HyspIRI  41 

 42 

1. Introduction 43 

 44 

Understanding variability of soil properties between and within agricultural fields allows for 45 

more efficient use of resources, improving agronomic and environmental management. The 46 

qualitative information included in existing soil maps is often insufficient for site-specific 47 

management strategies concerning water, fertilizers, herbicides or harvest. For these purposes, 48 

the quantitative estimation of soil properties (e.g., soil texture, organic carbon, nitrogen, and 49 
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soil moisture) over the field is necessary. With the exception of a few regions in highly 50 

developed agricultural environments, this kind of information is rarely available to land 51 

managers. 52 

Remote sensing data can be used to obtain, in a very cost effective way, qualitative and 53 

quantitative information about soil variables and soil classification (Mulder et al., 2011). In 54 

cultivated soils, due to repeated tillage operations, soil properties are usually quite uniform 55 

over the tilled layer; therefore they can be estimated from the bare soil surface reflectance 56 

(Casa et al., 2013b). 57 

Quantitative estimation of soil variables using bare soil imagery acquired from multispectral 58 

remote imagers is, however, hampered by inadequate spectral resolution, particularly by the 59 

absence of narrow bands in the short wave infra-red (SWIR) region (1100–2400 nm) (i.e., the 60 

spectral region more affected by the soil chromophores). For these reasons, multispectral 61 

satellite data are mainly used for qualitative assessments, such as the classification of areas 62 

with different soil textures (e.g., Demattê et al., 2009; Odeh & McBratney, 2000; Zhai et al., 63 

2006). Recent studies obtained a sufficient degree of accuracy in the quantitative estimation 64 

of silt (Wu et al., 2015) or clay (Castaldi et al., 2014) using, respectively, BJ-1 and Advanced 65 

Land Imager (ALI) satellite imagers. It should be noted that both the multispectral ALI 66 

imager on board the NASA EO-1 satellite and the Operational Land Imager (OLI) imager on 67 

board the Landsat 8 satellite, have bands in the SWIR region, which can be exploited for soil 68 

properties estimation. Sentinel-2, which was successfully launched in June 2015, has a 69 

Multispectral Imager (MSI) with a band in the SWIR region, between 2100 and 2280 nm and 70 

centred at 2190 nm, with a Ground Sampling Distance (GSD) of 20 m.  71 

Hyperspectral imagers, that measure spectral radiance for hundreds of narrow bands are more 72 

attractive than multispectral imagers for soil spectroscopy purposes. Furthermore, over the 73 

last decade, analysis of data obtained by optical remote sensing techniques such as soil 74 
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spectroscopy and hyperspectral imagery has proven to be an effective way to characterize and 75 

monitor surface soil variables, that even allow soil erosion processes to be detected (Gomez et 76 

al., 2015; Stevens et al., 2013; Ben-Dor et al., 2009; Lagacherie et al., 2008; Gomez, et al., 77 

2008). The higher spectral resolution provided by hyperspectral sensors could, in principle, 78 

allow even more accurate quantitative estimates at the field scale, compared with those 79 

obtainable from the existing multispectral imagers (Mulder et al., 2011).  80 

Only two hyperspectral satellite imagers with a sufficient spatial resolution (i.e., GSD ≤ 30 m) 81 

are currently available for soil applications: Hyperion on board of the NASA EO-1 platform 82 

and Compact High Resolution Imaging Spectrometer (CHRIS) on the European Space 83 

Agency's PROBA platform. Both these sensors have considerable limitations in quantitative 84 

soil estimation applications. Hyperion’s data are hampered by the very low signal to noise 85 

ratio (SNR) in the SWIR region, in particular around 2200 nm, where the spectral features of 86 

clay minerals are located (Castaldi et al., 2014). The difficulties in estimating soil variables 87 

from CHRIS-PROBA are due to its restricted spectral range (415–1050 nm) that lacks bands 88 

in the SWIR region (Casa et al., 2013a). For these reasons, the use of satellite hyperspectral 89 

data in quantitative soil estimation is still challenging and consequently the number of 90 

published studies in which this type of data are used is still small (Casa et al., 2013a; Casa et 91 

al., 2013b; Castaldi et al., 2014; Gomez et al., 2008; Zhang et al., 2013).  92 

In the near future at least four satellites equipped with hyperspectral imagers are due to be 93 

launched: the Japanese Hyperspectral Imager Suite (HISUI) in 2017 (Tanii et al.,  2012); the 94 

Italian PRecursore IperSpettrale della Missione Applicativa (PRISMA) in 2017 (Pignatti et 95 

al., 2012); the German Environmental Mapping and Analysis Program (EnMap) in 2018 96 

(Richter et al. 2012); the China Commercial Remote-sensing Satellite System (CCRSS) after 97 

2018; and the U.S. NASA Hyperspectral Infrared Imager (HyspIRI) in 2021 (Houborg et al. 98 

2012). The Spaceborn Hyperspectral Applicative Land and Ocean Mission (SHALOM) — a 99 
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joint mission by the Israel Space Agency (ISA) and the Italian Space Agency (ASI) — will 100 

also develop a hyperspectral imager with 241 bands between 400 and 2500 nm and a spectral 101 

resolution of about 10 nm (Ben-Dor et al., 2013). A new hyperspectral imager, HYPerspectral 102 

X Imagery (HYPXIM) is also under study by the French space agency (CNES) (Michel et al., 103 

2011). Forthcoming hyperspectral imagers will have numerous narrow bands in the SWIR 104 

spectral region, which will presumably permit accurate estimation of soil variables; however, 105 

the soil properties estimation accuracy of these imagers will depend on their SNR, particularly 106 

around 2200 nm. Hyperspectral imagers generally have a lower SNR than multispectral ones 107 

as a result of the reduced energy collected by the sensor in narrow spectral bands. This effect, 108 

coupled with the low solar irradiance in the SWIR region, produces a consistent decrease of 109 

the SNR. For example, Castaldi et al. (2014) compared the soil estimation capabilities of two 110 

sensors mounted on EO-1 satellite using both Hyperion and ALI data. The authors did not 111 

observe any apparent advantages when using hyperspectral (Hyperion) instead of 112 

multispectral (ALI) data. This was explained by the low SNR of Hyperion at the wavelengths 113 

of characteristic spectral features of clay minerals.  114 

This study aims to evaluate the performances of current and forthcoming multispectral and 115 

hyperspectral imagers for the quantitative retrieval of soil texture and Soil Organic Carbon 116 

(SOC). To this end we compare the estimation accuracy for soil texture (clay, sand and silt) 117 

and SOC using spectra acquired under laboratory conditions, which were resampled 118 

according to spectral and noise characteristics of four current (ALI, Landsat 8, Sentinel-2 and 119 

Hyperion) and three forthcoming (EnMAP, PRISMA, HyspIRI) satellite imagers. To our 120 

knowledge, no previous reports have specifically compared the capability of these imagers for 121 

soil texture and SOC estimation. 122 
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2. Materials and Methods 123 

2.1. Soil spectral libraries 124 

2.1.1. PONMAC library 125 

 126 

A soil spectral library consisting of 166 samples was assembled by pooling together data from 127 

soil samplings carried out in two cropland areas in Central and Southern Italy. Samplings 128 

were carried out in Pontecagnano (PON; Southern Italy, near to Salerno) and Maccarese 129 

(MAC; Central Italy, near to Rome) and a pooled dataset obtained from the union of PON 130 

(Pascucci et al., 2014) and MAC (Casa et al., 2013b), hereafter referred to as PONMAC. The 131 

soils of the MAC area are classified as Cutanic Luvisol (FAO-ISRIC-ISSS, 1998), with soil 132 

parent materials of flat inshore deposits (Pleistocene), while the soils of PON area originated 133 

from travertine sediments characterized by sandy gravel layers with tuffaceous intercalation in 134 

the upper parts (Pleistocene–Holocene). In both areas, soil sampling was carried out using a 135 

gouge auger at 0–10 cm depth in Pontecagnano and at 0–30 cm depth in Maccarese. Soil 136 

samples were air dried and passed through a 2 mm sieve. For each sample we measured the 137 

percentage of clay, sand and silt contents using the pipette method according to the United 138 

States Department of Agriculture (USDA) system (Soil Survey Staff, 2014). Soil Organic 139 

Content (%) was obtained using the Walkley-Black method for PON data and an elemental 140 

analyzer (Flash EA1112, Thermo Electron Corporation, U.S.A.) according to the technique of 141 

dry combustion analysis (ISO 10694, 1995) for MAC data. Although SOC measurements 142 

were carried out using different methods for MAC and PON dataset, the results obtained from 143 

Walkley-Black and dry combustion analysis were considered to be comparable within the 144 

range of SOC values of the PONMAC dataset (Chen et al., 2015). 145 
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Soil textures of PONMAC samples are mainly composed of sandy clay loam, clay loam and 146 

clay. These textural classes are among the most frequent in the croplands of Italy (Costantini 147 

et al., 2012). The ranges of the relative contents (%) of clay, sand and silt in the PONMAC 148 

dataset are quite wide (Table 1). The SOC content range is between 0.5 and 2.32%, with a 149 

mean value of 1.25% (Table 1). 150 

Soil samples were placed in Petri dishes and their spectral signatures were measured in a dark 151 

lab in the visible-near infrared (VNIR) to SWIR optical domain (350-2500 nm, spectral 152 

sampling of 1 nm) using an Analytical Spectral Devices (ASD) Field Spec Fr Pro 153 

spectroradiometer (ASD Inc., Boulder, CO, USA; available at: http://www.asdi.com) 154 

equipped with a contact probe containing a 7 W quartz-halogen lamp. Reflectance values 155 

from 350 to 399 nm and from 2401 and 2500 nm were removed prior to any processing 156 

because these spectral ranges are affected by noise. 157 

The ASD measurements consisted of three spectral acquisitions at nadir rotating the sample 158 

by 90° each time. Each replicate involved 50 spectral scans and after every set of 50, a 159 

Spectralon panel (Labsphere, NH, USA) was measured before the sample was rotated. The 160 

average measured radiance was then converted into bi-conical reflectance using the calibrated 161 

Spectralon panel.  162 

 163 

2.1.2. LUCAS library 164 

 165 

In the framework of European Land/Use Cover Area frame Statistical Survey (LUCAS) about 166 

20,000 topsoil samples were collected across Europe (Eurostat, 2009; Tóth et al., 2013). The 167 

soil properties of the LUCAS dataset were analyzed using ISO standards methods. The 168 

determination of particle size distribution was carried out using the sieving and sedimentation 169 

http://www.asdi.com/
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method (ISO 11277. 1998), and SOC was estimated by dry combustion using an elemental 170 

analyzer (ISO 10694:1995). Spectra were acquired on diffuse high-resolution reflectance for 171 

all air-dried and sieved (< 2 mm) soil samples using an XDS Rapid Content Analyzer (FOSS 172 

NIRSystems Inc,, Laurel, MD, USA) spectroscope, measuring a continuous (spectral 173 

resolution of 0.5 nm) reflectance spectrum in the VNIR (400–1300 nm) and SWIR (1300–174 

2500 nm) domains. Soil spectroscopy measurements were made following the protocol of the 175 

Soil Spectroscopy Group (SPS, 2011). 176 

In order to have a dataset comparable with PONMAC, we extracted from the LUCAS topsoil 177 

dataset only the samples collected on cropland areas in Italy (LUCAS_C) and we resampled 178 

the LUCAS spectra according to the spectral resolution of the PONMAC library (1 nm). The 179 

713 samples thus extracted from the European LUCAS library are representative of all the 180 

soil regions in the Soil Map of Italy (Costantini et al., 2012) and display a large variability in 181 

clay, sand, silt and SOC contents (Table 1). 182 

The PONMAC and LUCAS_C datasets cannot be fused into a single dataset however because 183 

different spectral acquisition techniques and protocols were used to measure reflectance.  184 

 185 

2.2. Satellite sensors 186 

 187 

The performances of seven satellite imagers were compared. We took into consideration three 188 

operating multispectral imagers (EO-1 ALI, Sentinel-2 MSI and LANDSAT 8 OLI), one 189 

operating hyperspectral imager (EO-1 Hyperion) and three forthcoming hyperspectral imagers 190 

(EnMAP, PRISMA and HyspIRI). The main technical specifications of the multispectral and 191 

hyperspectral imagers are summarized, respectively, in Table 2 and Table 3. In particular, the 192 

last two columns of both tables show the SNR at different wavelengths and the related signal 193 
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intensities (Pignatti et al., 2013; Baillarin et al., 2012; Markham et al. 2012; Sang et al., 2008; 194 

Green et al., 2008; Mendenhall et al., 2001; Willoughby et al.,  1996).  195 

 196 

2.3. Resampled and simulated data 197 

 198 

The LUCAS_C and PONMAC spectral libraries were used to produce two sets of synthetic 199 

spectra. A first set of spectra was obtained by resampling the library spectra, using 200 

convolution procedures, to the specific spectral response and resolution of the various sensors. 201 

This process was carried out using the spectral response function for the multispectral 202 

imagers, while for hyperspectral imagers the spectral response functions were not available 203 

and were subsequently approximated using Gaussian functions. The spectra obtained in this 204 

way are hereafter referred to as "resampled spectra". 205 

In order to simulate the satellite data more realistically, an additional set of data was obtained 206 

by adding  spectral noise to the synthetic spectra previously generated. For this purpose, we 207 

firstly applied a direct process that allowed us to simulate the spectral top of the atmosphere 208 

(TOA) at-sensor radiance, under specific illumination and acquisition geometries. The direct 209 

process can be represented by the equation (Vermote et al., 1997; Kaufmann et al., 1997):  210 

                             [1] 211 

where L is the at-sensor radiance, La is the solar radiation scattered back to the sensor without 212 

reaching the soil (path radiance), ρ is the target reflectance, A is a parameter depending on the 213 

atmosphere alone (not on the illumination and acquisition geometries), and S is the spherical 214 

albedo of the atmosphere. In our simulations ρ was taken from the spectral libraries used for 215 

this study, while A, S and La were simulated by MODTRAN 4 code, using a standard mid-216 
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latitude summer model to characterize the atmospheric column. The illumination geometry 217 

corresponds to the geographic coordinates of the center of Rome (41°53'35.94"N; 218 

12°28'58.57"E) on the summer solstice at noon, local time. Once obtained, a spectral noise, 219 

consistent with the sensor radiometric characteristics and acquisition parameters, was added 220 

to the at-sensor TOA radiances.  221 

In order to properly represent the noise dependence from the spectral radiance intensity 222 

reaching the sensor, more information than that shown in Tables 2 and 3 is needed. For 223 

HyspIRI and for all the multispectral imagers, with the exception of Sentinel-2, we found in 224 

the literature the spectral SNR at different radiance magnitudes. Since the covered intensity 225 

range was sufficiently wide, we could interpolate the SNR, thus obtaining look-up tables to 226 

identify the at-sensor spectral SNR at any radiance intensity. To fill in the missing 227 

information, we approached the research and technical teams of PRISMA and EnMAP for the 228 

spectral SNR at four different radiance levels, and were provided spectral information 229 

analogous to that already published for HyspIRI shown in Figure 1 (Green et al., 2008). 230 

Instead, for Hyperion and Sentinel-2 we were only able to obtain a unique spectral SNR level 231 

of a reference radiance, therefore we used a generic noise model to extrapolate the SNR at 232 

other radiance intensities (Chang, 2007):  233 

        [2] 234 

where, SNRref and Lref are the nominal SNR and the related incident radiance, respectively. In 235 

this way, we managed to extrapolate the proper SNR at different illumination geometries and 236 

intensities.  237 

After the conversion of the SNR to Noise equivalent in ΔRadiance (NeΔR), the noise to be 238 

added to Equation (3) was computed by applying Gaussian statistics. By using the described 239 

ref
ref
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L
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direct process (i.e., Equation (1)), we simulated the TOA radiance spectra (noise included) 240 

that each sensor would acquire for a set of different targets (reflectance spectra) at a specific 241 

time and day of the year. 242 

Finally, the inverted process allowed us to calculate the top of the canopy (TOC) reflectance 243 

spectra as shown in Equation (3).  244 

     [3] 245 

In this way, for each original reflectance spectrum, we obtained a set of spectra consistent 246 

with the spectral and radiometric characteristics of the different analyzed satellite imagers. In 247 

other words, we simulated the spectra that would be obtained by the remote imagers after the 248 

application of radiometric and atmospheric corrections under a given illumination condition. 249 

These spectra are used to evaluate the potentials of the various imagers in the estimation of 250 

soil variables and are hereafter referred to as "simulated spectra". Figure 2 displays two 251 

Hyperion simulated reflectance spectra with (dashed line) and without (solid line) noise as 252 

obtained using a spectrum belonging to the PONMAC spectral library. 253 

In order to investigate the issue of the low SNR of hyperspectral sensors, due to the reduced 254 

energy collected by the sensors in narrow spectral bands, the effect of broadening the 255 

bandwidths on the estimation accuracy of soil variables was examined. Synthetic (both 256 

resampled and simulated) spectra were iteratively resampled, doubling the bandwidth at each 257 

step. In Figure 3 five spectra obtained by resampling a simulated HyspIRI spectrum 258 

(PONMAC library) are depicted with five different bandwidths: 10, 20, 40, 80, and 160 nm. 259 

From Figure 3 it is evident that the bandwidth increase determines the progressive smoothing 260 

of some spectral features. 261 

 262 
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2.4. Soil variables estimation 263 

 264 

We applied the Partial Least Square Regression (PLSR) technique (Wold et al., 2001) to 265 

estimate soil variables from three types of data: (i) full laboratory spectra (400–2400 nm; 266 

spectral resolution 1 nm); (ii) resampled spectra according to bands and spectral resolution of 267 

each satellite’s imager; (iii) simulated spectra that were obtained by adding declared or actual 268 

sensors’ noise, as well as atmospheric effects, to the resampled spectra.  269 

In order to detect outliers, we used lower and upper limits of the distribution of each variable. 270 

Limits were set at 1.5 times the inter-quartile range (IQ) and observations outside the upper 271 

and lower value were considered outliers and eliminated from the following computations 272 

(Tukey, 1977). The IQ is the difference between the values below which 75% (Q3) and 25% 273 

(Q1) of the samples occur (IQ = Q3 − Q1). The number of samples removed as a result of this 274 

process is reported in Table 1. Moreover, skewed data (skewness >|0.5|) were transformed 275 

using the square root or logarithm of the variable (Table 1) to approximate a Gaussian 276 

distribution.  277 

Before applying the PLSR method to the simulated spectra, the noisy bands falling into the 278 

absorption ranges of the atmospheric gases were removed. In Table 4 the removed spectral 279 

bands for each sensor are shown.  280 

The PLSR is a multivariate regression technique widely used in soil spectroscopy 281 

applications. PLSR provides an optimal linear model that allows for the reduction of the 282 

number of correlated predictors (spectral bands) and transforms them to a restricted number of 283 

uncorrelated components (PLSR components), which have the best relationship with the 284 

dependent variables (in this case clay, sand, silt and SOC). In order to detect the main spectral 285 

regions that affect soil variables estimation, we calculated the variance importance in 286 
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projection (VIP) values. The VIP value is a weighted sum of squares of the PLS weights. 287 

Weights are calculated from the amount of variance of dependent variables of each PLS 288 

component employed in the model (Wold et al., 2001). Predictors with VIP values greater 289 

than one are considered significant for the PLSR models because the average of VIP scores is 290 

equal to one (Chong & Jun, 2005). 291 

Different PLSR models were preliminarily tested, using different combinations of PLSR 292 

components, spectral transformations and smoothing to obtain the most accurate prediction of 293 

soil variables in terms of root mean square error (RMSE). For these purposes the spectra were 294 

converted into absorbance (A) and/or first derivative (D) and the Savitzky-Golay (SG) 295 

smoothing filter was applied. The Savitzky-Golay filtering performs noise reduction and 296 

enhances small spectral differences; whereas derivative transformation of the spectra is useful 297 

for separating out peaks of overlapping bands and to reduce noise.  298 

Each dataset was randomly split into calibration and validation subsets: 70% for calibration 299 

and 30% for validation subset, according to a modified multiple jack-knifing approach (Casa 300 

et al., 2013a; Bishop & McBratney, 2001). The splitting was repeated 100 times, quantifying 301 

the validation accuracy every time. The accuracy of the predictive models was finally 302 

evaluated by examining the coefficient of determination (R2), RMSE (Eq. (4)), Ratio of the 303 

Performance to Deviation (RPD; Eq. (5)), and Ratio of Performance to Interquartile Range 304 

(RPIQ; Eq.  (6)).The equations used were as follows: 305 

𝑅𝑀𝑆𝐸 = √
∑ (𝑦𝑜−𝑦𝑝)2
𝑛
𝑖=1

𝑛
     [4] 306 

𝑅𝑃𝐷 =
𝑠𝑑

𝑅𝑀𝑆𝐸
       [5] 307 

𝑅𝑃𝐼𝑄 =
𝐼𝑄

𝑅𝑀𝑆𝐸
      [6] 308 
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where, 𝑦𝑜 and 𝑦𝑝 are the observed and predicted values, respectively, 𝑛 is the number of data 309 

pairs, and sd is the standard deviation of the observed values. We adopted threshold values of 310 

RPD usually employed in the soil spectroscopy literature to assess the accuracy of soil 311 

prediction models (Chang et al., 2001). These consider models with an excellent prediction 312 

capability to have RPD values of >2, intermediate capability to have values of 2–1.4 and 313 

unreliable model to have values of <1.4. Recently, Bellon-Maurel et al. (2010) warned of the 314 

reliability of these RPD thresholds because they were not statistically determined and the 315 

standard deviation, used in the numerator of the RPD equation, does not describe the correct 316 

range of variation for data with a skewed (non-normal) distribution. The RPIQ (using the IQ 317 

instead of sd) provides a more robust statistic to describe the performance of estimation 318 

models. For these reasons, both RPD and RPIQ values were reported to evaluate the 319 

capability of the prediction models. 320 

The one hundred RPIQ validation values of each PLSR model were used to detect statistical 321 

differences among the estimation accuracies of the satellite imagers and between multispectral 322 

and hyperspectral imagers for each soil variable. A one-way analysis of variance (ANOVA) 323 

was applied to the RPIQ values of the one hundred replicates in order to verify that the 324 

differences between RPIQ means were statistically significant (P < 0.01). Fisher's Least 325 

Significant Difference (LSD) test was then applied to evaluate the statistical differences. The 326 

results of the significance test for RPIQ can be considered equivalent to those that could be 327 

obtained by testing differences in RMSE because of the relationship between the two statistics 328 

(Eq.6).  329 

The PLSR analyses were performed using the pls (Mevik et al., 2013) packages developed in 330 

R software (R Development Core Team, 2011). 331 
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3. Results 332 

3.1. Soil variables estimation using full spectra 333 

 334 

The estimation of soil variables using the PONMAC full-resolution spectral library provided 335 

good results: all soil texture variables were predicted with a RMSE lower than 5.4%, RPD 336 

near to 2 and RPIQ of 2.51 for sand and higher than 3 for clay and silt (Table 5).  337 

The statistical accuracy obtained using the LUCAS_C full-resolution spectral library was 338 

lower compared with that obtained using the PONMAC library for all soil variables (Table 6). 339 

In this case only the clay estimation model provided satisfactory prediction accuracy (Table 6; 340 

RMSE = 7.63; RPD = 1.69; RPIQ  = 2.34; R2  = 0.64).  341 

The VIP analysis highlighted the most important spectral regions for PLSR models of each 342 

variable (Fig. 4). Clay, sand, silt and SOC estimation are highly affected by the wavelength 343 

range between 1900 and 2400 nm (VIP>1), but VIP values >1 are also present in the VIS 344 

region between 400 and 600 nm. 345 

 346 

3.2. Soil variables estimation using resampled spectra 347 

 348 

Compared with the full spectra PONMAC dataset, the accuracy of predictive models 349 

generally decreased when using resampled spectra both for hyperspectral and multispectral 350 

imagers, especially in the case of clay and silt estimation (Table 5). The RPIQ values obtained 351 

from full spectrum data for clay (RPIQ = 3.07) and silt (RPIQ = 3.17) estimation were 352 

significantly higher than those obtained with resampled spectra (Table 5), while no significant 353 

differences were observed between full spectrum (RPIQ = 2.51) and all hyperspectral imagers 354 
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(RPIQ ranges from 2.45 and 2.56) for sand. The estimation accuracy of SOC for full spectrum 355 

(RPIQ = 3.12), EnMAP (RPIQ = 3.11) and PRISMA (RPIQ = 3.02) data is statistically higher 356 

as compared with the other imagers. 357 

As expected, in the absence of noise, and taking into consideration only the spectral 358 

characteristics (number, width and distribution of bands), the performances of the 359 

forthcoming hyperspectral imagers are significantly better than those of multispectral imagers 360 

and are very similar to Hyperion for all soil variables. An exception is observed for clay 361 

estimation with Sentinel-2 data that showed results (RPIQ = 2.54) very similar to those 362 

achieved using PRISMA and HyspIRI data (RPIQ = 2.43), while for sand, silt and SOC, the 363 

differences with respect to hyperspectral imagers were statistically significant. Sentinel-2 data 364 

showed the best performances among multispectral imagers for all variables, except for silt 365 

(Table 5). 366 

In the case of the LUCAS_C spectral library, differences between full-resolution and 367 

resampled dataset were not always significantly in favor of hyperspectral sensors. The LSD 368 

test highlighted an advantage of using simulated data instead of full spectrum data for the 369 

estimation of soil texture components (Table 6). For example, the resampled hyperspectral 370 

data (HyspIRI, EnMAP and PRISMA) showed significantly better results (RPIQ: 1.84–1.87) 371 

compared with full spectrum data (RPIQ: 1.74) for silt estimation. Otherwise, a substantial 372 

decrease of accuracy (compared with full spectra) is observed only for multispectral data 373 

(Table 6) with the exception of silt estimation, for which the accuracy obtained by full 374 

spectrum data was not statistically different from that obtained with ALI and Sentinel-2 data 375 

(RPIQ: 1.71–1.76). 376 

3.3. Soil variables estimation using simulated spectra 377 

 378 
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The use of simulated spectra, i.e. with the addition of noise and atmospheric effects, resulted 379 

in a decrease of statistical accuracy in the estimation models, compared with full or resampled 380 

spectra, both using PONMAC and LUCAS_C spectral libraries. Hyperion simulated data 381 

appear particularly affected by noise, showing RPIQ values similar or lower than those 382 

achieved using multispectral data (Table 7). Indeed, the LSD test carried out on the validation 383 

statistics of the PONMAC dataset showed that the simulated Hyperion data provided similar 384 

or worse results than multispectral imagers (Table 7). For clay estimation the best RPIQ 385 

values were obtained using EnMAP, PRISMA and HyspIRI data (PONMAC: 2.16–2.35; 386 

LUCAS_C: 1.95–2.00). The forthcoming hyperspectral imagers (EnMAP, PRISMA and 387 

HyspIRI) display very similar capability levels when estimating soil texture and SOC content 388 

both for the PONMAC (Table 7) and LUCAS_C (Table 8) dataset. Only clay content was 389 

estimated with a suitable level of accuracy using PRISMA and HyspIRI resampled spectra of 390 

LUCAS_C dataset (Table 8).  391 

The difference in statistical accuracy between hyperspectral and multispectral data becomes 392 

less consistent when using simulated data compared with resampled data. In many cases 393 

multispectral data have similar or better results than hyperspectral, for example Landsat 8 394 

provided an estimation accuracy of SOC estimation (RMSE = 0.25; RPD = 1.44; RPIQ = 395 

2.48; R2 = 0.49) not statistically different to hyperspectral imagers using PONMAC dataset. 396 

Satisfactory estimation accuracy was also achieved by ALI when estimating clay (RPD = 397 

1.45; RMSE = 6.58) and for all the multispectral imagers when estimating silt using 398 

PONMAC dataset. However, for each soil variable, the LSD test confirmed better estimation 399 

accuracy of the forthcoming hyperspectral imagers than for the current multispectral imagers. 400 

 401 

3.4. Sensitivity to bandwidth of the estimation models 402 

 403 
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The issue of the low SNR of hyperspectral sensors due to the reduced energy collected by the 404 

sensors in narrow spectral bands (evidenced by the results of the previous section) was 405 

investigated by examining the effect of broadening the bandwidths. The application of PLSR 406 

models to the PONMAC datasets showed, for all variables only a slight decrease of 407 

estimation accuracy when changing bandwidth from 10 to 40 nm (Fig. 5) in the case of 408 

absence of noise (resampled dataset). A greater decrease of the RPD values is observed when 409 

using a bandwidth greater than 80 nm. After the introduction of noise (simulated dataset), the 410 

SOC estimation accuracy is almost insensitive to the reduction of spectral resolution, while 411 

RPD values of clay and sand even increase slightly up to 40 nm (Fig. 6). Furthermore, the 412 

RPD values only decrease significantly when using a bandwidth greater than 80 nm. 413 

 414 

4. Discussion 415 

 416 

The statistical accuracy obtained using the LUCAS_C spectral library was generally lower 417 

than that obtained with the PONMAC dataset for full spectrum, resampled and simulated 418 

data. These differences in model accuracy are probably due to the high variability of the 419 

LUCAS_C dataset (Table 1), and to the different methodologies adopted for soil analyses and 420 

spectra acquisition. Although soil samples of the PONMAC dataset cover a wide range of 421 

clay, sand, silt and SOC values they are characterized by two types of parental material. On 422 

the other hand, LUCAS_C represents most of the agricultural soils of Italy. This high 423 

variability includes different compositions of clay minerals and organic matter among soil 424 

samples, which influences the number and diversity of PLSR components. In this regard, the 425 

typical absorption features related to the clay lattice are different according to the 426 

predominant clay mineral: the absorption features of kaolinite and montmorillonite are 427 

located at 1400, 1900, and 2200 nm (Clark, 1999), whereas illite has two bands around 2300 428 
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and 2400 nm. The typical absorption features of organic matter are distributed throughout the 429 

entire reflectance VNIR–SWIR spectrum. This is due to its heterogeneous composition, in 430 

turn derived from varied source materials and their mineralization levels (Ben-Dor et al., 431 

1997; Li et al., 2012; Mouazen Maleki et al., 2007). Therefore, the heterogeneous 432 

composition of the soil samples of the LUCAS_C dataset involves the use of more PLSR 433 

components than those used for the PONMAC dataset (Table 5; Table 6).  434 

The VIP analysis confirmed the most important spectral region (VIP>1) for clay, sand, silt 435 

and SOC is located between 1900 and 2400 nm. This result can be attributed mainly to the 436 

presence of typical absorption features in the SWIR spectral region. In particular, metal-OH 437 

bending and stretching of O-H bonds related to the clay lattice affect the absorption peaks 438 

between 2160 and 2300 nm (Ben-Dor et al., 2009); while VIP scores of SOC in the SWIR are 439 

mainly affected by phenolic, amide and aliphatic groups between 2200 and 2220 nm. The 440 

high VIP values around 1900 nm are due to the absorption features of water. Viscarra-Rossel 441 

and Beherens (2010) used VIP values to select the most useful bands for estimating clay and 442 

SOC by means of diffuse reflectance spectra. Most of the selected bands they identified, for 443 

both variables, were located between 1900 and 2400 nm, similarly to our results.  444 

VIP values greater than 1 are present also in the VIS region between 400 and 600 nm. 445 

Viscarra-Rossel et al. (2008) detected high VIP values between 400 and 600 nm for SOC 446 

estimation, using spectra acquired by an infrared spectrometer from 400 to 1000 nm. 447 

Although some wavelengths correlated with organic matter exist at 450 nm and 590 nm 448 

(Melendez-Pastor et al., 2008; Li et al., 2012), the main information provided by the VIS 449 

region, for texture and SOC estimation, is likely to be related to the hue of soil. Since soils 450 

having dark hues, for equal moisture content and parental material, generally contain higher 451 

clay and SOC and lower sand content than soils with pale hues.  The consistent worsening of 452 

the estimation accuracy when using simulated hyperspectral data, instead of resampled 453 
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spectra, highlights the importance of the effect of the noise affecting the various instruments. 454 

In general the noise particularly affects the SWIR region, especially from 2000 nm to 2400 455 

nm (Fig. 1 and Fig. 2), where the VIP analysis provided the higher values (Fig. 4). In 456 

addition, the very low SNR that corresponds to water absorption features required the 457 

elimination of the corresponding spectral bands. 458 

The estimation accuracy showed that the addition of noise to the spectra reduces the 459 

differences of performance between hyperspectral and multispectral imagers. However the 460 

LSD test detected a significant difference between hyperspectral (with exclusion of Hyperion) 461 

and multispectral imagers, for both spectral libraries and each soil variable. Furthermore, the 462 

accuracy of soil variable estimation is very similar for the three forthcoming imagers (Table 7 463 

and Table 8), in spite of the fact that EnMAP and PRISMA present (in sensitive spectral 464 

ranges) a greater number of bands (but a lower SNR) than HyspIRI (Table 9). These results 465 

are explainable if the SNR, which generally decreases with the spectral resolution due to the 466 

lower energy reaching the sensors, partially compensates the benefits of the higher spectral 467 

resolution, thus better exploiting narrow spectral features. Obviously, spatial resolution 468 

influences, ceteris paribus, the prediction accuracy of soil variables (Gomez et al., 2015). For 469 

this reason, the estimation accuracy obtained by HyspIRI would not be perfectly comparable 470 

with EnMap and PRISMA data, because the US imager will have a spatial resolution much 471 

coarser (GSD of 60 m) than the other hyperspectral sensors investigated in this work (GSD of 472 

30 m). 473 

The analysis concerning the sensitivity to bandwidth of the estimation accuracy of soil 474 

variables showed that data acquired between 400 and 2400 nm, with a bandwidth of 40 nm 475 

could provide results very similar to those obtained using sensors with a higher spectral 476 

resolution, because of the lower SNR of the former. However, a bandwidth of 40 nm could be 477 

useful for multivariate prediction models, such as the PLSR, where the spectral information is 478 
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summarized in a restricted number of regressors (PLSR components) correlated with the 479 

target variable. Actually, PLSR technique has proved less effective than other hybrid 480 

estimation techniques, such as regression kriging (Casa et al., 2013a) or linear mixed effect 481 

models (Castaldi et al., 2014); however these hybrid techniques cannot be used with 482 

laboratory samples because they take into account the spatial correlation between soil 483 

samples. 484 

 The higher spectral resolution of hyperspectral data  permits exploitation of well-defined 485 

narrow absorption spectral features typically associated to overtones of functional groups in 486 

the VNIR and SWIR spectral ranges related to the estimation of some chromophores (Ben-487 

Dor et al., 2009), such as the clay minerals (Clark, 1999). Unfortunately, the sensor’s noise 488 

generally increases with increasing spectral resolution. Thus, as confirmed by the analysis of 489 

the sensitivity to bandwidth, the advantages of detecting specific narrow bands could be 490 

nullified by low SNR, especially in the SWIR spectral region where the absorption peaks of 491 

the main soil variables are located (Lobell & Asner, 2002).  492 

This work provides an evaluation of the capability of the remote imagers to estimate soil 493 

variables using simulated spectra, taking into account the spectral resolution and noise of each 494 

imager and the atmospheric effect. Both PONMAC and LUCAS_C spectral libraries are 495 

composed by spectra acquired in laboratory conditions on air dried soil samples, having an 496 

artificial roughness; however the actual remote sensing data are also affected by the 497 

confounding effects of soil moisture, soil roughness and crop residues. Soil moisture has a 498 

strong influence on the amount and composition of reflected and emitted energy from a soil 499 

surface, reducing the reflectance over the entire spectrum (Lobell & Asner, 2002; Nocita et 500 

al., 2013; Rienzi et al. 2014; Castaldi et al. 2015), and the soil roughness influences the 501 

scattering effect. The drying process of soil samples of both datasets used in the present work 502 

has occurred naturally and for this reason soil datasets preserved moisture variability which 503 



 

22 
 

could be assumed to be similar to that observable on the top layer of an agricultural soil, with 504 

quite a homogenous roughness, after a period of dry weather. In this regard there are many 505 

examples in the literature of the estimation of soil variables using remote data which assume 506 

the homogeneity of soil roughness of the bare soil after seed bed preparation, thus without 507 

crop residues or weeds within the field (Casa et al., 2013b; Ge et al., 2011; Mulder et al., 508 

2011; Selige et al., 2006). Nevertheless, the capability of the present and forthcoming satellite 509 

imagers shall be assessed using actual data. Effective comparisons can only be done using 510 

satellite data acquired for a particular field site over a particular time period. In this regard, 511 

Castaldi et al. (2014) compared Hyperion and ALI imager using images acquired on the same 512 

date and obtained more accurate prediction with Hyperion as compared with ALI for clay, 513 

sand and soil organic matter. However, at present, the comparison among current and 514 

forthcoming sensors is only possible using spectral laboratory data covering the whole VIS–515 

SWIR spectral range (e.g., PONMAC and LUCAS_C), considering that a satellite 516 

hyperspectral sensor having spectral characteristics suitable to simulate PRISMA, EnMAP or 517 

HyspIRI images does not exist yet.  518 

 519 

5. Conclusions 520 

 521 

This work investigates, for seven satellite imagers, the effects of spectral resolution and SNR 522 

on the estimation of some soil variables such as clay, sand, silt and SOC by using PLSR 523 

models. We compared the estimation accuracy of soil texture and SOC using resampled and 524 

simulated spectra according to spectral and noise characteristics of four current (ALI, Landsat 525 

8, Sentinel-2 and Hyperion) and three forthcoming (EnMAP, PRISMA, HyspIRI) satellite 526 

imagers. The LSD testing on simulated data (Table 8) suggests that the forthcoming 527 

hyperspectral imagers will enhance, in relative terms, the accuracy of soil variable estimation 528 
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from bare soil imagery, as compared to current generation sensors, though in absolute terms 529 

the statistics of their performance (e.g. in terms of r2) was not always satisfactory. The 530 

advancement of the new generation hyperspectral imagers, as compared to Hyperion, is due to 531 

the improvement of the SNR in the SWIR region, in particular between 2000 and 2400 nm. 532 

EnMAP, PRISMA and HyspIRI imagers provided significantly better estimation accuracy 533 

than ALI, Landsat 8 and Sentinel-2. This is mainly due to the higher number of bands, 534 

especially in SWIR region, and the narrower bandwidths that allow them to better exploit the 535 

spectral features of clay minerals and organic matter. However, the benefit of improved 536 

spectral resolution is partially offset by the amplification of noise when increasing the number 537 

of spectral bands. Analysis of the sensitivity to bandwidth highlighted that a bandwidth of 40 538 

nm could provide PLSR results very similar to those obtained with sensors having a higher 539 

spectral resolution and that, only when the noise levels are decreased, the capabilities of 540 

current and forthcoming hyperspectral sensors will be fully achieved. The analysis also 541 

indicates that 40 nm is a maximum value for the bandwidth, beyond which the estimation 542 

accuracy of soil texture sharply decreases. 543 

We conclude that hyperspectral data from the forthcoming satellite missions could be more 544 

valuable for mapping and monitoring soil texture and SOC as compared to current imagers. 545 

The higher spectral resolution of the new imagers, coupled to an improved SNR and an 546 

extensive spatial coverage and frequent revisit period, will guarantee highly detailed spectral 547 

information, suitable to characterize and monitor surface soil variables and soil erosion 548 

processes. Nevertheless, as shown in this work, the achievement of satisfactory quantitative 549 

estimation results from hyperspectral imagers is still hampered by a low SNR in the SWIR 550 

spectral region, especially apparent when using a large and varied dataset (LUCAS_C). On 551 

the other hand, the use of hyperspectral data joined with spatial predictive models on 552 

delimitated field data (PONMAC) could lead to a satisfactory estimation of soil variables. [rc1]     553 
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Further research will need to focus on estimation accuracies for the retrieval of soil variables 554 

using, once available, real data from next generation hyperspectral satellite imagers. 555 

 556 

 557 

Acknowledgements 558 

The research activities have been co-funded by the Italian Space Agency (ASI) with grant 559 

I/019/11/10 (PRISMA Mission). Additionally, we would like to thank to the PRISMA, 560 

EnMAP and HyspIRI teams for having provided information on the radiometric 561 

characteristics of the sensors useful for the production of the datasets used in this paper. 562 

Additionally we are grateful to the anonymous reviewers for their valuable comments, which 563 

helped to improve the quality of this paper. 564 

 565 

 566 

References 567 

Baillarin, S.J., Meygret, A., Dechoz, C., Lacherade, S., Tremas, T., Isola, C., ... Spoto, F. 568 

(2012). Sentinel-2 level 1 products and image processing performances. Proceedings of 569 

Geoscience and Remote Sensing Symposium (IGARSS), 2012 IEEE International , 570 

pp.7003–006, 22–27 July 2012. 571 

Bellon-Maurel, V., Fernandez-Ahumada, E., Palagos, B., Roger, J.M., & McBratney, A. 572 

(2010). Critical review of chemometric indicators commonly used for assessing the 573 

quality of the prediction of soil attributes by NIR spectroscopy. TrAC Trends in 574 

Analytical Chemistry, 29(9), 1073–1081. doi:10.1016/j.trac.2010.05.006. 575 



 

25 
 

Ben-Dor, E., Inbar, Y., Chen, Y. (1997). The reflectance spectra of organic matter in the 576 

visible near-infrared and short wave infrared region (400–2500 nm) during a controlled 577 

decomposition process. Remote Sensing of Environment, 61(1), 1–15. 578 

http://doi.org/10.1016/S0034-4257(96)00120-4 579 

 Ben-Dor, E., Chabrillat, S., Demattê, J.A.M., Taylor, G.R., Hill, J., Whiting, M.L., & 580 

Sommer, S. (2009). Using Imaging Spectroscopy to study soil properties. Remote 581 

Sensing of Environment, 113, S38–S55. http://doi.org/10.1016/j.rse.2008.09.019 582 

Ben-Dor, E., Kafri A., & Varacalli G. (2013). SHALOM: Spaceborne Hyperspectral 583 

Applicative Land and Ocean Mission: A joint project of ASI – ISA. Proceedings of the 584 

International Geoscience and Remote Sensing Symposium (IAGARSS’13), Melbourne, 585 

Australia, 4 pages, 2013. 586 

Bishop, T.F., & McBratney, A. (2001). A comparison of prediction methods for the creation 587 

of field-extent soil property maps. Geoderma, 103(1–2), 149–160. doi:10.1016/S0016-588 

7061(01)00074-X 589 

Casa, R., Castaldi, F., Pascucci, S., Basso, B., & Pignatti, S. (2013a). Geophysical and 590 

hyperspectral data fusion techniques for in-field estimation of soil properties. Vadose 591 

Zone Journal, 12(4). doi:10.2136/vzj2012.0201 592 

Casa, R., Castaldi, F., Pascucci, S., Palombo, A., & Pignatti, S. (2013b). A comparison of 593 

sensor resolution and calibration strategies for soil texture estimation from hyperspectral 594 

remote sensing. Geoderma, 197–198, 17–26. doi:10.1016/j.geoderma.2012.12.016 595 

Castaldi, F., Casa, R., Castrignanò, A., Pascucci, S., Palombo, A., & Pignatti, S. (2014). 596 

Estimation of soil properties at the field scale from satellite data: a comparison between 597 

http://doi.org/10.1016/S0034-4257(96)00120-4


 

26 
 

spatial and non-spatial techniques. European Journal of Soil Science, 65(6), 842–851. 598 

doi:10.1111/ejss.12202 599 

Castaldi, F., Palombo, A., Pascucci, S., Pignatti, S., Santini, F., & Casa, R. (2015). Reducing 600 

the Influence of Soil Moisture on the Estimation of Clay from Hyperspectral Data: A 601 

Case Study Using Simulated PRISMA Data. Remote Sensing, 7(11), 15561–15582. 602 

doi:10.3390/rs71115561 603 

Chang C. I. (2007).  Hyperspectral Data Exploitation: Theory and Applications. Hoboken, 604 

NJ: Wiley. 605 

Chang, C.W., Laird, D.A., Mausbach, M.J., & Hurburgh, C.R. (2001). Near-Infrared 606 

Reflectance Spectroscopy – Principal components regression analyses of soil properties. 607 

Soil Science Society of America Journal, 65(2), 480. doi:10.2136/sssaj2001.652480x 608 

Chen, L., Flynn, D.F.B., Jing, X., Kühn, P., Scholten, T., & He, J.S. (2015). A comparison of 609 

two methods for quantifying soil organic carbon of alpine grasslands on the Tibetan 610 

Plateau. PLOS ONE, 10(5), e0126372. doi:10.1371/journal.pone.0126372 611 

Chong, I.G., & Jun, C.H. (2005). Performance of some variable selection methods when 612 

multicollinearity is present. Chemometrics and Intelligent Laboratory Systems, 78(1-2), 613 

103–112 614 

Clark, R.N. 1999. Chapter 1: Spectroscopy of Rocks and Minerals, and Principles of 615 

Spectroscopy, in: Rencz A.N. (Eds.), Manual of Remote Sensing, John Wiley and Sons, 616 

New York, pp 3- 58. 617 

Costantini, E.A.C., L'Abate, G., Barbetti, R., Fantappié, M., Lorenzetti, R. and Magini, S. 618 

(2012). Carta dei suoli d’Italia, scala 1:1.000.000 (Soil map of Italy, scale 1:1.000.000). 619 



 

27 
 

Consiglio per ricerca e la sperimentazione in agricoltura, S.EL.CA. Florence/Firenze, 620 

Italy (ISBN: 978-88-97002-02-4). Available at: http://www.soilmaps.it/  621 

Demattê, J.A.M., Fiorio, P.R., & Ben-Dor, E. (2009). Estimation of soil properties by orbital 622 

and laboratory reflectance means and its relation with soil classification. The Open 623 

Remote Sensing Journal, 2(1), 12–23. doi:10.2174/1875413900902010012 624 

FAO-ISRIC-ISSS. (1998). World Reference Base for Soil Resources. World Soil Resources 625 

Report 84. Food and Agriculture Organisation, Rome, Italy. 626 

Ge, Y., Thomasson, J. A., & Sui, R. (2011). Remote sensing of soil properties in precision 627 

agriculture: A review. Frontiers of Earth Science, 5(3), 229 - 238. doi:10.1007/s11707-628 

011-0175-0 629 

Gomez, C., Oltra-Carrió, R., Bacha, S., Lagacherie, P., & Briottet, X. (2015). Evaluating the 630 

sensitivity of clay content prediction to atmospheric effects and degradation of image 631 

spatial resolution using Hyperspectral VNIR/SWIR imagery. Remote Sensing of 632 

Environment, 164, 1–15. http://doi.org/10.1016/j.rse.2015.02.019 633 

Gomez, C., Viscarra Rossel, R.A., & McBratney, A.B. (2008). Soil organic carbon prediction 634 

by hyperspectral remote sensing and field vis-NIR spectroscopy: An Australian case 635 

study. Geoderma, 146(3-4), 403–411. doi:10.1016/j.geoderma.2008.06.011 636 

Green, R.O., Asner, G., Ungar, S., & Knox, R. (2008).  NASA mission to measure global 637 

plant physiology and functional types. Proceedings in Aerospace Conference, 2008 638 

IEEE, pp.1–7, 1–8 March 2008. doi: 10.1109/AERO.2008.4526244 639 

Houborg, R., Anderson, M., Gao, F., Schull, M., & Cammalleri, C. (2012). Monitoring water 640 

and carbon fluxes at fine spatial scales using HyspIRI-like measurements. In 2012 IEEE 641 

http://www.soilmaps.it/


 

28 
 

International Geoscience and Remote Sensing Symposium, pp. 7302–7305. IEEE. 642 

doi:10.1109/IGARSS.2012.6351975 643 

International Standards Organisation 10694 (1995). Soil quality — Determination of organic 644 

and total carbon after dry combustion (elementary analysis) 645 

International Standards Organisation 11277 (1998). Soil quality — Determination of particle 646 

size distribution in mineral soil material — Method by sieving and sedimentation. 647 

Kaufmann, Y.J., Wald, A.E., Remer, L.A., Gao, B.C., Li, R.R., & Flynn, L. (1997). The 648 

MODIS 2.1-mm channel-correlation with visible reflectance for use in remote sensing of 649 

aerosol. Proceedings in IEEE Transactions on Geoscience and Remote Sensing. Vol. 35, 650 

no. 5, pp. 1286–1298.  651 

Lagacherie, P., Baret, F., Feret, J.B., Netto, J.M., & Robbez-Masson, J.M. (2008). Estimation 652 

of soil clay and calcium carbonate using laboratory, field and airborne hyperspectral 653 

measurements, Remote Sensing of Environment, 112, 825–835. 654 

doi:10.1016/j.rse.2007.06.014. 655 

Li, D., Chen, X., Peng, Z., Chen, S., Chen, W., Han, L., & Li, Y. (2012). Prediction of soil 656 

organic matter content in a litchi orchard of South China using spectral indices. Soil and 657 

Tillage Research, 123, 78–86. doi:10.1016/j.still.2012.03.013 658 

Lobell, D.B., & Asner, G.P. (2002). Moisture effects on soil reflectance. Soil Science Society 659 

of America Journal, 66(3), 722–727. Retrieved from 660 

http://www.scopus.com/inward/record.url?eid=2-s2.0-661 

0036240171&partnerID=tZOtx3y1 662 

http://www.scopus.com/inward/record.url?eid=2-s2.0-0036240171&partnerID=tZOtx3y1
http://www.scopus.com/inward/record.url?eid=2-s2.0-0036240171&partnerID=tZOtx3y1


 

29 
 

Mulder, V.L., de Bruin, S., Schaepman, M.E., & Mayr, T.R. (2011). The use of remote 663 

sensing in soil and terrain mapping — A review. Geoderma, 162(1-2), 1–19. 664 

doi:10.1016/j.geoderma.2010.12.018 665 

Markham, B.L., Knight, E.J., Canova, B., Donley, E., Kvaran, G., Lee, K., Barsi, J.A., 666 

Pedelty, J.A., Dabney, P.W.,  & Irons, J.R. (2012). The Landsat data continuity mission 667 

Operational Land Imager (OLI) sensor. Proceedings in Geoscience and Remote Sensing 668 

Symposium (IGARSS), 2012 IEEE International, pp.6995–6998, 22–27 July 2012. doi: 669 

10.1109/IGARSS.2012.6351961 670 

Melendez-Pastor, I., Navarro-Pedreño, J., Gómez, I., & Koch, M. (2008). Identifying optimal 671 

spectral bands to assess soil properties with VNIR radiometry in semi-arid soils. 672 

Geoderma, 147(3), 126–132.  673 

Mendenhall, J.A., Hearn, D.R., Evans, J.B, Lencioni, D.E., Digenis, C.J., & Welsh, R.D. 674 

(2001) Initial flight test results from the EO-1 Advanced Land Imager: radiometric 675 

performance. Proceedings in Geoscience and Remote Sensing Symposium, 2001. 676 

IGARSS '01. IEEE 2001 International , vol.1, pp.515 -517, IEEE. doi: 677 

10.1109/IGARSS.2001.976207 678 

Mevik, B.H. & Wehrens, R. 2007. The pls package: Principal component and partial least 679 

squares regression in R. Journal of Statistical Software, 18, 1–23. 680 

Michel, S., Gamet, P., & Lefevre-Fonollosa, M.J. (2011). HYPXIM — A hyperspectral 681 

satellite defined for science, security and defence users. IEEE Proceedings in 2011 3rd 682 

Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing 683 

(WHISPERS) (pp. 1–4). doi:10.1109/WHISPERS.2011.6080864 684 



 

30 
 

Mouazen, A.M., Maleki, M.R., De Baerdemaeker, J., & Ramon, H. (2007). On-line 685 

measurement of some selected soil properties using a VIS–NIR sensor. Soil and Tillage 686 

Research, 93(1), 13–27. doi:10.1016/j.still.2006.03.009. 687 

Mulder, V.L., de Bruin, S., Schaepman, M.E., & Mayr, T. R. (2011). The use of remote 688 

sensing in soil and terrain mapping — A review. Geoderma, 162(1-2), 1–19. 689 

doi:10.1016/j.geoderma.2010.12.018 690 

Nocita, M., Stevens, A., Noon, C., & van Wesemael, B. (2013). Prediction of soil organic 691 

carbon for different levels of soil moisture using Vis-NIR spectroscopy. Geoderma, 199, 692 

37–42. http://doi.org/10.1016/j.geoderma.2012.07.020 693 

Odeh, I.O., & McBratney, A.B. (2000). Using AVHRR images for spatial prediction of clay 694 

content in the lower Namoi Valley of eastern Australia. Geoderma, 97(3–4), 237–254. 695 

doi:10.1016/S0016-7061(00)00041-0 696 

Pascucci, S., Casa, R., Belviso, C., Palombo, A., Pignatti, S., & Castaldi, F. (2014). 697 

Estimation of soil organic carbon from airborne hyperspectral thermal infrared data: a 698 

case study. European Journal of Soil Science, 65(6), 865–875. doi:10.1111/ejss.12203 699 

Pignatti, S., Acito, N., Amato, U., Casa, R., de Bonis, R,  Diani, M., … Cuomo, V. (2012). 700 

Development of algorithms and products for supporting the Italian hyperspectral 701 

PRISMA mission: The SAP4PRISMA project. Proceedings in 2012 IEEE International 702 

Geoscience and Remote Sensing Symposium (pp. 127–130). IEEE. 703 

doi:10.1109/IGARSS.2012.6351620 704 

Pignatti, S., Palombo, A., Pascucci, S., Romano F., Santini F., Simoniello T.,…Ananasso C. 705 

(2013). The PRISMA hyperspectral mission: Science activities and opportunities for 706 

agriculture and land monitoring. Proceedings in Geoscience and Remote Sensing 707 



 

31 
 

Symposium (IGARSS), 2013 IEEE International , pp.4558 -4561, 21-26 July 2013. doi: 708 

10.1109/IGARSS.2013.6723850. 709 

R Development Core Team 2011. R: A Language and Environment for Statistical Computing. 710 

R Foundation for Statistical Computing, Vienna. ISBN 3-900051-07-0 [WWW 711 

document]. Retrieved from: http://www. R-project.org/. 712 

Richter, K., Hank, T., Atzberger, C., Locherer, M., & Mauser, W. (2012). Regularization 713 

strategies for agricultural monitoring: The EnMAP vegetation analyzer (AVA). 714 

Proceeedings in 2012 IEEE International Geoscience and Remote Sensing Symposium, 715 

pp. 6613–6616. IEEE. doi:10.1109/IGARSS.2012.6352083 716 

Rienzi, E.A., Mijatovic, B., Mueller, T.G., Matocha T.J., Sikora F.J., & Castrignanò A. 717 

(2014). Prediction of soil organic carbon under varying moisture levels using reflectance 718 

spectroscopy. Soil Science Society of America Journal, 78(3), 958. 719 

http://doi.org/10.2136/sssaj2013.09.0408 720 

Sang, B., Schubert, J., Kaiser, S., Mogulsky V., Neumann C., Förster K.P., … Chlebek C. 721 

(2008). The EnMAP hyperspectral imaging spectrometer:instrument concept, calibration 722 

and technologies. Proceedings in SPIE 7086, Imaging Spectrometry XIII, 708605 (27 723 

August 2008). doi: 10.1117/12.794870 724 

Selige, T., Böhner, J., & Schmidhalter, U. (2006). High resolution topsoil mapping using 725 

hyperspectral image and field data in multivariate regression modeling procedures. 726 

Geoderma, 136(1–2), 235–244. doi:10.1016/j.geoderma.2006.03.050 727 

Soil Survey Staff 2014. Keys to Soil Taxonomy, 12th edn. USDA-Natural Resources 728 

Conservation Service, Washington. 729 



 

32 
 

SPS (2011). The Soil Spectroscopy Group. Availble at: http://groups.google.com/group/soil-730 

spectroscopy  731 

Stevens, A., Nocita, M., Tóth, G., Montanarella, L., & van Wesemael, B. (2013). Prediction 732 

of soil organic carbon at the European scale by visible and near infrared reflectance 733 

spectroscopy, PLoS ONE, 8(6), 1–13. 734 

Tanii, J., Iwasaki, A., Kawashima, T., & Inada, H. (2012). Results of evaluation model of 735 

Hyperspectral Imager Suite (HISUI). Proceedings in 2012 IEEE International 736 

Geoscience and Remote Sensing Symposium, pp. 131–134. IEEE. 737 

doi:10.1109/IGARSS.2012.6351619 738 

Tóth, G., Jones, A., & Montanarella, L. (2013). The LUCAS topsoil database and derived 739 

information on the regional variability of cropland topsoil properties in the European 740 

Union. Environmental Monitoring and Assessment, 185(9), 7409–25. 741 

doi:10.1007/s10661-013-3109-3 742 

Tukey, J. W. (1977). Some thoughts on clinical trials, especially problems of multiplicity. 743 

Science, 198(4318), 679–684. Retrieved from 744 

http://www.scopus.com/inward/record.url?eid=2-s2.0-745 

0017778629&partnerID=tZOtx3y1 746 

Vermote, E.F., Tanre, D., Deuze, J.L., Herman, M., & Morcette, J.J. (1997). Second 747 

simulation of the satellite signal in the solar spectrum, 6S: an overview. IEEE 748 

Transactions on Geoscience and Remote Sensing, 35(3), 675–686. 749 

doi:10.1109/36.581987  750 

http://groups.google.com/group/soil-spectroscopy
http://groups.google.com/group/soil-spectroscopy
http://www.scopus.com/inward/record.url?eid=2-s2.0-0017778629&partnerID=tZOtx3y1
http://www.scopus.com/inward/record.url?eid=2-s2.0-0017778629&partnerID=tZOtx3y1


 

33 
 

Viscarra Rossel, R. A., & Behrens, T. (2010). Using data mining to model and interpret soil 751 

diffuse reflectance spectra. Geoderma, 158(1-2), 46–54. 752 

doi:10.1016/j.geoderma.2009.12.025 753 

Viscarra Rossel, R. A., Fouad, Y., & Walter, C. (2008). Using a digital camera to measure 754 

soil organic carbon and iron contents. Biosystems Engineering, 100(2), 149–159. 755 

doi:10.1016/j.biosystemseng.2008.02.007 756 

Willoughby, C.T., Marmo, J., & Folkman, M.A. (1996). Hyperspectral imaging payload for 757 

the NASA small satellite technology initiative program, Proceedings in Aerospace 758 

Applications Conference, vol.2, pp.67–79. IEEE. doi: 10.1109/AERO.1996.495966 759 

Wold, S., Sjöström, M., & Eriksson, L. (2001). PLS-regression: a basic tool of chemometrics. 760 

Chemometrics and Intelligent Laboratory Systems, 58(2), 109–130. Retrieved from 761 

http://www.sciencedirect.com/science/article/pii/S0169743901001551 762 

Wu, J., Li, Z., Gao, Z., Wang, B., Bai, L., Sun, B., … Ding, X. (2015). Degraded land 763 

detection by soil particle composition derived from multispectral remote sensing data in 764 

the Otindag Sandy Lands of China. Geoderma, 241-242, 97–106. 765 

doi:10.1016/j.geoderma.2014.11.011 766 

Zhai, Y., Thomasson, J.A., Boggess, J.E., & Sui, R. (2006). Soil texture classification with 767 

artificial neural networks operating on remote sensing data. Computers and Electronics 768 

in Agriculture, 54(2), 53–68. doi:10.1016/j.compag.2006.08.001 769 

Zhang, T., Li, L., & Zheng, B. (2013). Estimation of agricultural soil properties with imaging 770 

and laboratory spectroscopy. Journal of Applied Remote Sensing, 7(1), 073587. 771 

doi:10.1117/1.JRS.7.073587 772 



 

34 
 

  773 



 

35 
 

Figure captions 774 

 775 

Figure 1. HyspIRI spectral noise characteristics provided by HyspIRI scientific team. The 776 

SNR spectra (left) are shown for four different radiance levels (right), corresponding to 777 

different albedo and solar zenith angles. 778 

Figure 2. Hyperion simulated spectrum obtained from the PONMAC library without noise 779 

(dashed line) and with noise (solid line).  780 

Figure 3. Set of five spectra obtained by resampling a simulated HyspIRI soil spectrum, 781 

derived from the PONMAC dataset, to bandwidths from 10 nm to 160 nm. The spectra were 782 

progressively offset with a factor of 0.1 for visualization purposes. Noisy bands in the water 783 

absorption ranges were removed.  784 

Figure 4. Values of Variable Importance in Projection (VIP) in PLSR estimation models for 785 

clay (a–b), sand (c–d), silt (e–f) and SOC (g–h) using full spectrum data of PONMAC (left 786 

column) and LUCAS_C (right column) library. Predictors with VIP values greater than one 787 

(red area above the horizontal line in the plots) were considered significant for the PLSR 788 

models. 789 

Figure 5. Ratio of performance to deviation (RPD) of clay, sand, silt and SOC estimation, 790 

obtained from the degradation of the spectral resolution of resampled spectra from 10 to 20, 791 

40, 80 and 160 nm bandwidth. 792 

Figure 6. Ratio of performance to deviation (RPD) of clay, sand, silt and SOC estimation, 793 

obtained from the degradation of the spectral resolution of simulated spectra from 10 to 20, 794 

40, 80 and 160 nm bandwidth. 795 
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Table 1: Descriptive statistics of soil variables (clay, sand, silt and SOC) of the LUCAS_C 805 

and PONMAC datasets. Columns report basic statistics including the number of samples (n), 806 

standard deviation (sd), coefficient of variation (CV), as well as the type of data 807 

transformation eventually used. 808 

 809 

 810 

 811 

Table 2: Main technical characteristics of the multispectral imagers considered in this study. 812 

The FWHM column reports the minimum and the maximum of the imager bandwidths. The 813 

SNR column reports the signal to noise ratio values and the wavelength at which it was 814 

calculated. The SNR condition column reports the radiance values under which the SNR were 815 

calculated. 816 

 817 

Imager 

Spectral 

bands 

Spectral 

range 

FWHM 

(nm) SNR  SNR condition 

EO-1 ALI 7 
4 VNIR 

3 SWIR 
20-200 

572 @550 nm 

1040 @1550 nm 

912 @2080 nm 

17,08 mW/cm2 sr μm 

2,15  mW/cm2 sr μm 

0,68  mW/cm2 sr μm 

LANDSAT 

8 OLI 
7 

5 VNIR 

2 SWIR 
20-200 

100 @562 nm 

100 @1610 nm 

100 @2200 nm 

30 W/m2 sr µm 

4,0 W/m2 sr µm 

1,7 W/m2 sr µm 

Sentinel-2 

MSI 
12 

9 VNIR 

3 SWIR 
10-60 

168 @560 nm 

100 @1610 nm 

100 @2190 nm 

128 W/m2 sr µm 

4,0 W/m2 sr µm 

1,5 W/m2 sr µm 

 818 

 819 

 820 

 821 

Table 3: Main technical characteristics of the hyperspectral imagers considered in this study. 822 

The SNR column reports the signal to noise ratio values and the wavelength at which it was 823 

calculated. The SNR condition column reports the illumination condition used for the SNR 824 

calculation. 825 

 826 
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Imager Spectral bands 

Spectral range 

(nm) 

FWHM 

(nm) SNR  SNR condition 

Hyperion 220 400-2500 10 

161 @550 nm 

147 @700 nm  

110 @1125 nm  

40 @2125 nm 

nadir looking 

60° sun-zenith angle 

0.3 earth albedo  

EnMAP 242 420-2450 10 
> 500 @495 nm 

> 150 @2200 nm 

nadir looking 

30° sun-zenith angle 

0.3 earth albedo  

PRISMA 247 400-2500 7÷11 

600 @ 0.65 µm 

> 400 @ 1.55 µm 

> 200 @ 2.1 µm 

nadir looking 

30° sun-zenith angle 

0.3 earth albedo  

HyspIRI 214 380-2510 10 

560 @500 nm  

356 @1500nm  

236 @2200 nm 

nadir looking 

23,5° sun-zenith angle 

0.25 earth albedo  

 827 

 828 

Table 4: Noisy bands falling into the atmospheric gases absorption ranges that were removed 829 

before processing. 830 

Imager Wavelengths (nm) 

Hyperion 356-397; 1134; 1356-1477; 1810-1971; 2405-2577 

HyspIRI 380-390; 1360-1420; 1820-1950; 2410-2500 

EnMAP 1346-1464; 1813-1951; 2408-2438 

PRISMA 1352-1428; 1806-1955; 2403-2500 

Landsat 8 1370 

ALI none 

Sentinel-2 none 

 831 

 832 

 833 

 834 

 835 

 836 

Table 5: Noise-free results obtained from PONMAC spectral library (full spectrum and 837 

resampled datasets). Mean values of the multiple jack-knifing validation results of soil texture 838 

and SOC estimation models. The statistics used are: RMSE = Root Mean Square Error; RPD 839 

= Ratio of the Performance to Deviation; RPIQ = Ratio of Performance to Interquartile Range 840 

and coefficient of determination (R2). Different letters within the LSD (least significant 841 
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difference) column denote a significant difference (P < 0.05) among RPIQ values according 842 

to Fisher's LSD’s test. 843 

Variable Resampling type Spectra 

transformationa 

PLSR 

components 
RMSE (%) RPD RPIQ R2 LSD  

Clay Full spectrum A+SG 10 4.82 1.97 3.07 0.71 a 

 Hyperion None 11 5.95 1.62 2.42 0.58 c 

 HyspIRI None 12 6.02 1.62 2.43 0.56 bc 

 EnMAP None 11 6.11 1.59 2.39 0.56 c 

 PRISMA None 12 5.91 1.64 2.43 0.58 bc 

 Landsat 8 None 5 6.97 1.38 2.07 0.43 e 

 ALI None 7 6.40 1.50 2.25 0.52 d 

  Sentinel-2 None 8 5.72 1.70 2.54 0.61 b 

Sand Full spectrum None 12 5.38 1.83 2.51 0.69 ab 

 Hyperion None 12 5.36 1.86 2.55 0.67 a 

 HyspIRI A 11 5.54 1.79 2.45 0.66 b 

 EnMAP None 12 5.27 1.87 2.56 0.69 a 

 PRISMA None 13 5.43 1.82 2.50 0.67 ab 

 Landsat 8 A 6 8.60 1.15 1.56 0.17 e 

 ALI A 8 7.15 1.38 1.88 0.44 d 

  Sentinel-2 None 9 5.96 1.66 2.28 0.60 c 

Silt Full spectrum None 8 4.77 1.95 3.17 0.71 a 

 Hyperion A+SG 8 5.35 1.72 2.77 0.64 c 

 HyspIRI A+SG+D 7 5.11 1.83 2.95 0.66 b 

 EnMAP A 8 5.08 1.82 2.97 0.66 b 

 PRISMA A+SG+D 6 5.08 1.82 2.95 0.67 b 

 Landsat 8 A 6 5.87 1.56 2.54 0.55 e 

 ALI A 7 5.60 1.64 2.69 0.60 cd 

  Sentinel-2 A 7 5.82 1.58 2.56 0.58 de 

SOC Full spectrum A+SG 13 0.20 1.78 3.12 0.65 a 

 Hyperion A+SG 19 0.22 1.70 2.95 0.62 bc 

 HyspIRI None 12 0.22 1.65 2.86 0.60 c 

 EnMAP A+SG+D 13 0.20 1.80 3.11 0.67 a 

 PRISMA A 14 0.21 1.75 3.02 0.65 ab 

 Landsat 8 None 6 0.25 1.46 2.51 0.50 e 

 ALI None 8 0.25 1.43 2.46 0.49 e 

  Sentinel-2 A 7 0.23 1.55 2.68 0.56 d 
a data were transformed using: absorbance (A), first derivative (D) and/or the Savitzky-Golay (SG) 844 

smoothing filter   845 

 846 

 847 

Table 6: Noise-free results obtained from LUCAS_C spectral library (full spectrum and 848 

resampled datasets). Mean values of the multiple jack-knifing validation results of soil texture 849 
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and SOC estimation models. The statistics used are: RMSE = Root Mean Square Error; RPD 850 

= Ratio of the Performance to Deviation; RPIQ = Ratio of Performance to Interquartile Range 851 

and coefficient of determination (R2). Different letters within the LSD column denote a 852 

significant difference (P < 0.05) among RPIQ values according to Fisher's LSD’s test. 853 

Variable Resampling type Spectra 

transformationa 

PLSR 

components 
RMSE (%) RPD RPIQ R2 LSD  

Clay Full spectrum A 18 7.63 1.69 2.34 0.64 bc 

 Hyperion A 16 7.98 1.62 2.29 0.61 c 

 HyspIRI A 18 7.71 1.68 2.38 0.64 b 

 EnMAP A+SG+D 18 7.39 1.75 2.48 0.66 a 

 PRISMA A+SG+D 18 7.78 1.66 2.34 0.63 b 

 Landsat 8 A 3 10.10 1.27 1.81 0.38 d 

 ALI A 9 9.87 1.30 1.85 0.40 d 

 Sentinel-2 A 6 9.92 1.30 1.84 0.40 d 

Sand Full spectrum A+SG+D 12 12.88 1.25 1.78 0.37 ab 

 Hyperion A 15 13.35 1.22 1.73 0.32 c 

 HyspIRI A 17 12.93 1.25 1.79 0.37 a 

 EnMAP A+SG+D 17 13.28 1.22 1.75 0.30 bc 

 PRISMA A 17 12.98 1.24 1.78 0.35 ab 

 Landsat 8 None 7 15.05 1.07 1.53 0.12 e 

 ALI A 9 14.58 1.10 1.59 0.17 d 

 Sentinel-2 A 7 14.58 1.11 1.59 0.16 d 

Silt Full spectrum A+SG+D 14 11.42 1.22 1.74 0.31 cd 

 Hyperion A+SG+D 18 10.93 1.26 1.81 0.38 b 

 HyspIRI A 18 10.66 1.30 1.85 0.40 a 

 EnMAP A 18 10.63 1.31 1.87 0.39 a 

 PRISMA A 18 10.75 1.29 1.84 0.39 ab 

 Landsat 8 A 7 11.66 1.19 1.70 0.28 e 

 ALI A 9 11.27 1.23 1.76 0.33 c 

 Sentinel-2 A 7 11.61 1.20 1.71 0.28 de 

SOC Full spectrum A+SG+D 17 0.42 1.35 1.75 0.42 ab 

 Hyperion A 14 0.46 1.23 1.59 0.27 c 

 HyspIRI A 18 0.41 1.37 1.79 0.44 a 

 EnMAP A+SG+D 18 0.41 1.38 1.79 0.45 a 

 PRISMA A+SG+D 18 0.42 1.33 1.73 0.42 b 

 Landsat 8 A 5 0.51 1.09 1.40 0.16 e 

 ALI A 5 0.51 1.09 1.41 0.16 e 

  Sentinel-2 A 7 0.50 1.13 1.46 0.20 d 
a data were transformed using: absorbance (A), first derivative (D) and/or the Savitzky-Golay (SG) 854 

smoothing filter   855 

Table 7: Results obtained from PONMAC spectral library with the addition of noise and 856 

atmospheric effects (simulated datasets). Mean values of the multiple jack-knifing validation 857 

results of soil texture and SOC estimation model. The statistics used are: RMSE = Root Mean 858 
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Square Error; RPD = Ratio of the Performance to Deviation; RPIQ = Ratio of Performance to 859 

Interquartile Range and coefficient of determination (R2). Different letters within the LSD 860 

column denote a significant difference (P < 0.05) among RPIQ values according to Fisher's 861 

LSD’s test. 862 

Variable Resampling type 

Spectra 

transformationa 

PLSR 

components RMSE (%) RPD RPIQ R2 LSD 

Clay Hyperion SG 6 7.34 1.31 1.98 0.39 e 

 HyspIRI None 9 6.73 1.43 2.16 0.47 b 

 EnMAP A+SG+D 6 6.12 1.57 2.35 0.57 a 

 PRISMA None 8 6.24 1.54 2.33 0.54 a 

 Landsat 8 None 5 6.93 1.38 2.07 0.45 cd 

 ALI None 8 6.58 1.45 2.15 0.51 bc 

  Sentinel-2 None 5 7.08 1.35 2.03 0.42 de 

Sand Hyperion SG 9 8.46 1.17 1.59 0.20 d 

 HyspIRI None 12 6.45 1.52 2.10 0.53 b 

 EnMAP A+SG 12 6.17 1.60 2.17 0.57 a 

 PRISMA A+SG 12 6.23 1.58 2.17 0.57 a 

 Landsat 8 A 6 9.06 1.08 1.48 0.11 e 

 ALI A 8 7.83 1.25 1.73 0.32 c 

  Sentinel-2 None 5 8.79 1.12 1.55 0.13 d 

Silt Hyperion SG 7 6.53 1.40 2.27 0.46 d 

 HyspIRI A+SG 8 5.29 1.73 2.80 0.65 a 

 EnMAP A+SG 8 5.23 1.76 2.85 0.65 a 

 PRISMA A+SG 8 5.40 1.70 2.77 0.63 a 

 Landsat 8 A 4 6.16 1.47 2.39 0.53 bc 

 ALI A 8 6.06 1.51 2.44 0.53 b 

  Sentinel-2 None 4 6.42 1.43 2.34 0.46 cd 

SOC Hyperion A+SG 7 0.28 1.30 2.25 0.39 c 

 HyspIRI A+SG 12 0.25 1.44 2.49 0.49 a 

 EnMAP None 6 0.25 1.45 2.51 0.50 a 

 PRISMA A+SG 7 0.25 1.45 2.48 0.51 a 

 Landsat 8 None 6 0.25 1.44 2.48 0.49 a 

 ALI None 7 0.26 1.37 2.38 0.44 b 

  Sentinel-2 None 3 0.29 1.26 2.17 0.36 c 
a data were transformed using: absorbance (A), first derivative (D) and/or the Savitzky-Golay (SG) 863 

smoothing filter   864 

 865 

 866 

 867 
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Table 8: Results obtained from LUCAS_C spectral library with the addition of noise and 868 

atmospheric effects (simulated datasets). Mean values of the multiple jack-knifing validation 869 

results of soil texture and SOC estimation models. The statistics used are: RMSE = Root 870 

Mean Square Error; RPD = Ratio of the Performance to Deviation; RPIQ = Ratio of 871 

Performance to Interquartile Range and coefficient of determination (R2). Different letters 872 

within the LSD column denote a significant difference (P < 0.05) among RPIQ values 873 

according to Fisher's LSD’s test. 874 

 875 

Variable 
Resampling 

type 
Spectra 

transformationa 

PLSR 

components 
RMSE (%) RPD RPIQ R2 LSD  

Clay Hyperion SG+D 7 16.98 0.90 1.27 -1.56[rc2] c 

 HyspIRI A 10 9.14 1.41 2.00 0.49 a 

 EnMAP A+SG 11 9.33 1.38 1.95 0.46 a 

 PRISMA A+SG 7 9.11 1.41 2.00 0.50 a 

 Landsat 8 A 5 10.11 1.28 1.81 0.37 b 

 ALI A 8 10.09 1.27 1.80 0.37 b 

  Sentinel-2 A 6 10.25 1.26 1.78 0.36 b 

Sand Hyperion SG+D 4 17.92 0.95 1.37 -0.44 e 

 HyspIRI A 11 14.53 1.11 1.59 0.17 a 

 EnMAP A+SG 12 14.57 1.11 1.59 0.17 ab 

 PRISMA A+SG 7 14.50 1.11 1.59 0.18 ab 

 Landsat 8 A 5 15.25 1.06 1.51 0.10 d 

 ALI A 8 14.87 1.09 1.55 0.13 bc 

  Sentinel-2 A 3 15.18 1.06 1.52 0.10 cd 

Silt Hyperion A 5 14.71 0.96 1.37 -0.19 c 

 HyspIRI A 8 11.67 1.19 1.69 0.28 ab 

 EnMAP A+SG 9 11.59 1.20 1.71 0.29 ab 

 PRISMA A+SG 7 11.48 1.21 1.72 0.30 a 

 Landsat 8 A 7 11.73 1.18 1.68 0.27 b 

 ALI A 8 11.59 1.20 1.71 0.29 ab 

  Sentinel-2 A 4 11.90 1.16 1.67 0.25 b 

SOC Hyperion SG+D 7 0.53 1.05 1.36 0.06 d 

 HyspIRI A 12 0.48 1.15 1.48 0.23 b 

 EnMAP A+SG+D 9 0.48 1.17 1.51 0.25 ab 

 PRISMA A+SG 7 0.48 1.17 1.52 0.26 a 

 Landsat 8 A 7 0.51 1.09 1.40 0.14 c 

 ALI A 7 0.51 1.09 1.41 0.15 c 

  Sentinel-2 A 6 0.51 1.09 1.41 0.13 c 
a data were transformed using: absorbance (A), first derivative (D) and/or the Savitzky-Golay (SG) 876 

smoothing filter   877 
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 879 

 880 

Table 9: Number of bands and signal to noise ratio (SNR) of HispIRI, PRISMA and EnMAP 881 

imagers in two spectral ranges (400 ÷ 600 nm and 2000 ÷ 2400 nm).   882 

Spectral range Imager Bands (n.) SNR mean SNR st.dev. 

400 -600 nm HyspIRI 21 546.25 71.10 

 PRISMA 25 438.34 107.51 

  EnMap 35 536.57 50.19 

2000 - 2400 nm HyspIRI 41 218.27 52.49 

 PRISMA 52 166.37 48.98 

  EnMap 48 146.08 41.64 

 883 

 884 

 885 


