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ABSTRACT 30 

Heat stress represents a key factor that negatively affects the productive and reproductive 31 

performance of farmed animals. In the present work, a new measure of tolerance to heat stress for 32 

dairy cattle was developed using Principal Component Analysis. Data were 590,174 test day 33 

records for milk yield, fat and protein percentages, and somatic cell score of 39,261 Italian Holstein 34 

cows. Test day (TD) records adjusted for main systematic factors were grouped into eleven 35 

temperature humidity index (THI) classes. Daughter trait deviations (DTD) were calculated for 36 

1,540 bulls as means of the adjusted TD records for each THI class. Principal Component Analysis 37 

was performed on the DTD for each bull. The first two principal components (PC) explained from 38 

42 to 51% of the total variance of the system across the four traits. The first PC, named LEVEL was 39 

interpreted as a measure of the level at which the DTD curve was located. The second, named 40 

SLOPE, synthesized the behavior of the DTD pattern. Heritability of the two component scores was 41 

moderate to high for LEVEL across all traits (range 0.23- 0.82) and low to moderate for SLOPE 42 

(range 0.16-0.28). For each trait, phenotypic and genetic correlations between LEVEL and SLOPE 43 

were equal to zero. A genome-wide association analysis was carried out on a sub-sample of 423 44 

bulls genotyped with the Illumina 50K bovine bead chip. Two single nucleotide polymorphisms 45 

(SNP) were significantly associated to SLOPE for milk yield, four to LEVEL for fat percentage, 46 

and two for protein percentage, respectively. The gene discovery carried out considering windows 47 

of 0.5 Mb surrounding the significant markers highlighted some interesting candidate genes. Some 48 

of them have been already associated to the mechanism of heat tolerance as the heat shock 49 

transcription factor (HSF1) and the malonyl-CoA-acyl carrier protein transacylase (MCAT). The 50 

two PC were able to describe the overall level and the slope of response of milk production traits 51 

across increasing levels of THI index. Moreover, they exhibited genetic variability and were 52 

genetically uncorrelated. These features suggest their use as measures of thermo tolerance in dairy 53 

cattle breeding schemes. 54 

 55 



Keywords: Heat tolerance, Principal Component Analysis, heritability, GWAS, Dairy cattle 56 

 57 

INTRODUCTION 58 

The improvement of animal ability to cope with adverse environmental conditions is one of 59 

the great challenges of animal breeding for the future (Bernabucci et al., 2010). Among the traits 60 

that contribute to define animal adaptability to environmental variation, tolerance to heat stress 61 

plays a major role. Heat stress can be defined as the condition where the animal is not able to 62 

adequately dissipate the excess of endogenous or exogenous heat to maintain the body thermal 63 

balance (Bernabucci et al., 2014). In dairy cattle it is known that heat stress results in relevant 64 

economic losses due to reduced milk production and reproduction performances (Nardone et al., 65 

2010; Aguilar et al., 2010; Biffani et al. 2016). The increasing concern about tolerance to heat stress 66 

for dairy animals also in temperate areas is a consequence of both climate changes and higher 67 

metabolic heat production by high yielding animals (Kadzere et al. 2002; Hansen, 2007; Segnalini 68 

et al., 2011).  69 

If tolerance to heat stress is a quite straightforward concept, its systematic measure remains 70 

problematic. On the other hand a quantification of this trait is fundamental if it has to be considered 71 

a potential selection goal in breeding programs. 72 

Some physiological traits are related to the ability of the animal to cope with heat stress. For 73 

example, rectal temperature and respiration rate increase when animals are exposed to warm 74 

environment (Garner et al., 2016; Perano et al., 2015; Dikmen et al., 2012).These traits exhibit a 75 

genetic component: for example, a moderate heritability and associations with single nucleotide 76 

polymorphisms (SNP) and candidate genes have been reported for rectal temperature (Dikmen et 77 

al., 2013; 2015). However, the inclusion of these heat tolerance indicator traits in large-scale 78 

phenotype recording systems for selecting thermo-tolerant animals appears rather problematic in 79 

terms of logistics and costs. An alternative is to evaluate heat tolerance by measuring changes of 80 

milk production traits under warm environmental conditions (Carabano et al., 2016; Hammami et 81 



al., 2015; Nguyen et al., 2016). In dairy cattle populations involved in selection programs, milk 82 

production data could be easily retrieved from dairy recording systems and associated to climate 83 

data provided by weather stations. The variable most frequently used to evaluate heat stress 84 

conditions is the temperature-humidity index (THI). The approach commonly used to evaluate heat 85 

tolerance relies on the so-called broken line model (Misztal, 1999). It assumes the existence of a 86 

comfort zone limited by an upper threshold value (TH0) beyond which the production linearly 87 

decreases as THI increases (Bernabucci et al., 2014; Carabano et al., 2014). 88 

In statistical models tolerance to heat stress might be fitted according to a reaction norm 89 

model (Kolmodin and Bijma, 2004), where the phenotype is expressed as a linear function of an 90 

environmental variable (for example THI or temperature). Very often, the environmental variable 91 

effect is a dummy variable, set to zero when THI<TH0 and to THI-TH0 when THI>TH0 (Bernabucci 92 

et al., 2014).  Some studies adopted the fixed value of 72 for TH0 (Aguilar et al., 2009; Bohmanova 93 

et al., 2008; Ravagnolo and Misztal, 2000) but recently different TH0 have been estimated across 94 

traits, parities and geographical regions (Bernabucci et al., 2014; Biffani et al., 2016).  95 

Some studies on tolerance of heat stress have used individual production curves along 96 

different THI levels corrected for fixed factors as a measure of heat tolerance (Carabano et al., 97 

2016; Hayes et al., 2009). Average curves of bull progeny for milk production traits across different 98 

THI levels, named as daughter trait deviations (DTD), have been recently used as phenotypes in a 99 

genomic selection study on tolerance to heat stress (Nguyen et al., 2016).  100 

For genetic purposes, individual effects for heat tolerance are usually fitted with an intercept 101 

and a slope, representing the overall level of production and the response of the animal to heat 102 

stress, respectively. Main concerns about these approaches are on the use of a common threshold 103 

across all animals and the assumption of linearity for the production decay after TH0 (Bernabucci et 104 

al., 2014; Carabano et al., 2014). On the other hand, estimation of individual thresholds (Sanchez et 105 

al., 2009) is more realistic even though more computationally demanding. Individual change points 106 



of production patterns for increasing THI levels have been fitted also with Legendre polynomials in 107 

Random Regression Models (Brugemann et al., 2012; Carabano et al, 2014; 2016)  108 

Several papers that evaluated the effect of heat stress on milk reported an unfavorable genetic 109 

relationship between production and heat tolerance (Hammami et al., 2015; Sanchez et al., 2009; 110 

Bernabucci et al., 2014). These results were confirmed also by the strong negative correlations (-111 

0.85 and -0-75) between genomic breeding value for milk DTD derived heat tolerance and EBV for 112 

milk yield in Australian Holsteins and Jerseys respectively (Nguyen et al., 2016). Such correlation 113 

is the result of the increased metabolic heat production that occurs in high producing cows and that 114 

exacerbate the effects of the external heat. This represents a severe constraint to an efficient 115 

selection for improving heat tolerance without negative consequences on production. The 116 

aggregation of the two traits into a selection index may help selection, even though the definition of 117 

optimal economic weights could remain theoretical issue and the negative correlation undoubtedly 118 

will reduce the selection response on each individual trait. An alternative could be the use of a 119 

measure of tolerance to heat stress that is not correlated with production levels. The use of a model 120 

free-approach, able to disentangle main features of DTD without imposing specific constraints is an 121 

appealing option for assessing proper variables to study tolerance to heat stress. Principal 122 

component analysis (PCA) is a multivariate statistical technique able to synthesize complex 123 

patterns as the lactation curves for dairy traits in two variables with a clear technical meaning 124 

(Macciotta et al., 2006; 2015). PCA can be therefore conveniently used to analyze DTD curves for 125 

extracting new variables able to synthesize the pattern.  126 

In the present work a PCA approach was tested to derive indicator variables of tolerance to 127 

heat stress from milk production data in dairy cattle. Moreover, a genome wide association study 128 

(GWAS) using MD (medium) density (50K) SNP panel was used for investigating the genetic 129 

determinism of these new variables. 130 

 131 

MATERIALS AND METHODS 132 



Data 133 

Data were 590,174 test day (TD) records for milk yield (MY), fat (FP) and protein (PP) 134 

percentages, and somatic cell score (SCS) (Ali and Shook, 1980) of 39,261 Italian Holstein cows  135 

(first, second, and third parity) from 484 farms, collected from 2001 to 2007. Data were recorded by 136 

the Italian Breeders Association (AIA) according to International Committee for Animal Recording 137 

(ICAR) standards (http://www.icar.org/Documents/Rules%20and%20regulations/ 138 

Guidelines/Guidelines_2011.pdf). Age at calving classes were established for each parity according 139 

to the following thresholds: 20 to 36 (17 classes), 31 to 50 (20 classes), and 42 to 65 (24 classes) 140 

month of age for first-, second-, and third-parity cows, respectively. All cows had first lactation data 141 

and a minimum of 8 Test Day (TD) records per lactation  (from 5 to 305 DIM). A minimum of 24 142 

records per herd-year of calving were required. Cows were sired by 4,184 AI bulls.  143 

Daily weather information were collected from 35 meteorological stations located no more 144 

than 5 kilometers from the considered herd. THI index (Kelly and Bond, 1971) was then calculated 145 

as: 146 

THI = (1.8 x AT + 32) - (0.55  - 0.55 x RH) x [(1.8 x AT +32) – 58)] 147 

where AT is the maximum daily temperature expressed in Celsius degrees and RH is the minimum 148 

relative humidity expressed in percentage. 149 

  150 

Statistical analysis 151 

TD records were firstly analyzed with the following mixed linear model  152 

y = month(year) + age + dim*parity + herd(year) + e  [1] 153 

where 154 

y = is the record for MY, FP, PP, or SCS 155 

month(year) = is the fixed effect of the month of calving (12 months) nested within the year of 156 

calving (7 years 2001-2007);  157 

age = is the fixed effect of age class in months (61 classes, from 20 to 65 months); 158 



dim*parity = is the interaction between the fixed effect of the days in milk class (10 intervals of 30 159 

days each) and the fixed effect of parity (3 parities: 1-3)  160 

herd(year) = is the random effect of the herd (458) nested within calving year 161 

e = is the random residual 162 

Residuals of model [1] are therefore production data adjusted for main systematic factors 163 

except from additive genetic and THI effects. On the basis of THI values, records were grouped into 164 

eleven THI classes (1=50-52, 2=53-54,….11=>79). Distribution of records across THI classes is 165 

reported in figure 1. Means of residuals were calculated for each bull and THI class for obtaining 166 

Daughter Trait Deviations (DTD) (Nguyen et al., 2016). DTD plotted against the THI class express 167 

the sensitivity of bull’s daughter production performance for increasing THI levels.  168 

The following step was to derive a measure able to summarize the shape of these curves that 169 

could be used as dependent variable in a GWAS. PCA was carried out on the eleven points of the 170 

DTD curves, considered as different variables: for example the first bull for milk yield had eleven 171 

records (i.e., DTD1_MY, DTD2_MY,…DTD11_MY). Only bulls that had the complete set of 172 

eleven DTD values for each trait were considered (1,540 for MY, 1,513 for FP, 1,536 for PP and 173 

1,535 for SCS respectively). PCA was carried out using the SAS PRINCOMP procedure (SAS, 174 

2008). The number of PC to be retained was based on their eigenvalue, and on their relationships 175 

with the original variables.  176 

Principal component (PC) scores were then calculated for each bull and treated as new 177 

phenotypes for performing either genetic parameter estimation and genome wide association 178 

analysis (GWAS).Variance components for PC scores were estimated with the following multi-trait 179 

animal model: 180 

𝑦 = μ+ 𝑎𝑛𝑖𝑚𝑎𝑙 + 𝑒  181 

 182 



where y is a vector of PC scores for MY, FP, PP, and SCS, respectively,  is the overall mean; 183 

animal is the random additive genetic effect; and e is the residual term. The following (co)variance 184 

structure was assumed for the random effects: 185 

 186 

𝑉𝑎𝑟 |
𝑎
𝑒

| = |
𝐴 ⊗ 𝐺0 0

0 𝐼 ⊗ 𝑅0
| 187 

 188 

where A is the numerator relationship matrix; G0 the matrix of (co)variances for additive effects and 189 

R0 is a diagonal matrix of residual variances corresponding to each trait. The pedigree file had 190 

21,685 animals, including the 1,540 sires with DTDs in the data set.  191 

The model was solved using the program AIREML90 (Misztal et al., 2002). Considering that PC 192 

scores were calculated starting from average yields per bull, the ratio 193 

ℎ2 =
𝜎𝐴

2

𝜎𝐴
2 +  𝜎𝐸

2 194 

where 2
A and 2

E are the additive genetic and the residual variances respectively. represents an 195 

approximation of the true heritability because averaging affects the variability of the response 196 

(different number of TD records per bull). Thus obtained values have been properly called as 197 

pseudo-heritability. 198 

Of the 1,540 bulls considered for the PC score calculation, 423 were genotyped with the 199 

Illumina 50K bovine bead chip. Monomorphic SNPs (7,140) and SNPs with a call-rate < 95% 200 

(1,045) were discarded. In total, 45,546 SNPs were retained for the analysis. Genome-wide scan 201 

was performed on PCA scores with the GenABEL R package, using the GRAMMAR procedure. 202 

First, an additive polygenic model was fitted to obtain individual residuals using the genomic 203 

relationship matrix. Then, SNP association was tested using a linear model on residuals of the first 204 

step. The SNP statistical significance was corrected for the stratification of the population using the 205 

Genomic Control (GC) option (Amin et al., 2007). The GC corrected P values (GC_Pi) were further 206 

corrected for multiple testing using either i) the Bonferroni correction, obtained as GC_Pi*m (where 207 



m is the number of performed tests); ii) and calculating the False Discovery Rate (FDR), as 208 

(GC_Pi*k)/ m0, where m0 is the number of tests having the GC P values lower or equal to GC_Pi.A 209 

marker was declared significantly associated to a trait when the FDR was <0.10.  210 

Gene discovery analysis was carried out considering windows of 0.5 Mb surrounding the 211 

significant marker (0.25Mb up and down stream respectively). Genes were derived from UCSC 212 

Genome Browser Gateway (http://genome.ucsc.edu/). SNP and gene positions were obtained from 213 

the UMD3.1 bovine genome assembly (Zimin et al., 2009). 214 

 215 

RESULTS 216 

Principal Component Analysis 217 

Eigenvectors and eigenvalues of the first two PC extracted from all the four considered 218 

phenotypes are reported in Table 1. The first two PC explained from 42 to 51% of the total variance 219 

of the system across the four traits. The choice of retaining only the first two PC was motivated by 220 

the magnitude of single eigenvalues, even though the amount of explained variance was not 221 

particularly relevant. A common criterion used for retaining PC is that the eigenvalue should be 222 

greater than one. In the present work, for all the four traits only the first eigenvalue fulfilled this 223 

requirement and the second was very close to one (Table 1).    224 

The first principal component (PC1) showed positive and moderate eigenvector coefficients 225 

or loadings (ranging from 0.25 to 0.35) with all the original variables (Table 1). Thus PC1 can be 226 

considered as a measure of the level at which the curve is located and it was named LEVEL. Bulls 227 

with large scores for this component have their DTD pattern located on a higher level. The second 228 

principal component (PC2) exhibited larger loadings (up to 0.76 for DTD_FP) with both positive 229 

and negative signs. In particular, PC2 showed positive values for the first part of THI interval and 230 

negative for the second part for MY, SCS and, even if less definite, for FP, respectively. On the 231 

contrary, PC2 for PP showed the opposite trend. For its structure, the PC2 defined the shape of the 232 

DTD curve. Therefore larger values (or smaller in the case of protein content) of PC2 scores 233 



characterize DTD curves with a decreasing pattern (as the one reported in figure 2c) whereas 234 

smaller (or larger) PC2 scores indicate increasing patterns. This component was named SLOPE. 235 

The interpretation of  LEVEL and SLOPE meaning may be better inferred from the average DTD 236 

curves for different PC1 and PC2 classes (Figures 2). Only MY data were reported for brevity, but 237 

the other traits showed the same pattern.  238 

To simplify the comparison between SLOPE for different traits, scores of SLOPE_PP were 239 

multiplied by -1. Pearson correlations among PC scores (Table 2) confirm the expected 240 

orthogonality between LEVEL and SLOPE within each trait. Sign and magnitude of correlations 241 

between PC scores of different traits confirm the meaning of the new variables extracted: examples 242 

are the negative correlations between LEVEL for milk yield and for fat and protein percentage and 243 

the positive correlation between the last two traits. 244 

 245 

Genetic parameter estimation 246 

All new variables exhibited genetic variability (Table 3). In particular, pseudo-heritability 247 

was moderate to high for LEVEL across all traits (values ranged between 0.32 for SCS and 0.82 for 248 

FP, respectively) and low to moderate for SLOPE (range from 0.16 for SCS to 0.28 for PP, 249 

respectively). SLOPE_MY has pseudo h2 similar to heat tolerance measures estimated from milk 250 

yield data using different approaches (Nguyen et al., 2016; Sanchez et al.,2009). Moreover, values 251 

for SLOPE_FP and SLOPE_PP are consistent with the proportion of variability explained by one of 252 

the canonical variables obtained for the eigendecomposition of the additive (co)variance matrix of 253 

random regression coefficients for these traits (Carabano et al., 2014). Pseudo genetic correlations 254 

confirm also at genetic level the substantial orthogonality between the LEVEL and SLOPE 255 

components within each trait. Values of pseudo rg between LEVEL values across the different traits 256 

were large (absolute values >0.65) with the exception of comparisons involving SCS. Large pseudo 257 

genetic correlations were also observed between SLOPE values for all traits, with the exception of 258 

the correlation between FP and SCS (Table 3). 259 



 260 

Genome wide association study 261 

Eight SNP were significantly associated to the considered traits (FDR<0.10; P_Bonf<0.08) 262 

(Table 4). Two of them were associated to SLOPE_MY. Four, including the three top significant 263 

SNP, were associated to LEVEL for FP and two for PP (one to LEVEL and one to SLOPE). No 264 

significant association was found for principal components extracted from DTD for SCS.   265 

 266 

Milk yield. The two markers significantly associated to DTD_MY were both related to SLOPE 267 

(Table 4 and Figure 3a), the principal component that expresses the shape of individual curves for 268 

increasing levels of THI. The first SNP was located on BTA26 at approximately 22.3 Mb. A 269 

possible candidate gene located within the interval defined by this marker is the beta-transducin 270 

repeat containing E3 ubiquitin protein ligase (BTRC) (Table 5), reported to be associated with milk 271 

production (Raven et al., 2016) and leg morphology (van den Berg et al., 2014) in cattle, and with 272 

growth rate in chicken (Zhang et al., 2015). The 0.5 Mb windows includes also genes involved in 273 

folliculogenesis in cattle, as fibroblast growth factor 8 (FGF8), found in a selection sweep study in 274 

dairy cattle (Kemper et al., 2014), meningioma expressed antigen 5 (hyaluronidase) (MGEA5), and 275 

taurusKv channel interacting protein 2 (KCNIP2) (Hatzirodos et al., 2014). Of interest is also 276 

Hermansky-Pudlak syndrome 6 (HPS6), a gene related to pigmentation in humans (Sturm and Luy, 277 

2012). A marker located on BTA26 and significantly associated to sweating rate was reported by 278 

Dikmen et al. (2013) for Holstein, although the map position is about 2.0 Mb far from the SNP 279 

identified in our study. 280 

The second marker associated to SLOPE for milk yield was located on BTA6 at approximately 35.5 281 

Mb (Table 4). In this region maps the coiled-coil serine rich protein 1 (CCSER1) (Table 5), a gene 282 

involved in the mechanism of cell division found to be associated to birth weight in Brangus cattle 283 

(Saatchi et al., 2014) and with Na concentration in muscle of Nelore cattle (Tizioto et al., 2015). 284 

Dikmen et al. (2013; 2015) found markers significantly associated to rectal temperature and 285 



respiration rate on BTA6, but at a position about 10Mb far from the marker flagged in the present 286 

study.  287 

 288 

Fat percentage. The four significant SNP detected for LEVEL of FP were located on BTA14 in an 289 

interval of approximately 0.6 Mb (Table 4). The top significant SNP (ARS-BFGL-NGS-4939) was 290 

reported to be significantly associated to milk fat also in Italian, US and German Holsteins (Cole et 291 

al., 2011; Wang et al., 2014; Capomaccio et al., 2015), in Italian Simmental cattle (Macciotta et al., 292 

2015), and in a multibreed population (Raven et al., 2014). The 0.5 Mb window surrounding this 293 

top marker flagged a zone characterized by a high density of annotated genes. In particular in that 294 

region maps one of the most important genes affecting milk fat content and yield in cattle (Table 5), 295 

the DiacylAcyilGlicerolTransferase 1 (DGAT1) (Grisart et al., 2002). However, on BTA14 at 296 

approximately 1.81-1.83 Mb maps the heat shock transcription factor 1 (HSF1), a protein that is 297 

involved in the mechanism of response to heat stress (Guettouche et al., 2005). Among the genes 298 

that map in the interval defined by the second marker (Table 4), of interest there is the Rho GTPase 299 

activating protein 39 (ARHGAP39), involved in the development of the central nervous system (Ma 300 

and Novak, 2011) (Table 5). This gene has been reported to be associated to milk fat composition in 301 

Danish  (Buitenhuis et al., 2014) and North American (Nayeri et al., 2016) Holstein, and to somatic 302 

cell score (Wang et al., 2015) in Chinese Holstein. Another interesting gene located in this region is 303 

the ribosomal protein L8 (RPL8), involved in the cellular mechanisms of homeostasis (Katz et al., 304 

2016), associated to response to acute heat stress in the fish Latescalcarifer (Newton et al., 2012). 305 

The third marker located on BTA14 pointed out the mitogen-activated protein kinase 15 (MAPK15) 306 

(Table 5), suggested as a candidate gene for Somatic Cell Score in a study on Chinese Holstein 307 

(Wang et al., 2015). The last significant SNP for PC1 of DTD_FP was also located on BTA 14, 308 

very close to the second significant SNP. Close to this marker maps the zinc finger protein 34 309 

(ZNF34), found to be associated to milk fat percentage in Chinese Holstein (Jiang et al., 2014) and 310 



Italian Simmental (Macciotta et al., 2015). No significant SNP were detected for the SLOPE 311 

component for fat percentage (Figure 3b)  312 

 313 

Protein percentage. A SNP significantly associated with SLOPE_PP was found on BTA5, at 314 

approximately 114.8 Mb (Table 4 and Figure 3c). In the 0.5 Mb interval flanking this marker is 315 

located an interesting gene, the malonyl-CoA-acyl carrier protein transacylase (MCAT) (Table 5) 316 

expressed in the mitochondrion and involved in fatty acid metabolism. This gene has been found to 317 

be differentially expressed in chicken embryos exposed to heat challenge (Loyau et al., 2016). 318 

Other genes of interest located in this interval are the sorting and assembly machinery component 319 

(SAMM50), a mitochondrial  protein found associated with serum triglyceride levels in humans 320 

(Kitamoto et al., 2013); and the translocator protein (TSPO), a gene upregulated in atretic bovine 321 

follicles (Hatzirodos et al., 2014). 322 

The other significant marker associated with PP was related to LEVEL. It was located on BTA14, 323 

in a region where no annotated genes have been retrieved in the UCSC genome database. 324 

 325 

DISCUSSION 326 

 327 

Traits able to describe efficiently the response of animals to heat stress are rather 328 

problematic to be routinely measured in dairy cattle populations involved in breeding programs. 329 

Dikmen et al. (2012) estimated that 13 to 17% of the variation in rectal temperature in cows during 330 

heat stress is due to genetic differences. However, it will not be practical to select cows for heat 331 

tolerance based on rectal temperature directly because this trait is not recorded on dairy farms. On 332 

the contrary, patterns of milk production traits can be conveniently modeled to estimate tolerance to 333 

heat stress (Carabano et al., 2014  ̧ Bernabucci et al., 2014; Hammami et al., 2015). In particular 334 

DTD have been proposed as a proxy of individual response of bulls across increasing levels of heat 335 

load (Hayes et al., 2009). The reliability of heat tolerance proxies based on production traits was 336 



underlined in a recent study on dairy cattle subjected to heat challenge under controlled 337 

environment, namely climate chambers (Garner et al., 2016). Heat tolerant cows, ranked according 338 

to a genomic breeding value of heat tolerance based on milk yield, showed lower values of 339 

physiological indicators (core body temperature, rectal and intra-vaginal temperature) than heat 340 

sensitive cows. 341 

In the present work DTD calculated for four different milk production traits were analyzed 342 

with PCA. This approach was able to extract two new variables, which explained approximately 343 

50% of the original variance. Interestingly, they were related to the level of the DTD curve and to 344 

its slope, respectively. Our interpretation of PC meaning is in agreement with the outcome of eigen 345 

decomposition of coefficient matrix of Random Regression models used to estimate heat tolerance 346 

(Carabano et al., 2014) and with previous reports on PCA carried out on milk production traits in 347 

cattle (Macciotta et al., 2006; 2015).  348 

Most of genetic models used to study the heat stress effect on dairy traits use the reaction 349 

norm model approach (Kormodin and Bijma, 2004; Shariati et al., 2007). In particular, for each 350 

animal the THI effect is fitted as a general intercept plus a slope (Carabano et al., 2014; Hayes et 351 

al., 2009; Sanchez et al., 2009). The results of the model free PCA approach used in the present 352 

study basically confirm theoretical assumptions of the reaction norm model. Also, the 353 

predominance of LEVEL over SLOPE in terms of variance explained is in agreement with previous 354 

reports. In particular, SLOPE eigenvalue (about 10%) is not far from values reported for the second 355 

eigenfunction for fat and protein yield obtained from the decomposition of (co)variance matrix of 356 

random regression models by Carabano et al. (2014). These evidences suggest that the behavior of 357 

milk production traits across increasing THI levels can be partitioned into two main components, 358 

one basically related to the overall production genetic potential of the animal and the other to the 359 

individual specific response.  360 

The SLOPE component could be proposed as a measure of individual tolerance to heat stress. 361 

However, the interpretation of its values deserves further discussion. From figures 3b it can be 362 



noticed that animals having negative SLOPE scores exhibited, on average, lower DTD in the first 363 

part of the THI scale (i,e. in the comfort zone) and higher in the second  part, respectively. Thus a 364 

selection in favor of this kind of response pattern would result in less productive animals under 365 

comfort conditions, i.e. the most frequent at least in temperate areas. However, it should be 366 

remembered that graphs depicted in figures 2 represents deviations from the average response 367 

pattern (Carabano et al., 2016). Thus animals exhibiting a curve as the one reported in figure 2b are 368 

not expected to respond with a decrease of production to lower THI levels but to have a quite 369 

constant average level of production in this point of the curve. Moreover, provided the 370 

orthogonality between the two traits, the crossed distribution of individual patterns among the 371 

classes of the two PCs (Table 6) shows values in all the cells. Although intermediate classes (i.e. 372 

those having values between -1 and 1 for  both the components) are the most abundant there are 10 373 

bulls that belong to the class having the most positive and negative values for LEVEL and SLOPE 374 

respectively. The DTD_MY patterns of some of these bulls are reported in figure 4. They exhibit 375 

the typical ascending pattern of this SLOPE class, with the points in most part having values higher 376 

than zero or showing great variability.  377 

Another point of agreement between the results of the present study and those of other studies 378 

on heat tolerance based on the broken line model, can be found in the structure of PC eigenvectors. 379 

It is worth noticing that the inversion of eigenvector coefficient sign of SLOPE (Table 1) occurs in 380 

the THI class 68-70 for DTD of MY, PP and SCS, and in the class 65-67 for FP respectively. These 381 

values basically agreed with estimates of THI0 threshold reported by some authors. Sanchez et al. 382 

(2009) estimated a THI threshold of 72 for milk yield in US Holsteins using hierarchical models. 383 

Carabano et al. (2016) estimated THI0 thresholds of 72-73 for milk yield in Holstein populations of 384 

different European countries. Also the lower threshold of fat percentage compared with the other 385 

traits reported in the present study agrees with previous reports. In our previous study a THI 386 

thresholds of 76, 73 and 74 were estimated in first, second, and third parity Holstein cows for MY 387 

(Bernabucci et al., 2014).  388 



In view of a possible implementation  of PCA-derived measures of tolerance to heat stress in 389 

breeding programs, the two stage approach suggested in this study has the limitation that  only bulls 390 

having complete records (i.e. the 11 points of the DTD curve) could be considered. Such a 391 

requirement strongly reduced the number of animals for which PC could be computed (for example 392 

from 4,184 to 1,540 for milk yield in the present study). To overcome this problem, the correlation 393 

matrix between different points of the DTD curve could be reconstructed by using a random 394 

regression model (RRM) in which records at different THI classes are treated as repeated measures 395 

for each sire. Thus DTD_MY were fitted with a mixed model having the same structure of [1] but 396 

with the sire effect fitted as random. The covariance within animal was accounted for by an 11x11 397 

unstructured matrix of between sire effects for each THI level. To avoid convergence problems, 398 

bulls having 7 or more records  were considered. A total of 35,992 records belonging to 3,697 bulls 399 

were used. From table 7, it can be seen that observed Pearson correlations among DTD_MY and the 400 

correlation matrix estimated by the RRM are very similar. Moreover, also the plot of observed and 401 

estimated correlations averaged for the lag in THI class (Figure 5) underscores the substantial 402 

equivalence between the two approaches Finally, PCA carried out on the RRM estimated 403 

correlation matrix yielded basically the same results of the two-step approach, both in terms of  404 

variance explained by the first two PC and of their eigenvector structure (i.e., the first can be 405 

considered a LEVEL PC, the second a SLOPE, respectively). Such a concordance of results opens 406 

interesting perspectives on the possible use of this heat tolerance indices on large scale.   407 

Previous studies on the genetic basis of tolerance to heat stress indicated that this trait has a 408 

moderate genetic variability and that it could be split into an intercept and a slope component that 409 

are genetically related. The PC based measure of heat tolerance proposed in the present work does 410 

show genetic variability. In particular, the pseudo heritability of the SLOPE component is similar to 411 

h2 values reported in other studies for the slope parameter of the reaction norm model. Thus the two 412 

PC extracted from DTD of four milk traits could be considered as possible breeding criteria when 413 

selecting for improving heat tolerance in cattle. However, compared to previous measurements of 414 



tolerance to heat stress based on milk production data, a distinguishing feature of the PC is their 415 

phenotypic and genetic orthogonality. The absence of any genetic relationship between LEVEL and 416 

SLOPE (Table 2) suggests that an independent selection of the two main aspects of DTD patterns, 417 

i.e. level of production and heat tolerance, should be feasible. A simultaneous section for improving 418 

both heat tolerance and dairy traits could be achieved also by implementing a selection index in 419 

which suitable economic weight have to be determined (Nguyen et al., 2016). However, provided 420 

the unfavorable genetic correlation between heat tolerance and production, a smaller selection 421 

response is expected for each single trait in comparison with the use of the two uncorrelated 422 

LEVEL and SLOPE component.  423 

The amount of variance accounted for by the slope parameter in reaction norm models is 424 

used as an indicator of the genotype x environment interaction  (Kolmodin e Bijma; 2004; Shariati 425 

et al., 2007). In the present study, SLOPE /LEVEL additive variance ratios were 0.10 for MY, 0.05 426 

for FP, 0.06 for PP, and 0.13 for SCS, respectively. These values confirm results of Santana et al. 427 

(2016) that concluded that G X E due to heat stress is more relevant for milk yield and somatic cell 428 

score than for fat and protein percentage.  429 

Association analysis highlighted a limited number of significant markers. This is not an 430 

unexpected outcome, due to the severe correction needed to account for multiple testing when high 431 

throughput platforms are used, to the complex biology underlying the physiological response to heat 432 

stress, and to the limited size of the sample of animals genotyped.  433 

Half of significant SNPs were associated to the LEVEL variable for FP and located on 434 

BTA14. This result is quite common in genomic studies on Holstein cattle, mainly due to the 435 

genetic architecture of the trait, which is largely influenced by a single segregating gene, the 436 

DGAT1 (Grisart et al., 2002). The relevant influence of this gene on FP was previously observed in 437 

the Italian Holstein population (Fontanesi at al., 2014). 438 

However, it is worth mentioning that a gene encoding for a heat shock transcription factor 439 

(HSF1) maps on BTA14 very close to the top significant marker detected in the present study. In 440 



Humans HSF1 mediates the expression of the heat shock and stress proteins in response to physical 441 

and chemical stresses (Guettoche et al., 2005). This gene has been recognized to have a central role 442 

in coordinating thermal tolerance in cattle (Collier et al., 2008). Differences in the expression of 443 

HSF1 in the liver were found between cows calving in spring and summer, respectively (Shahzad et 444 

al., 2015). Moreover, associations between this gene and thermo-tolerance have been detected in 445 

Chinese Holstein (Li et al., 2011). An overexpression of HSF1 has been found in Buffalo during 446 

summer under tropical environment (Kumara et al., 2015) and reported to be associated to genetic 447 

susceptibility to Mycobacterium bovis infection in dairy cattle (Richardson et al., 2016). Differential 448 

expression of heat shock proteins (HSP) has been related to in vitro fertilization rate and blastocyst 449 

rate of bovine embryos (Zhang et al., 2011). HSP70.1 polymorphism has been associated to cellular 450 

thermo-tolerance in Holstein lactating cows (Basiricò et al., 2011) 451 

The relationships between tolerance to heat stress and fertility has been confirmed by 452 

associations found in the present study Candidate genes found in the 0.5 Mb intervals defined by 453 

the significant markers for the SLOPE component are involved in cellular regulation mechanism, 454 

fertility, and weight at birth. Nguyen et al. (2016), using the DTD deviation as indicators of heat 455 

stress in Australian Holsteins, found favorable correlation between DTD and  fertility.  456 

Among putative candidate genes that have been detected in the present study for the SLOPE 457 

trait, one (MCAT) is involved in the fatty acid (FA) metabolism. This result is in agreement with 458 

findings by Hammami et al. (2015) that highlighted a relationship between milk FA content and 459 

tolerance to heat stress in cattle. It should pointed out that milk FA profile is an index of animal 460 

energy balance (Bastin et al., 2011) and it is strongly related to the diet, which may be affected by 461 

climatic conditions. Nardone et al. (1997) found greater proportions of long-chain FA in colostrum 462 

produced by heifers under heat stress conditions. Those authors demonstrated that the higher 463 

proportion of long-chain FA was due to the reduced synthesis of short- and medium-chain FA in the 464 

mammary gland cells. On the basis of all these evidences a role of milk FA as potent biomarkers for 465 

evaluating individual thermo tolerance could be hypothesized.  466 



Previous GWAS studies carried out on DTD and rectal temperature have highlighted genomic 467 

regions associated with heat stress tolerance. These results were not confirmed in the present study, 468 

even though significant markers were evidenced for SLOPE for milk yield on BTAs 5, 6, and 26, 469 

i.e. on the same chromosomes where Dikmen et al. (2013) found significant associations for rectal 470 

temperature. The detection of a limited number of significant markers and a poor repeatability of 471 

results across studies and populations is a major issue in GWAS studies carried out on livestock 472 

species. Sample size, genetic differences among populations (i.e., level of linkage disequilibrium, 473 

allelic SNP frequencies) are mentioned as main reasons for such a lack of concordance between 474 

experiments. Moreover, the severe corrections of significance levels due to huge number of 475 

repeated tests further reduce the number of detected markers. Finally, a more general issue that has 476 

been raised in GWAS carried out in humans is that not all the genetic variation of a trait is captured 477 

by available markers, i.e. the so called problem of “missing heritability” (Gusev et al., 2013). On 478 

the other hand, in the case of GWAS for heat tolerance traits the role of the phenotypes should be 479 

carefully considered. Dikmen et al (2015) found that 1 out of 4 significant SNP previously detected 480 

using a phenotype derived from milk yield was also associated to a physiological indicator of heat 481 

stress (/i.e., sweating rate). However, SNP validation is problematic also within the same trait. 482 

Hayes et al. (2009), on a second independent data set, confirmed only 2 out of 42 SNP significantly 483 

associated to the slope component of a reaction norm model fitted to milk yield in a Holstein 484 

population. A further issue in genetic studies of tolerance to heat stress is represented by the 485 

methodologies used to obtain the environmental variable. THI calculations, for example, could 486 

differ in the kind of variable used (i.e. daily maximum or average temperature, minimum or average 487 

relative humidity) and in the time lag with the day of the test. Such an heterogeneity of measures 488 

could be one of the reasons for the differences between studies in the estimates of the THI upper 489 

threshold for the comfort zone. The existence of all these sources of variation that may possibly 490 

affect results of studies on the genetic dissection of heat tolerance traits should lead scientists to 491 

make efforts in increasing the power of their experiments, validating results in independent 492 



populations, and in harmonizing methodologies for calculating environmental variables, 493 

Furthermore, alternatives to traditional methods for measuring physiological indicators of heat 494 

tolerance should be found. Recent achievements in precision farming as the use of micro-equipment 495 

directly installed on the animal or the use of indirect predictors of physiological traits (as for 496 

example MIR milk spectra) could provide interesting tools.  497 

 498 

CONCLUSIONS 499 

The PCA was able to derive two new variables able to describe the overall level and the 500 

slope of response of milk production traits across increasing levels of THI index. These two new 501 

phenotypes are uncorrelated and therefore may provide an option for overcoming the problem of the 502 

negative correlation between heat tolerance and production level that has been found within the 503 

context of milk and weather record analysis. The genetic background of the two PC was 504 

investigated and some putative candidate genes have been proposed. A useful numerical property of 505 

the two extracted variables is their orthogonality. This feature makes the use of the second PC as a 506 

measure of thermo-tolerance for breeding purpose particularly appealing because many authors 507 

have stressed the need for using measures of tolerance to heat stress uncorrelated from the 508 

production level. Moreover, this variable could be derived from data that are routinely recorded in 509 

breeding programs and therefore its use on large scale could be proposed.  510 
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Table 1. Eigenvectors and eigenvalues of the first two principal components (LEVEL and SLOPE) 710 

extracted from the correlation matrix of Daughter Traits Deviations for milk yield (DTD_MY), fat 711 

(DYD_FP), and protein (DTD_PP) percentages, and Somatic cell score (DTD_SCS)  712 

THI interval DTD_MY 

 

DTD_FP 

 

DTD_PP 

 

DTD_SCS 

 

LEVEL SLOPE LEVEL SLOPE LEVEL SLOPE LEVEL SLOPE 

50-52 0.25 0.45 0.24 0.76 0.26 -0.48 0.22 0.49 

53-55 0.28 0.41 0.29 0.37 0.29 -0.37 0.25 0.55 

56-58 0.32 0.22 0.30 0.17 0.31 -0.20 0.33 0.07 

59-61 0.31 0.14 0.31 -0.25 0.32 -0.07 0.30 0.12 

62-64 0.32 0.17 0.31 0.03 0.32 -0.18 0.34 0.09 

65-67 0.32 0.00 0.31 -0.02 0.33 -0.06 0.30 0.01 

68-70 0.32 -0.04 0.32 -0.14 0.31 0.10 0.34 -0.11 

71-73 0.32 -0.13 0.32 -0.28 0.31 0.22 0.31 -0.06 

74-76 0.31 -0.31 0.31 -0.02 0.31 0.11 0.33 -0.26 

77-79 0.30 -0.34 0.31 -0.30 0.29 0.36 0.32 -0.14 

>79 0.25 -0.55 0.28 -0.11 0.25 0.60 0.27 -0.57 

Eigenvalue 4.43 0.96 4.25 0.91 4.79 0.91 3.60 0.98 

Eigenvalue % 40 9 39 8 43 8 33 9 

 713 

  714 



Table 2. Pearson correlations between the scores of the first principal components extracted from 715 

the correlation matrix of Daughter Traits Deviations for milk yield (MY), fat (FP) and protein (PP) 716 

percentage, and somatic cell score (SCS)  717 

 LEVEL MY SLOPE MY LEVEL FP SLOPE FP LEVEL PP SLOPE PP LEVEL SCS SLOPE SCS 

LEVEL MY 1.00 0.00 -0.37 -0.03 -0.34 0.00 -0.07 -0.07 

SLOPE MY  1.00 0.01 -0.12 -0.01 -0.20 -0.04 -0.16 

LEVEL FP   1.00 0.00 0.52 0.02 -0.05 0.04 

SLOPE  FP    1.00 0.03 0.23 -0.02 0.05 

LEVEL PP     1.00 0.00 0.05 0.02 

SLOPE  PP      1.00 0.02 -0.15 

LEVEL SCS       1.00 0.00 

SLOPE SCS        1.00 

 718 

 719 

 720 

  721 



Table 3. Pseudo-heritability (on the diagonal) and pseudo-genetic correlations (out of the diagonal) 722 

between the scores of the first principal components extracted from the correlation matrix of 723 

Daughter Traits Deviations for milk yield (MY), fat (FP) and protein (PP) percentage, and somatic 724 

cell score (SCS). Standard errors of pseudo-heritabilities are reported within brackets.   725 

 LEVEL MY SLOPE MY LEVEL FP SLOPE FP LEVEL PP SLOPE PP LEVEL SCS SLOPE SCS 

LEVEL MY 0.52 (.07) 0.02 -0.67 -0.05 -0.67 0.01 -0.05 -0.19 

SLOPE MY  0.24 (.04) 0.04 -0.56 -0.05 -0.83 -0.17 -0.85 

LEVEL FP   0.82 (.11) 0.01 0.75 0.04 -0.10 0.14 

SLOPE  FP    0.23 (.01) 0.06 0.88 -0.10 0.36 

LEVEL PP     0.74 (.11) 0.00 0.11 0.10 

SLOPE  PP      0.28 (.01) -0.07 0.69 

LEVEL SCS       0.32 (.07) 0.04 

SLOPE SCS        0.16 (.05) 

  726 



Table 4. Table 2. Markers significantly associated (FDR<0.10) with scores of principal components 727 

extracted from Daughter Trait Deviations for milk yield, fat and protein contents. 728 

SNP BTA Position bp P-GC_P Bonf1 FDR Trait 

ARS-BFGL-NGS-4939 14     1,801,116 0.000001 0.000001 LEVEL_FP 

ARS-BFGL-NGS-57820 14 1,651,311 0.000021 0.000011 LEVEL_FP 

ARS-BFGL-NGS-107379 14 2,054,457 0.000335 0.000112 LEVEL_FP 

ARS-BFGL-NGS-29678 26 22,383,645 0.000973 0.000973 SLOPE_MY 

Hapmap30383-BTC-005848 14 1,489,496 0.049244 0.012311 LEVEL_FP 

ARS-BFGL-NGS-19275 5 114,818,206 0.053830 0.053830 SLOPE_PP 

Hapmap32110-BTA-153952 6 35,555,247 0.077947 0.038974 SLOPE_MY 

Hapmap32435-BTC-012188 14 56,075,435 0.081155 0.081155 LEVEL_PP 
1 = level of significance of the test adjusted with Bonferroni correction 729 

 730 

 731 

 732 

  733 



 

Table 5. Putative candidate genes located in the 0.5 Mb interval surrounding the significant SNPs. 

 

BTA Position (Mb) Gene Name and symbol Trait Function Associations with 

phenotypic traits 

26 22.09-22.17 beta-transducin repeat containing E3 

ubiquitin protein ligase - BTRC 

SLOPE_MY Intracellular protein 

degradation 

Milk production 

Leg morphology 

Growth rate 

26 22.37-22.38 fibroblast growth factor 8 - FGF8 SLOPE_MY Mitogenic and cell survival Folliculogenesis 

26 22.39-22.42 meningioma expressed antigen 5 

(hyaluronidase) - MGEA5 

SLOPE_MY Protein glycosilation Folliculogenesis 

26 22.42-22.43 taurusKv channel interacting protein 2 - 

KCNIP2 

SLOPE_MY Ion transportation Folliculogenesis 

26 22.62-22.63 Hermansky-Pudlak syndrome 6 - HPS6 SLOPE_MY Melanosome development Pigmentation 

6 35.10-35.95 coiled-coil serine rich protein 1 - 

CCSER1 

SLOPE_MY Cell division Beef traits 

14 1.79-1.81 DiacylAcyilGlicerolTransferase 1 - 

DGAT1 

LEVEL_FP Fat metabolism Milk fat content 

14 1.81-1.83 heat shock transcription factor 1 - HSF1 LEVEL_FP Response to cell stress Heat stress 

tolerance 

Mycobacterium 

bovis susceptibility 

14 1.56-1.60 Rho GTPase activating protein 39 -

ARHGAP39 

LEVEL_FP Nervous system development Milk fat content 

14 1.50-1.51 ribosomal protein L8 - RPL8 LEVEL_FP Homeostasis Heat stress (fish) 

14 2.23-2.24 the mitogen-activated protein kinase 15 - 

MAPK15 

LEVEL_FP Cell proliferation Somatic cell score 

14 1.49-1.50 zinc finger protein 34 - ZNF34 LEVEL_FP Transcription regulation Milk fat 

5 11.45-11.46 malonyl-CoA-acyl carrier protein 

transacylase - MCAT 

SLOPE_PP Fatty acid metabolism Heat stress 

(chicken) 

5 11.49-11.50 sorting and assembly machinery 

component - SAMM50 

SLOPE_PP Mitochondrial protein Triglyceride levels 

(Humans) 

5 11.45-11.46 Translocator protein - TSPO SLOPE_PP Cholesterol transportation Folliculogenesis 



 

Table 6. Absolute frequencies of individual patterns of Daughter Traits Deviations for milk yield 

across different classes of LEVEL and SLOPE PC scores. 

    SLOPE    

  ≤-2 -2 to -1 -1 to 0 0 to 1 1 to 2 ≥2 

 ≤-2 10 24 72 81 21 6 

 -2 to -11 4 15 82 80 25 4 

LEVEL -1 to 0 5 32 138 137 31 4 

 0 to 1 4 27 128 137 28 3 

 1 to 2 7 21 90 84 16 8 

 ≥2 10 32 70 62 27 15 
1 = lower limit of the class is included; 

 

 

 

  



Table 7. Pearson correlations among Daughter Trait Deviations for milk yield (above the diagonal) 

and estimated unistructured correlation matrix estimated with random regression model (under the 

diagonal) 

 
 TH11 TH12 TH13 TH14 TH15 TH16 TH17 TH18 TH19 TH1110 TH111 

TH11 * 0.41 0.37 0.35 0.36 0.37 0.33 0.29 0.31 0.30 0.23 

TH12 0.43 * 0.42 0.40 0.40 0.40 0.37 0.36 0.35 0.33 0.25 

TH13 0.38 0.44 * 0.43 0.46 0.44 0.43 0.41 0.43 0.36 0.26 

TH14 0.35 0.41 0.43 * 0.41 0.44 0.42 0.42 0.40 0.34 0.33 

TH15 0.35 0.40 0.44 0.41 * 0.44 0.44 0.41 0.43 0.37 0.30 

TH16 0.34 0.39 0.42 0.42 0.42 * 0.44 0.44 0.42 0.43 0.35 

TH17 0.32 0.37 0.41 0.41 0.43 0.40 * 0.43 0.45 0.43 0.34 

TH18 0.28 0.35 0.38 0.40 0.37 0.41 0.39 * 0.42 0.41 0.43 

TH19 0.27 0.30 0.35 0.36 0.39 0.39 0.44 0.42 * 0.45 0.37 

TH110 0.23 0.26 0.33 0.27 0.31 0.37 0.43 0.42 0.47 * 0.41 

TH111 0.18 0.22 0.22 0.26 0.26 0.34 0.34 0.41 0.41 0.43 * 

 

  



Table 8. Eigenvectors and eigenvalues of the first two principal components extracted from the 

correlation matrix estimated by fitting a random regression model to Daughter Traits Deviations for 

milk yield (DTD_MY).  

THI interval PC1 PC2 

50-52 0.26 -0.40 

53-55 0.30 -0.36 

56-58 0.31 -0.27 

59-61 0.31 -0.21 

62-64 0.31 -0.18 

65-67 0.32 -0.03 

68-70 0.32 0.07 

71-73 0.31 0.19 

74-76 0.31 0.30 

77-79 0.29 0.42 

>79 0.27 0.51 

Eigenvalue 4.66 1.15 

Eigenvalue % 42 10 
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Figure 2a.  Figure 2b.  
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Figure 4. 
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Captions of figures 

 

Figure 1. Distribution of test day records across different classes of Temperature humidity index 

(THI). 

 

Figure 2a. Average curves of daughter trait deviations for milk yield of groups of bulls of different 

LEVEL score classes (◆=<-2  ▀ =−2 to −1; ▲= −1 to 0; ●= 0 to 1; continuous line = 1 to 2; dotted 

line=>2).  Points are plotted for the average day in milk on each test day. 

 

Figure 2b. Average curves of daughter trait deviations for milk yield of groups of bulls  of different 

SLOPE score classes (◆=<-2  ▀ =−2 to −1; ▲= −1 to 0; ●= 0 to 1; continuous line = 1 to 2; dotted 

line=>2).  Points are plotted for the average day in milk on each test day. 

 

Figures 3. Genome-wide association study of the scores of the second principal component 

(SLOPE) for milk yield (figure 3a), fat percentage ( figure 3b), and protein percentage (figure 3c).  

SLOPE_MY). On the vertical axis is reported the negative logarithm of the P value corrected for 

the stratification of the population. On the horizontal axis are reported the SNP ordered by their 

position and by chromosome. The dashed line corresponds to a FDR of 0.10. 

 

Figure 4. Individual patterns of daughter trait deviations for milk yield ((DTD_MY) that have 

scores >2 and <-2 for the LEVEL and SLOPE components respectively. 

 

 


