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Abstract

Several application scenarios in the Web of Data share the need to identify the commonalities between a pair of RDF
resources. Motivated by such needs, we propose the definition and the computation of Least Common Subsumers
(LCSs) in RDF. To this aim, we provide some original and fundamental reformulations, to deal with the peculiarities
of RDF. First, we adapt a few definitions from Graph Theory to paths and connectedness in RDF-graphs. Second,
we define rooted RDF-graphs (r-graphs), in order to focus on a particular resource inside an RDF-graph. Third, we
change the definitions of LCSs originally set up for Description Logics to r-graphs. According to the above refor-
mulations, we investigate the computational properties of LCS in RDF, and find a polynomial-time characterization
using a form of graph composition. This result remarkably distinguishes LCSs from Entailment in RDF, which is an
NP-complete graph matching problem. We then devise algorithms for computing an LCS. A prototypical implemen-
tation works as a proof-of-concept for the whole approach in three application scenarios, and shows usefulness and
feasibility of our proposal. Most of our examples are taken directly from real datasets, and are fully replicable thanks
to the fact that the choice about which triples are selected for the computation is made explicit and flexible.

1. Introduction

A Common Subsumer (CS) of two formulas φ1, φ2 is
another formula φ3 that is logically entailed by both φ1
and φ2. A Least Common Subsumer (LCS) is, intu-
itively, a most specific CS of φ1, φ2—for logics in which
the LCS is unique, it entails every other CS of φ1, φ2. In-
tuitively, a CS expresses some logical commonalities of
φ1, φ2, and an LCS expresses all of them.

LCSs have been introduced in 1992 [3] in Descrip-
tion Logics (DLs) [4] and adopted in disparate applica-
tion domains, including inductive learning, bottom-up
construction of knowledge bases, information retrieval,
among others. All such domains include tasks which
share the need to infer and/or compute commonalities
between domain items, that may be formally modeled
as concepts in DLs knowledge bases.

Apparently, no work has been done so far to sup-
port the adoption of such a reasoning service in what

IThis work is an almost completely rewritten version of [1, 2].
Most results are unpublished.
∗Principal Corresponding Author
Email addresses: simona.colucci@poliba.it (S. Colucci),

donini@unitus.it (F.M. Donini),
silvia.giannini@poliba.it (S. Giannini),
eugenio.disciascio@poliba.it (E. Di Sciascio)

is known to be the biggest available and addressable
knowledge base: the Web of Data [5]. Although com-
bining different datasets, the Web of Data may in fact be
considered as a unique data source in which resources
are all modeled in one language, RDF [6], whose se-
mantics allows for logical reasoning over them. To the
best of our knowledge, the definition and computation
of LCSs in RDF has never been addressed in the litera-
ture, even though the search for commonalities between
pairs of RDF resources turns out to be useful in sev-
eral tasks, and has been studied only with statistical or
algebraic tools. Hence, the development of a Knowl-
edge Representation service computing an LCS (or even
a CS) of two resources in RDF could be a useful tool for
building Semantic Web applications.

In spite of the apparently low expressiveness of RDF,
the language has some special features which make it
not comparable to any DL. For this reason, developing
an idea presented in a preliminary work [1], we pro-
pose a novel definition of LCSs, which is able to man-
age RDF assertions and extracts the informative con-
tent hidden in resource descriptions. Although we focus
on Simple Entailment [6], our definition of LCS can be
used also for stronger entailment regimes adopted for
interpretation of RDF assertions. Moreover, in our im-
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plementation, we show that also (non-least) Common
Subsumers can be useful in several applications. In or-
der to manage the peculiarities of LCSs in RDF, we
make the original contributions below:

1. we adapt definitions about paths and connected-
ness from Graph Theory to RDF-graphs, taking
into account the fact that labels of nodes and arcs
can be mixed in (what we call) RDF-paths

2. we define rooted RDF-graphs (r-graphs) 〈r,Tr〉,
that focus on a particular resource r inside an RDF-
graph, and on a set of chosen triples Tr describing
r in the Web of Data

3. we define entailment between r-graphs, that is en-
tailment in which roots must be mapped to roots

4. we change the LCS definitions (originally set up
for Description Logics) to r-graphs.

The redefinition of LCSs described above led us to
a remarkable result in terms of complexity, which con-
stitutes a main contribution of the article. In particular,
we found a polynomial-time characterization of LCS in
RDF, based on the computational properties we investi-
gate. Such a characterization uses a form of graph com-
position and distinguishes the computation of an LCS
from Entailment in RDF, which is known to be an NP-
complete graph matching problem. According to this
novel polynomial-time characterization, we provide al-
gorithms to compute an LCS.

In order to support our claims and motivate our work,
we identified three application scenarios in which LCSs
may significantly improve information extraction in the
Web of Data: (i) entity disambiguation/linking in the
Semantic Web, (ii) automated clustering of collections
of RDF resources, and (iii) automated extraction of fea-
tures shared among drugs. In all the three scenarios, we
show how the computation of a CS not only provides
a semantic approach to similarity between two RDF re-
sources, but also a description of their shared features—
in other words, the CS does not only show if or how
much two resources are similar, but also why they are.
In this respect, our work makes applicable to RDF sev-
eral similarity measures based on LCSs often called se-
mantic similarity [7, 8, 9].

The article is organized as follows: in the next sec-
tion, we give some background to make the paper self-
contained. Least Common Subsumers are defined in
Section 3 and their theoretical properties are investi-
gated in Section 4. Their computation is addressed in
Section 5 and exemplified with reference to the three

application scenarios in Section 6, which also evaluates
performance. The literature related to our work is ana-
lyzed in Section 7, before concluding the paper.

2. Background and Notation

We denote by U the set of all URIs, by B the set of
all blank nodes, and by L the set of all possible literals,
which can be either plain or typed literals. An RDF-
graph is a subset of the set of all possible triples in (U ∪
B)×(U)×(U∪B∪L) while a generalized RDF-graph—
according to ter Horst [10]—adds B to the middle term
of the above cartesian product—i.e., generalized RDF-
graphs allow a blank node to appear also in the predicate
position of a triple1. When a graph G contains no blank
nodes, we say that G is ground.

To correctly embed RDF triples in English text we
use the notation� a p b � to mean what in RDF doc-
uments is written as “a p b .” (with the full stop at the
end of the triple).

Definition 1. Given a generalized RDF-graph G, we
denote by terms(G) the terms of G, i.e., the subset of
U ∪ B ∪ L occurring in any position in any triple of
G. Moreover, we denote by bl(G) ⊂ B the set of blank
nodes occurring in (some triple of) G.

Recall that each blank node corresponds to an existen-
tially quantified variable, where the scope of the quan-
tification is the document the blank node occurs in. A
blank node without a name is denoted by [], while
named blank nodes are prefixed by “ :”, e.g., :xxx.

Definition 2 ([10, 2.4]). Given a generalized RDF-
graph G and a partial function h : B → B ∪ U ∪ L, we
denote by Gh the instance of G, obtained by replacing in
every triple of G, every blank node b in the domain of h
with h(b).

The semantics of RDF is given in terms of set-
theoretic interpretations I. Given two partially over-
lapping sets of resources RI and properties PI , terms
in U are mapped by an interpretation function I into
RI ∪ PI . Intuitively, terms that occur in triples only
as subjects or objects can be mapped into RI , terms
that occur only as properties can be mapped into PI ,
while terms that appear both as properties and as sub-
jects/objects must be mapped into RI ∩ PI—which ex-
plains why RI and PI must overlap. Then, another inter-
pretation function—call it Iext—maps elements in PI to

1For our setting, we do not need to consider the even larger defi-
nition of generalized RDF-graphs in which, e.g., literals in the sub-
ject or predicate position are allowed.

2



subsets of RI × RI , that is, pairs of resources. Plain lit-
erals are interpreted as themselves, while typed literals
are interpreted as (a special kind of) resources. An in-
terpretation I satisfies a ground triple� s p o � when
the pair (I(s), I(o)) ∈ Iext(I(p)), and I satisfies a ground
graph G when it satisfies all triples in G. Blank nodes
are interpreted by another function A : B → U ∪ L,
and we can extend it to non-ground graphs saying that
A(G) is G where every blank node b has been replaced
by A(b) in every triple. Finally, an interpretation I sat-
isfies a non-ground graph G if there exist a function A
such that I satisfies the ground graph A(G).

We remark that elements interpreted in RI ∩ PI make
RDF an essentially untyped logic. To make RDF
well-typed, several researchers adopted punning [11],
in which the different occurrences of a resource (as an
individual, a class, or a predicate) are treated as differ-
ent symbols—that is, RI ∩ PI = ∅. However, we do not
want to assume punning, for reasons that are clarified in
Section 3.1, and embrace the original RDF semantics.

The weakest form of entailment between two RDF-
graphs G and H is Simple Entailment, denoted by G |=S

H. Every statement which holds for Simple Entail-
ment holds also for stronger entailment relations, such
as RDF-Entailment, and RDF-S-Entailment. In this pa-
per, we concentrate only on Simple Entailment, which
can be characterized in three equivalent ways.

The first definition of Simple Entailment states that
G |=S H if every interpretation satisfying G satisfies also
H. Simple Entailment is a transitive relation, i.e., G1 |=S

G2 and G2 |=S G3 implies G1 |=S G3.
The second characterization of Simple Entailment

says that G |=S H if and only if there exists a subgraph
G′ ⊆ G such that G′ is an instance of H—i.e., there
exists a partial mapping h : B → B ∪ U ∪ L such that
G′ = Hh. The Interpolation Lemma [12] proves that this
characterization of Simple Entailment is indeed equiva-
lent to the one based on interpretations of RDF-graphs.
The Interpolation Lemma has been extended to general-
ized RDF-graphs too [10, Prop.2.12]. In the proofs of
Section 4 and Section 5, we use this characterization of
Simple Entailment.

For sake of completeness, we mention that G |=S H if
and only if there is a way of applying Rules se1 and se2
shown in Figure 1 to triples in G such that the resulting
graph G′ contains H as a subgraph. Hence, this state-
ment can be taken as a third, equivalent, characteriza-
tion of Simple Entailment.

We stress the fact that Simple Entailment is the most
general entailment relation in RDF, which means that
G |=S H always implies G |=RDF H, which in turn im-
plies G |=RDF-S H—where the subscript refers to the

entailment regime. Hence in the sections about proper-
ties of Least Common Subsumers, we discuss also how
to extend proofs based on Simple Entailment to stronger
entailment relations.

As usual, we define logical equivalence as bi-
directional entailment.

Definition 3 (Equivalence). Two RDF-graphs G,H
are equivalent under Simple Entailment (or simply,
equivalent), denoted by G ≡S H, iff both G |=S H and
H |=S G hold.

We now recall two properties of entailment that will
be used later on in the proofs of this paper. Since the
former property does not appear in the original paper on
RDF Semantics [12], for sake of completeness we give
here its (rather simple) proof.

Proposition 1. For every pair of RDF-graphs G,H and
every RDF-graph H′ ⊆ H, if G |=S H then G |=S H′.

Proof. From the Subgraph Lemma [12], H |=S H′. If
G |=S H, then by transitivity G |=S H′ too. �

Proposition 2 (Monotonicity Lemma [12]). For ev-
ery pair of RDF-graphs G,H and every RDF-graph
G′ ⊇ G, if G |=S H then G′ |=S H.

The above propositions are intuitive if Simple Entail-
ment is considered as a graph-matching relation be-
tween H and a subset of G—namely, enlarging G or
restricting H preserves the match.

3. Least Common Subsumers in RDF

3.1. Choosing the triples

No implementation analyzing Web resources extends
to analyzing all available triples in the Semantic Web;
yet depending on the chosen triples, the analysis may
yield different results. Hence, before presenting our for-
malization about Least Common Subsumers, we also
want to discuss how to choose the triples these defini-
tions will be applied on, in our subsequent implementa-
tion.

Just to make a concrete example2, the resource
dbpedia:Chrysler Building is the subject of the
triple:
dbpedia:Chrysler Building

2Throughout all the paper, we use Turtle notation [13]. Prefixes
are resolved in Table 1. Examples were taken from DBPedia on June
2015
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se1:
u p v .
u p b1 .

se2:
u p v .
b2 p v .

where b1 (and b2) are blank nodes that do not occur in G, and they are used to replace the same resources u, v in every rule application.

Figure 1: Rules for Simple Entailment

Table 1: Table of prefixes

@prefix dbpedia: <http://dbpedia.org/resource/> .

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix dbpedia-owl: <http://dbpedia.org/ontology/> .

@prefix dbpprop: <http://dbpedia.org/property/> .

@prefix owl: <http://www.w3.org/2002/07/owl#> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

@prefix foaf: <http://xmlns.com/foaf/0.1/> .

@prefix www: <http://www.w3.org/ns/prov#> .

@prefix category: <http://dbpedia.org/resource/Category> .

@prefix dcterms: <http://purl.org/dc/terms/> .

@prefix skos: <http://www.w3.org/2004/02/skos/core#> .

@prefix drugbank: <http://wifo5-04.informatik.uni-mannheim.de/drugbank/resource/>

@prefix drugs: <http://wifo5-04.informatik.uni-mannheim.de/drugbank/resource/drugs/>

@prefix drugcategory: <http://wifo5-04.informatik.uni-mannheim.de/drugbank/resource/drugbank/drugCategory/>

@prefix dosageform: <http://wifo5-04.informatik.uni-mannheim.de/drugbank/resource/dosageforms/>

@prefix disease: <http://wifo5-04.informatik.uni-mannheim.de/diseasome/resource/diseases/>

@prefix wikidata:<http://www.wikidata.org/ontology#>

@prefix powder: <www.w3.org/2007/05/powder-s#>

dbpedia-owl:architecturalStyle

dbpedia:Art Deco.
but observe that every logical property of
dbpedia:Chrysler Building—in our case, the
computation of an LCS with some other resource—is
influenced by the fact that dbpedia:Art Deco is, in
turn, involved as subject in the triple:
dbpedia:Art Deco

dcterms:subject

category:20th-century architectural styles.
and so on. Continuing this line of reasoning, in
principle, all triples of the Semantic Web should be
considered for the computation of an LCS of two
resources. In other terms, one cannot be sure to com-
pute the Least Common Subsumer of two resources
in the Web of Data unless all present triples are
considered. Besides being clearly unfeasible, several
studies suggest that such an accumulation of triples
from different sources may lead to conclusions that
were quite unintended—e.g., the study of Halpin et al.
[14] for the predicate owl:sameAs. Also, our analysis
of papers comparing resources (e.g., for similarity) in
the Semantic Web [15, 16, 17, 18, 19] reveals that all
papers carry out the computation over a selected set
of triples. For example, Hulpus et al. [16] describe a

concept of interest C in DBPedia by a so-called sense
graph rooted in C itself.

Without an explicit statement about how triples are
chosen, the results reported by researchers are not repli-
cable. Hence, we believe it is important to make explicit
the subgraph of the Semantic Web to be used as a con-
text for the computation of an LCS of a resource r.

Our first, general selection criterion is that the triples
selected for a resource a should be connected to a in
some way. This would seem a trivial requirement;
but observe that connected RDF-graphs are not “con-
nected” in the usual meaning of Graph Theory: in fact,
a resource r is “connected” also to a resource p that ap-
pears as predicate in a triple � r p o � and this can
happen recursively. Hence, a path connecting two re-
sources in RDF-graphs can mix usual edges with jumps
from the label of an arc to the same label, used this time
as the source of another arc, as illustrated in Figure 2.
Remark that in Figure 2 the connection between r and t
is possible only because p is interpreted both as a pred-
icate and a resource—i.e., I(p) ∈ RI ∩ PI—and that if
punning were assumed, the two occurrences of p would
be considered as different symbols, making no connec-
tion between r and t possible.

These peculiarities of RDF-graphs lead us to redefine
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Figure 2: An example of RDF-graph in which a resource r is RDF-
connected to a resource t and not just connected in the usual sense of
Graph Theory. This is a quite common pattern in the Web of Data,
e.g., when q = rdfs:subPropertyOf.

for our purposes the notion of a path in RDF-graphs.

Definition 4 (RDF-path, -connection, -distance). Let
T be a set of triples.

• A resource r is always RDF-connected to itself by
an RDF-path of length 0 (independently of T).

• A resource r is RDF-connected to another re-
source p by a path of length n + 1 if r is connected
to a resource s with a path of length n, and either
there is a triple � s p t �, or there is a triple
� s q p � in T.

A resource r is RDF-connected to a resource p in T if
there is an RDF-path from r to p.

The RDF-distance between two RDF-connected re-
sources r and p is the length of the shortest RDF-path
from r to p.

Observe that the above definition could be easily ex-
tended to undirected paths, in which a resource r would
be also connected “backwards” to the subjects of the
triples r is involved in, e.g.,� a p r �. However, such
an extension would only make more complex our defi-
nitions and proofs, without changing the properties we
are going to prove—e.g., uniqueness or associativity, in
the next section. Hence, we defer such an extension af-
ter its usefulness is ascertained.

For the rest of this section, we postpone how the
triples are selected, and assume that the set of triples
Tr has been chosen in some way for each resource r,
to concentrate on the main definitions of LCS and its
properties. However, in Section 5 and subsequent ones,
when we actually compute an LCS, we make explicit
our choices about triples by defining (and computing) a
characteristic function of Tr denoted by σTr . This func-
tion is built based on the RDF-distance, some chosen
datasets, and a boolean condition that lets us exclude
triples with non-relevant predicates. From now on, we
assume that the set of triples Tr associated with a re-
source r is always computed according to σTr . We no-
tice that, although the selection criterion may change

with the resource to be modeled, only a single charac-
teristic function can choose the triples Tr for a given re-
source r. In other words, in order to preserve coherence,
our approach does not allow different sets of triples to
be cut out for the same resource.

3.2. Rooted graphs and entailment
Our proposal is to attach to a resource r the set of

triples Tr used in the computation, and define such a pair
as rooted-graph of r. To the best of our knowledge, ours
is the first proposal in which the triples a computation
is based upon, are explicitly represented paired with the
resource they are related to.

Definition 5 (Rooted RDF-Graph (r-graph)). A
Rooted RDF-Graph (r-graph for short) is a pair 〈r,Tr〉,
where:

1. r is either the URI of a resource, or a blank node

2. Tr is a set of RDF triples, such that r is RDF-
connected to every resource in Tr.

We immediately distinguish the above definition from
the 2005 proposal of Concise Bounded Description3

(CBD). Starting from a resource r, its CBD collects
triples whose subject is r, and then recursively adds
triples whose subject is the object of the previous triples,
until a triple whose object is not a blank node is reached.
Besides the fact that our rooted RDF-graphs do not re-
fer to blank nodes, the important difference is that the
“properties of properties” (as the resource t in Figure 2)
are not included in the CBD of r.

We denote by G[x 7→ y] the substitution in a graph G
of all occurrences of x with y. We now come to entail-
ment between rooted graphs.

Definition 6. [Rooted Entailment] Let 〈r,Tr〉, 〈s,Ts〉 be
two r-graphs. We say that 〈r,Tr〉 entails 〈s,Ts〉—
denoted by 〈r,Tr〉 |=S 〈s,Ts〉—in exactly these cases:

1. if s is a blank node, then

(a) if r is not a blank node, Tr |=S Ts[s 7→ r]
must hold;

(b) if also r is a blank node, then Tr[r 7→ u] |=S

Ts[s 7→ u] must hold for a new URI u occur-
ring neither in Tr nor in Ts;

2. otherwise (i.e., s is not a blank node), if s = r, then
Tr |=S Ts must hold.

3http://www.w3.org/Submission/2005/

SUBM-CBD-20050603/
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In all other cases (i.e., s is not a blank node and s , r),
〈r,Tr〉 never entails 〈s,Ts〉.

Equivalence 〈r,Tr〉 ≡S 〈s,Ts〉 is defined accordingly,
namely, both 〈r,Tr〉 |=S 〈s,Ts〉 and 〈s,Ts〉 |=S 〈r,Tr〉

must hold.

Intuitively, entailment between r-graphs puts an addi-
tional requirement to ordinary entailment: we consider
only matches that map the root s of the right-hand side
graph into the root r of the left-hand side graph. When
s is not a blank node, this happens only if s = r (Case 2
above). When s is a blank node (Case 1), we enforce the
mapping between s and r by either substituting s with r,
if r is not a blank node, or by substituting both s and r
with a new URI, if r is a blank node too.

Making use of the transitivity of substitutions, and
transitivity of the entailment relations, one could prove
that the relation ≡S is an equivalence relation between
r-graphs. We do not delve in to the details of this proof,
but in order to show how our machinery of rooted entail-
ment works, we give all details of the following state-
ment, which we use later in the paper. Intuitively, it
says that rooted entailments can be “merged” preserv-
ing rooted-ness.

Proposition 3. Let 〈a,Ta〉 be an r-graph, and let 〈x,G〉,
〈x,H〉 be two r-graphs whose only shared blank node is
x. If both 〈a,Ta〉 |=S 〈x,G〉 and 〈a,Ta〉 |=S 〈x,H〉, then
〈a,Ta〉 |=S 〈x,G ∪ H〉.

Proof. If a is not a blank node, from Case 1a of Def-
inition 6, both Ta |=S G[x 7→ a] and Ta |=S H[x 7→ a]
must hold. We make use of the second characterization
of S-entailment: if Ta |=S G[x 7→ a], then there is
a partial mapping h1 : B → B ∪ U ∪ L such that
(G[x 7→ a])h1 ⊆ Ta, and similarly there is a mapping
h2 such that (H[x 7→ a])h2 ⊆ Ta. Now if a is not a
blank node, we can safely define h := h1 ∪ h2 since
the domains of h1 and h2 do not overlap, and we have
Ta ⊇ (H[x 7→ a])h2∪(G[x 7→ a])h1 = ((H∪G)[x 7→ a])h,
which proves Ta |=S (G∪H)[x 7→ a]. But this is Case 1a
in Definition 6 definining 〈a,Ta〉 |=S 〈x,G ∪ H〉.

If a is a blank node, then Case 1b applies. In
this case, both Ta[a 7→ u] |=S G[x 7→ u] and
Ta[a 7→ u] |=S H[x 7→ u] must hold, for some
URI u occurring in none of Ta,G,H. Again,
this means that there are two mappings h1, h2
such that both (G[x 7→ u])h1 ⊆ Ta[a 7→ u] and
(H[x 7→ u])h2 ⊆ Ta[a 7→ u]. Defining h := h1 ∪ h2, we
have (G[x 7→ u])h1 ∪ (H[x 7→ u])h2 = ((G ∪ H)[x 7→
u])h ⊆ Ta[a 7→ u], which proves 〈a,Ta〉 |=S 〈x,G ∪ H〉
also in this case. �

Note that we can directly characterize Simple
Rooted-Entailment in terms of mappings: 〈r,Tr〉 |=S

〈s,Ts〉 if and only if there exists a mapping h such that
(Ts)h ⊆ Tr (as in Simple Entailment) and moreover,
h(s) = r, i.e., the root of the r-graph 〈s,Ts〉 is mapped
into the root of the r-graph 〈r,Tr〉. We use this charac-
terization in the next section.

3.3. (Least) Common Subsumers
We are now ready to give our definition of Common

Subsumer of two resources.

Definition 7 (Common Subsumer). Let 〈a,Ta〉,
〈b,Tb〉 be two r-graphs. An r-graph 〈x,Tx〉 is a
Common Subsumer (CS) of 〈a,Ta〉, 〈b,Tb〉 iff both
〈a,Ta〉 |=S 〈x,Tx〉 and 〈b,Tb〉 |=S 〈x,Tx〉.

We show later on (Sections 6) that finding a Common
Subsumer can be already useful for some application
scenarios, such as Clustering of RDF resources. Yet, in
analogy with the definition in Description Logics [3],
we define also Least Common Subsumers of 〈a,Ta〉,
〈b,Tb〉, which are CS not entailed by any other (non-
equivalent) CS. Thinking the relation G |= H as a par-
tial order G < H, Least Common Subsumers are “mini-
mal” CSs w.r.t. such a partial order. However, minimal-
ity should be considered modulo equivalence, i.e., when
both G |= H and H |= G hold, both G and H repre-
sent the same logical properties, up to some renaming
of blank nodes.

Definition 8 (Least Common Subsumer). Let 〈a,Ta〉,
〈b,Tb〉 be two r-graphs. An r-graph 〈x,Tx〉 is a Least
Common Subsumer (LCS) of 〈a,Ta〉, 〈b,Tb〉 iff both con-
ditions below hold:

1. 〈x,Tx〉 is a CS of 〈a,Ta〉, 〈b,Tb〉;

2. for every other CS 〈y,Ty〉 of 〈a,Ta〉, 〈b,Tb〉:
if 〈y,Ty〉|=S 〈x,Tx〉 then 〈x,Tx〉 |=S 〈y,Ty〉, (i.e.,
〈x,Tx〉 and 〈y,Ty〉 are equivalent under Simple En-
tailment).

RDF-graphs are (a special form of) graphs; so, a
reader may wonder about the relationship between no-
tions of CS, LCS, and the problems of Common Sub-
graph and Maximum Common Subgraph in graph prob-
lems [20, p.388], that are known to be NP-hard prob-
lems. We immediately discuss this issue (and not in the
Related Work Section), in order to highlight the differ-
ences.

We first observe that nodes in subgraph problems can
be freely mapped one into the other, while nodes la-
beled by an URI in RDF-graphs can be mapped only
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dbpedia-owl:Company 
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dbpedia-owl:Company 

Figure 3: A pair of RDF-graphs in DBPedia (November 2015), both
instances of the pattern in Figure 2 and one of their LCSs

into nodes with the same URI. So, the two definitions
may overlap only when 〈a,Ta〉 and 〈b,Tb〉 are all con-
stituted by blank nodes. However, subgraph problems
implicitly consider inequality predicates between nodes,
that is, two nodes of a subgraph H can never be mapped
into one node of a graph G, while RDF cannot prevent
blank nodes of H to be mapped into a single resource of
G. Moreover, an LCS can have many equivalent forms,
with more or less blank nodes, while clearly this num-
ber is fixed (and maximum) in a MaximumCommon Sub-
graph problem. For these reasons, this problem cannot
be put in relation with an LCS, as we prove later on also
using a “P vs. NP” argument.

We illustrate the peculiarities of LCSs with the aid of
an example referred to two concrete r-graphs and one of
their LCSs.

Example 1. Let 〈a,Ta〉, 〈b,Tb〉 be two r-graphs, whose
sets Ta and Tb are shown in the upper part of Fig-
ure 3, where a = dbpedia:Orange (UK) and b =

dbpedia:Vodafone Spain. Both r-graphs are in-
stances of the pattern mentioned in Figure 2. The reader
may verify that an LCS of 〈a,Ta〉, 〈b,Tb〉 is the r-graph
〈x,Tx〉, where Tx is shown in the lower part of Fig-
ure 3 (for an algorithm computing such an LCS see Sec-
tion 5). Observe that both a and b have a triple that con-
nects them to dbpedia:Telecommunication through
two different predicates, and this fact is represented in
the LCS with the triple
:x :w dbpedia:Telecommunication .

Then, the fact that both predicates share the same

domain dbpedia-owl:Company is represented by the
triple
:w rdfs:domain dbpedia-owl:Company .

In general, a (Least) Common Subsumer of a, b is a
blank node, except for the case a = b, in which the root
of the Least Common Subsumer is the resource itself
(see next section).

Proposition 4. Let 〈a,Ta〉 and 〈b,Tb〉 two r-graphs. If
a , b, then for every CS 〈x,Tx〉 of them, x is a blank
node.

Proof. Suppose an r-graph 〈c,Tc〉 is a CS of 〈a,Ta〉

and 〈b,Tb〉, with a , b, and that c is not a blank
node. Then either c , a, or c , b (or both). Suppose
without loss of generality that c , a: since 〈c,Tc〉 is
a CS of 〈a,Ta〉, it should be 〈a,Ta〉 |=S 〈c,Tc〉. How-
ever, from Definition 6, entailment between such two
r-graphs never holds. Hence c must be a blank node. �

Observe that in the above proof, we do not distinguish
whether either a or b, or both, are blank nodes. In fact, a
triple with a blank node as subject can only entail triples
whose subject is a blank node, hence in these cases c
must be a blank node too.

As a general remark, we observe that all defini-
tions (Definition 4 through Definition 8) of this section
could be stated also for RDF-entailment and RDF-S-
entailment regimes. Proposition 4 holds also for RDF-
and RDF-S-entailment, thanks to the monotonicity of
entailment regimes [12].

4. Properties of RDF Least Common Subsumers

In this section we prove some logical and computa-
tional properties of LCS in RDF. We start by proving
uniqueness (up to equivalence), then we prove some al-
gebraic properties, and finally we give a computational
characterization, amenable to an implementation.

4.1. Uniqueness of LCS

Starting with uniqueness, we first prove that when
one finds two Common Subsumers 〈x,Tx〉, 〈y,Ty〉 of
two resources 〈a,Ta〉 and 〈b,Tb〉, they can always be
“merged”, either rewriting y as x in Ty, or vice versa,
producing yet another Common Subsumer, which is at
least as specific as the merged ones.

Theorem 1 (Merge of two CS). Let 〈x,Tx〉 and 〈y,Ty〉

be both Common Subsumers of 〈a,Ta〉 and 〈b,Tb〉, with
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both x and y blank nodes. Suppose without loss of gen-
erality that Tx and Ty do not share any blank node4.
Then, both 〈x,Tx ∪ Ty[y 7→ x]〉 and 〈y,Ty ∪ Tx[x 7→ y]〉
are CSs of 〈a,Ta〉 and 〈b,Tb〉.

Moreover, 〈x,Tx∪Ty[y 7→ x]〉 and 〈y,Ty∪Tx[x 7→ y]〉
are equivalent r-graphs.

Proof. We prove the first claim only for 〈x,Tx∪Ty[y 7→
x]〉, since the proof for the second r-graph is similar.

From the definition of Common Subsumer, we know
that the following four entailments hold:

1. 〈a,Ta〉 |=S 〈x,Tx〉;

2. 〈b,Tb〉 |=S 〈x,Tx〉;

3. 〈a,Ta〉 |=S 〈y,Ty〉;

4. 〈b,Tb〉 |=S 〈y,Ty〉.

Since y is a blank node, entailments no.3–4 hold also
when y is replaced by any other blank node, and in
particular, when y is replaced by x. In fact, making use
of the second characterization of Simple Entailment,
it is sufficient to shift the mapping between Ty and Ta

[resp., Tb ] from y to x.
Hence also the r-graph 〈x,Ty[y 7→ x]〉 is entailed

by both 〈a,Ta〉 and 〈b,Tb〉. Observe that Tx and Ty

[y 7→ x] do not share blank nodes except x. Therefore,
from Proposition 3, also 〈a,Ta〉 |=S 〈x,Tx ∪ Ty[y 7→ x]〉
holds.

Regarding the second claim, since Tx and Ty do not
share blank nodes, the two set of triples Tx ∪ Ty[y 7→ x]
and Ty ∪ Tx[x 7→ y] are just the same set, with x in
place of y. Since two RDF-graphs that differ just in the
names of the blank nodes are equivalent, so are also the
r-graphs 〈x,Tx∪Ty[y 7→ x]〉 and 〈y,Ty∪Tx[x 7→ y]〉. �

The above theorem is the basis for proving
uniqueness—up to equivalence and renaming—of Least
Common Subsumers, since once two CSs are found, one
can always construct a new one by just combining them
with some renaming. Moreover, the new CS is at least
as specific as the merged ones, since 〈x,Tx∪Ty[y 7→ x]〉
entails both 〈x,Tx〉 and 〈y,Ty〉.

Corollary 1 (Uniqueness of LCS). All LCSs of two r-
graphs 〈a,Ta〉 and 〈b,Tb〉 are equivalent.

Proof. Let 〈x,Tx〉 and 〈y,Ty〉 be two such LCSs. If a =

b, then the (only) LCS is 〈a,Ta〉 itself—i.e., x = y = a,
and the claim is proved (we recall that different sets of

4Shared blank nodes can always be replaced by new ones.

triples for the same resource are not allowed—see the
end of Section 3.1—that is, if a = b, then also Ta = Tb).
If a , b, then from Proposition 4 both x and y are blank
nodes. Then from Theorem 1 also 〈x,Tx∪Ty[y 7→ x]〉 is
a CS of 〈a,Ta〉 and 〈b,Tb〉. Moreover, 〈x,Tx ∪ Ty[y 7→
x]〉 |=S 〈x,Tx〉 from Proposition 2. Hence, Condition 2
of Definition 8 applies, imposing that

〈x,Tx ∪ Ty[y 7→ x]〉 ≡S 〈x,Tx〉 (1)

Using the same line of reasoning on 〈y,Ty〉 and 〈y,Ty ∪

Tx[x 7→ y]〉, one can show also that

〈y,Ty ∪ Tx[x 7→ y]〉 ≡S 〈y,Ty〉 (2)

Then, from the last statement of Theorem 1, we have
that 〈x,Tx ∪ Ty[y 7→ x]〉 ≡S 〈y,Ty ∪ Tx[x 7→ y]〉. �

Intuitively, the above proofs rely on the possibility of
merging RDF-graphs, which is a form of logical con-
junction plus renaming. Hence, although the above re-
sults might not be surprising, we are not aware of any
previous paper even mentioning them (to say nothing of
the proofs).

Uniqueness of LCS could be proved also for stronger
entailment regimes, thanks to the fact that equivalence
of two RDF-graphs under Simple Entailment implies
e.g., RDF- and RDF-S-equivalence.

4.2. Algebraic properties

The above corollary allows us to talk about the Least
Common Subsumer—up to equivalence. Hence, we can
use the notation LCS(〈a,Ta〉,〈b,Tb〉) to represent any of
the equivalent forms of LCS of 〈a,Ta〉, 〈b,Tb〉 in the
following algebraic properties.

Theorem 2 (Properties of LCS). The following equiv-
alences hold:

Idempotency. LCS(〈a,Ta〉, 〈a,Ta〉) ≡S 〈a,Ta〉

Commutativity. LCS(〈a,Ta〉, 〈b,Tb〉) ≡S LCS(〈b,Tb〉,
〈a,Ta〉)

Associativity. LCS( LCS(〈a,Ta〉, 〈b,Tb〉), 〈c,Tc〉) ≡S

LCS(〈a,Ta〉, LCS(〈b,Tb〉, 〈c,Tc〉))

Proof. Idempotency and Commutativity are direct con-
sequences of Definition 8, hence we concentrate on As-
sociativity. Let 〈x,Tx〉 be (an equivalent form of) the
LCS of 〈a,Ta〉, 〈b,Tb〉, and let 〈y,Ty〉 the LCS of 〈b,Tb〉,
〈c,Tc〉. Rewriting the above statement, we want to prove
that

〈w,Tw〉
.
= LCS (〈x,Tx〉, 〈c,Tc〉) ≡S

≡S LCS (〈a,Ta〉, 〈y,Ty〉)
.
= 〈z,Tz〉 (3)
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where for convenience we named 〈w,Tw〉, 〈z,Tz〉 the
two LCSs.

Because entailment is transitive we have that both
〈w,Tw〉 and 〈z,Tz〉 in (3) are (non-least) CSs of any pair
of r-graphs taken from 〈a,Ta〉, 〈b,Tb〉, 〈c,Tc〉, and in
particular, both 〈w,Tw〉 and 〈z,Tz〉 are CSs of the pair
of r-graphs 〈a,Ta〉, 〈c,Tc〉. Applying Theorem 1, also
〈w,Tw ∪ Tz[z 7→ w]〉 is a CS of 〈a,Ta〉, 〈c,Tc〉, and from
Proposition 2, the two entailments below both hold:

〈w,Tw ∪ Tz[z 7→ w]〉 |=S 〈w,Tw〉 (4)
〈w,Tw ∪ Tz[z 7→ w]〉 |=S 〈z,Tz〉 (5)

Since 〈w,Tw〉 is an LCS of 〈x,Tx〉, 〈c,Tc〉, and
〈w,Tw∪Tz[z 7→ w]〉 is a CS of 〈x,Tx〉, 〈c,Tc〉 that entails
〈w,Tw〉, we apply Condition 2 of Definition 8 to (4), and
obtain that also 〈w,Tw〉 |=S 〈w,Tw ∪Tz[z 7→ w]〉, that is,
they are equivalent. Analogously, from (5) we can con-
clude that also 〈z,Tz〉 is equivalent to 〈w,Tw ∪ Tz[z 7→
w]〉. By transitivity, we obtain that 〈w,Tw〉 ≡S 〈z,Tz〉.
�
Associativity is important when one wants to com-
pute an LCS of several resources—for example, the re-
sources grouped in some cluster obtained by numerical
methods. In this case, one could start by computing the
LCS L2 = LCS (r1, r2) of an initial pair of resources,
then adding one resource ri at a time one computes a
new, broader LCS Li = LCS (Li−1, ri), till all resources
in the cluster were considered. Associativity grants that
no matter which pair one starts with, this computation
ends with the same LCS (up to equivalence). This was
not ensured by uniqueness of the LCS of a pair of re-
sources. Again, we are not aware of any similar, previ-
ously published result on RDF-graphs.

Also these properties—as for uniqueness—can be
easily extended to hold for stronger regimes like RDF-
and RDF-S-entailment, because every extension to
Simple Entailment is monotonic—that is, every simple
entailment is preserved in stronger entailment regimes.

4.3. Computational Properties

We now characterize the computational complexity
of computing Least Common Subsumers. First, we
compare pairwise triples from Ta and Tb, and construct
a set of triples Ta×b which is quite redundant, but also
quite easy to compute. Then we prove that the subset
Tx00 of Ta×b in which triples are RDF-connected to the
root node x00, is the LCS of Ta and Tb. Since both the
computation of Ta×b and the extraction of Tx00 can be ac-
complished in polynomial time, we prove that the prob-
lem of computing the LCS can be solved in polynomial

time. Lastly, we show a property of the RDF-connected
subset of Ta×b that we will use in the implementation in
Section 5.

Definition 9. Let 〈a,Ta〉, 〈b,Tb〉 two r-graphs, with Ta

and Tb non-empty sets of triples, and denote the triples
of Ta, Tb with the following enumeration

Ta = {ta
i = ai pi ci . | i = 0, 1, . . . , n}

Tb = {tb
j = b j q j d j . | j = 0, 1, . . . ,m}

where n = |Ta| and m = |Tb|. Given the assumptions
Ta , ∅ and Tb , ∅, it always exists at least one triple in
Ta (resp. Tb) whose subject is a (resp. b). From now on,
we assume a0 = a and b0 = b, i.e., the subject of the first
triple in each enumeration is always the root resource.
Notice that all of ai, pi, ci, b j, q j, d j are here variables,
denoting the actual resources, so the values of many of
them in fact coincide. Referring to the operators of Re-
lational Algebra, ai denotes π1(ta

i )—the projection on
the first resource of the i-th triple of Ta—and so on for
other variables.

Let also X = {xi j}, Y = {yi j}, Z = {zi j} (for i =

0, 1, . . . , n and j = 0, 1, . . . ,m) be three sets of variables
representing values in U ∪B∪ L. Define now a function
τ(·, ·) from terms(Ta)× terms(Tb) to U∪B∪L as follows
(the three lines below are distinguished for the middle
variable they yield):

τ(ai, b j) = xi j =

{
ai ∈ U if ai = b j

∈ B otherwise (6)

τ(pi, q j) = yi j =

{
pi ∈ U if pi = q j

∈ B otherwise (7)

τ(ci, d j) = zi j =

{
ci ∈ U ∪ L if ci = d j

∈ B otherwise (8)

where we assume that the same blank node is allocated
for the same pair of different resources, e.g., if a2 = a5
and b3 = b7, then also τ(a2, b3) = x23 = τ(a5, b7) = x57.

Then, define the set of triples Ta×b as follows:

Ta×b = {xi j yi j zi j . | i = 0, 1, . . . , n j = 0, 1, . . . ,m}

Clearly, Ta×b ∈ O(n ·m), i.e., it is quadratic w.r.t. the in-
put size. We show through an example what Ta×b looks
like, and why a direct use of it seems not to fulfill our
intuition about characterizing the LCS.

Example 2. Consider the following two r-graphs ex-
tracted from DBPedia on November 2015 (that intu-
itively, should have nothing in common)

〈dbpedia:Beam me up, Scotty,Ta〉

〈dbpedia:Calvary (CRT station),Tb〉
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Figure 4: Two r-graphs and the set of triples computed according to Definition 9

depicted in Figure 4 (a-b), respectively. To ease read-
ing, we abbreviate dbpedia:Beam me up, Scotty as
“a”, and dbpedia:Calvary (CRT station) as “b”,
so that the composition of the two r-graphs is abbre-
viated as Ta×b. The resulting set of triples is shown
in Figure 4 (c). The reader can verify that both
Ta |=S Ta×b[x00 7→ a] and Tb |=S Ta×b[x00 7→ b]
hold: in the former case, both triples of Ta×b are
mapped to the only triple of Ta, while in the latter
case, the blank nodes x11 and x01 are both mapped to
dbpedia:Chicago Rapid Transit Company, form-
ing a single path. If Ta×b was taken as a Least Common
Subsumer under Simple Entailment, it would mean that
the two r-graphs both contain some triple whose pred-
icate is dbprop:character (triple � x01 w12 x12 �

in Ta×b). On the other hand, a different intuition says
that the two resources have nothing in common, so
an LCS of them should include only the first triple
� x00 w11 x11 �, which it is composed by blank nodes
only—and just says that both resources are subjects of
some triple.

We think Ta×b is not satisfactory as an LCS, because of
two different reasons:

1. the first reason is empirical: in the papers ana-
lyzing similarities between two resources in RDF-
graphs, researchers (e.g., Dojchinovski et al. [17],
Lehmann&Bühmann [19], Zhu et al. [21], Zhang
et al. [22], just to name a few) compare triples
at the same RDF-distance from the two observed
resources, while in this case the second triple of
Ta×b in the example above comes from comparing
a triple at 0-distance in Ta with a 1-distance triple
in Tb;

2. the second reason is more technical: observe that

Ta×b is not RDF-connected: there is no RDF-path
from x00 to the other subject x01, not even through
the predicate. Hence to consider this an LCS, we
should not impose connectedness in LCSs. While
this would be possible—leading to a formalization
different from ours—this would mean that the rep-
resentation of an LCS is different from those of r-
graphs it comes from, making properties like As-
sociativity not expressible.

The above example—which shows that in general
Ta×b might be not RDF-connected—justifies the next
definition, in which only an RDF-connected subset of
Ta×b is kept.

Definition 10. Let 〈a,Ta〉, 〈b,Tb〉 two r-graphs, and
let Ta×b be the set of triples as in Definition 9. Let
〈x00,Tx00〉 be an r-graph whose set of triples is given
by the triples in Ta×b whose subject is RDF-connected
to x00, in formulas:

Tx00 = {u p v . ∈ Ta×b | there is an RDF-path from x00 to u}

We are now ready to prove that 〈x00,Tx00〉 is a repre-
sentation of the LCS of 〈a,Ta〉, 〈b,Tb〉.

Theorem 3. 〈x00,Tx00〉 is an LCS of 〈a,Ta〉, 〈b,Tb〉.

Proof. We first prove that 〈x00,Tx00〉 is a CS of 〈a,Ta〉,
〈b,Tb〉. Let ha, hb be two mappings from X ∪ Y ∪ Z
such that ha(xi j) = xi j if xi j is not a blank node, and
otherwise ha(xi j) = ai and hb(xi j) = b j, and similarly
for arguments from Y ∪ Z.5 Since by construction

5Observe that ha and hb are the inverse of τ on the first and on the
second argument, respectively, i.e., ha(xi j) = ha(τ(ai, b j)) = ai, and
hb(xi j) = hb(τ(ai, b j)) = b j. Such inverse functions exist because
for every pair of different resources ai, b j, a different blank node is
allocated.
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ha, hb map triples in Tx00 back to the triples in Ta, Tb

they were built from, ha(Tx00 ) ⊆ Ta, and hb(Tx00 ) ⊆ Tb.
Hence, from the second characterization of Simple
Entailment, both Ta |=S Tx00 and Tb |=S Tx00 , and since
ha(x00) = a0 = a and hb(x00) = b0 = b, also entailment
between the r-graphs hold.

We now show that every other set of triples which
is a Common Subsumer of 〈a,Ta〉, 〈b,Tb〉 is entailed
by 〈x00,Tx00〉. Let 〈w,Tw〉 be a CS of 〈a,Ta〉, 〈b,Tb〉,
where from Proposition 4 if a , b, then w is a blank
node. Since both 〈a,Ta〉 and 〈b,Tb〉 entail 〈w,Tw〉,
there are two mappings hwa, hwb such that hwa(w) = a
and hwa(Tw) ⊆ Ta, and similarly for b. Define a
mapping hw(·) from the resources in Tw to resources
in Tx00 as follows: hw(u) = τ(hwa(u), hwb(u)), where
τ is the function of Definition 9. We now analyze
the properties of the mapping hw. By definition,
hw(w) = τ(hwa(w), hwb(w)) = τ(a, b) = x00. Moreover,
for every triple � e f g � in Tw, there must be some
triple� ai pi ci � in Ta such that hwa(� e f g �) =�

hwa(e) hwa( f ) hwa(g) �=� ai pi ci �, and similarly for
some triple � b j q j d j � in Tb. Hence, for the same
triple, hw(� e f g �) =� hw(e) hw( f ) hw(g) �=�

τ(ai, b j) τ(pi, q j) τ(ci, d j) �=� xi j yi j zi j �, which is
a triple in Ta×b. Moreover, since 〈w,Tw〉 is an r-graph,
there is an RDF-path from w to e, and applying to each
resource in the path hw, there is a path from hw(w) = x00
to hw(e) = xi j in Ta×b, which proves that� xi j yi j zi j �

belongs also to Tx00 .
Hence, globally hw(Tw) ⊆ Tx00 , which proves

〈x00,Tx00〉 |=S 〈w,Tw〉. From the generality of 〈w,Tw〉,
we can conclude that every r-graph which is a CS
of 〈a,Ta〉 and 〈b,Tb〉 is entailed by 〈x00,Tx00〉, which
proves that 〈x00,Tx00〉 is a Least Common Subsumer of
〈a,Ta〉 and 〈b,Tb〉. �

Clearly, computing Ta×b is a task that can be accom-
plished in time proportional to |Ta| · |Tb|, and extract-
ing the subset of triples which are RDF-connected to
x00 can be done by a slight modification of a graph
search algorithm6 in time linear in |Ta×b|. This yields a
first, rough, computational-complexity upper bound in
the computation of the LCS.

Theorem 4. Given two r-graphs 〈a,Ta〉 and 〈b,Tb〉, a
representation of their Least Common Subsumer under
Simple Entailment can be computed in time O(|Ta| · |Tb|).

6Starting from a triple� x00 p u �, it is sufficient to proceed
with a depth-first exploration both on triples whose subject is p, and
on triples whose subject is u (see Figure 2).

We stress the fact that the above result clearly distin-
guishes the computation of an LCS from the computa-
tion of Simple Entailment, and hence, from RDF- and
RDF-S-Entailment: while computing these entailments
is an NP-complete problem, whose hardness strongly
depends on the presence of blank nodes in the entailed
RDF-graph, computing an LCS is a polynomial-time
problem, regardless the presence of blank nodes. An
intuition for the reader could be that while computing
Simple Entailment involves solving graph homomor-
phism problems (where a blank node opens all matching
choices), computing an LCS is more similar to graphs
composition (where the presence of blank nodes is irrel-
evant). This comment applies also to RDF- and RDF-S-
Entailment, since both are NP-complete problems only
because they include Simple Entailment: in fact, when
passing from the latter to the formers, the complexity of
entailment does not increase over NP, and moreover, if
the entailed graph does not contain blank nodes, both
RDF- and RDF-S-Entailment can be solved in polyno-
mial time.

So far, we discussed properties of the LCS that are
rather declarative (in contrast with procedural proper-
ties): in fact, it would be highly inefficient to first com-
pute all triples in Ta×b and then discard the triples which
x00 is not RDF-connected to. We now highlight a more
procedural characterization that leads us, in Section 5,
to an efficient implementation of the computation of the
LCS.

Theorem 5. There is an RDF-path of length n ≥ 0 in
Ta×b from x00 to a resource zi j = τ(ei, f j) if and only if
there are both an RDF-path of length n in Ta from a0 to
ei, and an RDF-path of length n in Tb from b0 to f j.

Proof. We prove the claim by induction on the length
of the paths.

For the base case, we just observe that x00 = τ(a0, b0)
is RDF-connected to itself with an RDF-path of length
0, and so are a0 in Ta and b0 in Tb, so the claim is true
for paths of length 0.

Suppose now that the claim is true for some m ≥ 0,
that is, there is an RDF-path of length m from x00 to
(say) xi j = τ(ai, b j) if and only if there are both an
RDF-path of length m from a0 to ai and an RDF-path
of length m from b0 to b j.

Then, in Ta×b there is an RDF-path of length m + 1
from x00 to wi j iff there exist both (i) an RDF-path of
length m from x00 to some resource xi j, and (ii) a triple
� xi j yi j zi j � in which wi j is either the predicate or
the object of the triple, i.e., either wi j = yi j, or wi j = zi j.
Consider the case wi j = yi j (the other case follows
the same line of reasoning): since � xi j yi j zi j � =
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� τ(ai, b j) τ(pi, q j) τ(ci, d j) �, the triple above exists
if and only if there are both a triple � ai pi ci � in Ta

and a triple� b j q j d j � in Tb. Let pi = ei and q j = f j.
Now from the inductive hypothesis, (i) holds iff there
are both an RDF-path of length m from a0 to ai, and an
RDF-path of length m from b0 to b j. Taken together,
the consequences of (i) and (ii) hold iff there are both
an RDF-path of length m + 1 from a0 to pi = ei, and an
RDF-path of length m + 1 from b0 to q j = f j, that is,
the inductive claim. �

In Section 5, we show how the above property can
be used to set up an algorithm that performs a parallel
depth-first exploration of Ta and Tb, building 〈x00,Tx00〉.

4.4. Common Subsumers in stronger entailments
Given that the above analysis has been made only

for Simple Entailment, the reader may wonder if and
how it applies also to stronger entailment regimes. We
discuss here some implications for RDF-S. First of
all, since every extension of Simple Entailment must
be monotonic, the LCS presented here is always a
(generally non-least) CS of the two r-graphs, under
stronger entailments as RDF-S. One might think
that such a CS is a very generic one, but we now
show that some of the deductions that can be drawn
in RDF-S for both r-graphs are preserved by our
LCS. As an example observe again Figure 3: both Ta
and Tb, RDF-S-entail a similar deduction, namely:

Ta |=RDF-S dbpedia:Orange (UK)

a dbpedia-owl:Company .
Tb |=RDF-S dbpedia:Vodafone Spain

a dbpedia-owl:Company .
(where the predicate “a” abbreviates rdf:type,
as usual) because Rule rdfs2 [6] can be applied—
intuively, both resources appear in a triple whose
predicate has domain dbpedia-owl:Company. Ob-
serve that this deduction is kept also in the LCS (least
w.r.t. Simple Entailment) that we compute (Figure 3,
below), namely

Tx |=RDF-S :x a dbpedia-owl:Company .

by applying the very same Rule rdfs2 to Tx. More gen-
erally, it can be proved that our LCS is also a CS in
RDF-S that preserves all RDF-S deductions whose se-
quences of rule applications are “common” to Ta and
Tb. However, a thorough analysis would make this pa-
per exceed space limits, so we defer the study of LCS in
RDF-S to future publications.

5. Finding Least Common Subsumers in RDF

In this section, we illustrate how the computation of
an LCS of two resources a, b can be carried on. We

divide the computation in three algorithms. Algorithm 1
is a wrapper for the other two algoritms. Algorithm 2
makes it explicit how the subsets Ta, Tb are extracted
from a much larger set of Semantic Web triples TW.
Algorithm 3 performs a recursive exploration of Ta, Tb,
while building the set of triples Tcs of an LCS 〈cs,Tcs〉

of 〈a,Ta〉, 〈b,Tb〉. We detail each algorithm below.
Algorithm 1 takes as input two resources, a and b,

together with two integers, na and nb, a union of datasets
D, and a boolean function φ(·). Considering a resource
a, the integer na is the maximum RDF-distance from a
of triples to be put in Ta, and the same for b, nb.

In order to manage cycles possibly occurring in the
computation—i.e., while computing a CS of a pair of
resources, the same pair reappears in an inner recur-
sive call—Algorithm 1 sets up a global data structure
S . Such a data structure collects 3-tuples [r, s, 〈x,Tx〉],
where r, s are visited pairs of RDF resources and 〈x,Tx〉

is an r-graph.
We note that Algorithm 1 can be run as an anytime al-

gorithm: at any time the recursive exploration of Ta,Tb

in Row 7 is safely stopped7 Algorithm 1 returns a (non-
least) Common Subsumer 〈cs,Tcs〉, along with the set
Tcs of commonly entailed triples inferred till the mo-
ment of its interrupt. If the exploration of Ta and Tb is
completed, Algorithm 1 terminates returning an LCS of
〈a,Ta〉, 〈b,Tb〉.

Algorithm 1 calls (in Rows 1–2) the function com-
pute σ, which—following Algorithm 2—computes the
characteristic function σTr , whose role we discuss now.
Given a resource r, to form the r-graph 〈r,Tr〉we need to
extract the set Tr from a much larger set TW, involving
possibly several datasets. Various criteria are possible:
for example, the RDF-distance of a triple from r (see
Section 3), assuming that the nearest triples—the ones
whose subject is r itself—are probably the most im-
portant, while importance fades with the RDF-distance.
But also other criteria, like which dataset a triple comes
from, or which predicate and/or object is involved in
the triple, can be considered and combined. Hence,
in order to determine Tr in a modular way, we isolate
in Algorithm 2 the choice of its characteristic function
σTr : TW → { f alse, true} and let σTr be a parameter
in the computation of an LCS, that can be changed or
tuned according to the application problem. Note that
since Algorithm 2 returns a function, the computation it
performs is a so-called higher-order computation8. In
order to make a concrete case, in this paper we choose

7By “safely” we mean that no new recursive call is made, and the
ones on the call stack are regularly closed.

8Besides, higher-order computations are quite common in the
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FindLCS (a, na, b, nb,D, φ);
Input : resources a, b, integers na, nb ≥ 0, union

of datasets D, boolean function φ
Output: r-graph 〈cs,Tcs〉

1 let Ta be defined by σTa = compute σ(a, na,D, φ)
/∗ see Algorithm 2 ∗/ ;

2 let Tb be defined by σTb = compute σ(b, nb,D, φ)
/∗ see Algorithm 2 ∗/ ;

3 let S = ∅ be a global set of records [A, B, R]
where

4 – field A is a resource occurring in Ta,
5 – field B is a resource occurring in Tb, and
6 – field R is an r-graph;
7 let cs = explore(a, b) /∗ see Algorithm 3 ∗/ ;
8 /∗ now also S has been filled during the

exploration ∗/ ;
9 let Tcs =

⋃
{Tx | [r, s, 〈x,Tx〉] ∈ S } ;

10 return 〈cs,Tcs〉 ;
Algorithm 1: Initialization, start, and final collect
of an LCS construction

to select the triples based on (1) their RDF-distance n
from the root of the r-graph, (2) the dataset they come
from, and (3) a boolean function φ(t) excluding triples
matching given patterns9.

Observe that selecting triples in this way is quite com-
mon: e.g., Hulpus et al. [16] extract triples from three
specific datasets of interest, whose subject is connected
to r with a distance less than 2, and which exclude re-
sources belonging to a list of so-called stop-URIs pro-
vided by the authors10 and extended by other research
works [15]. Nevertheless, our approach has a couple of
original distinguishing features: (i) the inputs D, n, φ of
Algorithm 2 allow for stating the same constraints as in
the approach by Hulpus et al. , but in a parametric fash-
ion: D and n are not set in advance and φ may contain a
much more general criterion for selecting triples; (ii) it
deals with r-graphs which are RDF-connected and thus,
notably, it follows RDF-paths stemming from predi-
cates, too.

In order to build an LCS of 〈a,Ta〉 and 〈b,Tb〉, Al-
gorithm 1 calls in Row 7 the recursive function explore,
defined in Algorithm 3.

Web, e.g., Javascript functions which may accept functions as ar-
guments (as the function foreach of ECMAScript5) or—as in our
case—return as a result a pointer to another function.

9Intuitively, the union of datasets D corresponds to the FROM part
of a SPARQL query, while the function φ corresponds to a simple
FILTER part of it.

10http://uimr.deri.ie/sites/StopUris

compute σ(r, n,D, φ);
Input : resource r, integer n ≥ 0, union of datasets

D, boolean function φ ;
Output: function σTr

1 let σTr = function σTr (t) {
2 if (t ∈ D) and (r is RDF-connected to sub ject(t)

with RDF-distance ≤ n) and φ(t) = true then
3 return true
4 else
5 return false
6 } ;
7 return σTr ;
Algorithm 2: Computation of a simple characteris-
tic function σTr defining Tr

Algorithm 3 performs a slight modification of a joint
depth-first exploration of Ta and Tb, where the modi-
fication takes into account the fact that both r-graphs
might not be connected according to classical graph
theory, yet they are RDF-connected (recall Figure 2).
So, for each pair of triples � ai p c �∈ Ta and
� b j q d �∈ Tb, Algorithm 3 performs a recursive call
over both the pair of resources p and q (Row 12), and
the pair c and d (Row 13). All triples inferred during the
exploration are added to the set Tx (Row 14) inside the
record [ai, b j, 〈x,Tx〉].

Once the recursive exploration of Algorithm 3 termi-
nates (or it is safely stopped), Algorithm 1 in Rows 9–10
accumulates in Tcs all triples stored in records of S , and
returns the r-graph 〈cs,Tcs〉.

Example 3. In order to illustrate the algorithm work-
flow, we refer to an example pair of RDF resources,
a0 and b0. For the example, let na = nb = 3, let D
be some union of datasets and let φ be some boolean
function, such that the resulting r-graphs, rooted in a0
and b0, are the ones shown in the left part of Fig-
ure 5. When FindLCS (a0, 3, b0, 3,D, φ) is launched, the
r-graphs 〈a0,Ta0〉 and 〈b0,Tb0〉 are computed accord-
ing to Algorithm 2 and S is initialized as an empty set
(Rows 1–6). Algorithm 3 is then called (Row 7) with
parameters (a0, b0) and returns the root of an LCS of
a0 and b0 as a blank node cs. In Table 2, the call stack
of Algorithm 3 is detailed, with specific reference to the
values of local and global variables in each call. We no-
tice that S is progressively built throughout the execu-
tion and reaches its final value at the end of all recursive
calls (see last row in Table 2).

At this stage, Algorithm 1 is able to compute the
set Tcs according to Row 9. By mapping cs to the
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Table 2: Call Stack of Algorithm 3 for Example 3
Stack Local Variables Status Status of S Call

ai b j x Tx t1 t2 y z
1 a0 b0 x00 ∅ � a0 p1 c1 � � b0 q1 c3 � y11 z11 {[a0, b0, 〈x00, ∅〉]} y11 = explore(p1, q1)
1.1 p1 q1 y11 ∅ � p1 p4 c4 � � q1 q4 d4 � y44 z44 {[a0, b0, 〈x00, ∅〉], [p1, q1, 〈y11, ∅〉]} y44 = explore(p4, q4)
1.1.1 p4 q4 y44 ∅ {[a0, b0, 〈x00, ∅〉], [p1, q1, 〈y11, ∅〉],

[p4, q4, 〈y44, ∅〉]}
1.1 p1 q1 y11 ∅ � p1 p4 c4 � � q1 q4 d4 � y44 z44 z44 = explore(c4, d4)
1.1.2 c4 d4 z44 ∅ {[a0, b0, 〈x00, ∅〉], [p1, q1, 〈y11, ∅〉],

[p4, q4, 〈y44, ∅〉], [c4, d4, 〈z44, ∅〉]}
1.1 p1 q1 y11 {� y11 y44 z44 �}

(Row14)
y44 z44 {[a0, b0, 〈x00, ∅〉], [p1, q1, 〈y11, {�

y11 y44 z44 �}〉], [p4, q4, 〈y44, ∅〉],
[c4, d4, 〈z44, ∅〉]}

1 a0 b0 x00 ∅ y11 z11 z11 = explore(c1, c3)
1.2 c1 c3 z11 ∅ � c1 p2 c2 � � c3 q2 d2 � y22 z22 {[a0, b0, 〈x00, ∅〉], [p1, q1, 〈y11, {�

y11 y44 z44 �}〉], [p4, q4, 〈y44, ∅〉],
[c4, d4, 〈z44, ∅〉], [c1, c3, 〈z11, ∅〉]}

y22 = explore(p2, q2)

1.2.1 p2 q2 y22 ∅ {[a0, b0, 〈x00, ∅〉], [p1, q1, 〈y11, {�
y11 y44 z44 �}〉], [p4, q4, 〈y44, ∅〉],
[c4, d4, 〈z44, ∅〉], [c1, c3, 〈z11, ∅〉],
[p2, q2, 〈y22, ∅〉]}

1.2 c1 c3 z11 ∅ � c1 p2 c2 � � c3 q2 d2 � y22 z22 z22 = explore(c2, d2)
1.2.2 c2 d2 z22 ∅ � c2 p1 c3 � � d2 q1 c3 � y33 z33 {[a0, b0, 〈x00, ∅〉], [p1, q1, 〈y11, {�

y11 y44 z44 �}〉], [p4, q4, 〈y44, ∅〉],
[c4, d4, 〈z44, ∅〉], [c1, c3, 〈z11, ∅〉],
[p2, q2, 〈y22, ∅〉], [c2, d2, 〈z22, ∅〉]}

y33 = explore(p1, q1)

1.2.2.1 p1 q1 y33 = y11
(Row 2)

1.2.2 c2 d2 z22 ∅ � c2 p1 c3 � � d2 q1 c3 � y33 z33 z33 = explore(c3, c3)
1.2.2.2 c3 c3 c3

(Row 5)
∅ {[a0, b0, 〈x00, ∅〉], [p1, q1, 〈y11, {�

y11 y44 z44 �}〉], [p4, q4, 〈y44, ∅〉],
[c4, d4, 〈z44, ∅〉], [c1, c3, 〈z11, ∅〉],
[p2, q2, 〈y22, ∅〉], [c2, d2, 〈z22, ∅〉],
[c3, d3, 〈c3, ∅〉]}

1.2.2 c2 d2 z22 {� z22 y11 c3 � }

(Row 14)
y11 c3 {[a0, b0, 〈x00, ∅〉], [p1, q1, 〈y11, {�

y11 y44 z44 �}〉], [p4, q4, 〈y44, ∅〉],
[c4, d4, 〈z44, ∅〉], [c1, c3, 〈z11, ∅〉],
[p2, q2, 〈y22, ∅〉], [c2, d2, 〈z22, {�
z22 y11 c3 �}〉], [c3, d3, 〈c3, ∅〉]}

1.2 c1 c3 z11 {� z11 y22 z22 � }

(Row 14)
y22 z22 {[a0, b0, 〈x00, ∅〉], [p1, q1, 〈y11, {�

y11 y44 z44 �}〉], [p4, q4, 〈y44, ∅〉],
[c4, d4, 〈z44, ∅〉], [c1, c3, 〈z11, {�
z11 y22 z22 �}〉], [p2, q2, 〈y22, ∅〉],
[c2, d2, 〈z22, {� z22 y11 c3 �}〉],
[c3, d3, 〈c3, ∅〉]}

1 a0 b0 x00 {� x00 y11 z11 � }

(Row 14)
y11 z11 {[a0, b0, 〈x00, {� x00 y11 z11 �}〉],

[p1, q1, 〈y11, {� y11 y44 z44 �}〉],
[p4, q4, 〈y44, ∅〉], [c4, d4, 〈z44, ∅〉],
[c1, c3, 〈z11, {� z11 y22 z22 �}〉],
[p2, q2, 〈y22, ∅〉], [c2, d2, 〈z22, {�
z22 y11 c3 �}〉], [c3, d3, 〈c3, ∅〉]}
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Figure 5: An example pair of RDF-graphs to be compared by Algorithm 1 and one of their LCSs 〈x00,Tx00 〉.

blank node x00 returned by the call explore(a0, b0), the
reader may verify that Tcs =Tx00 ={� x00 y11 z11 �,�
y11 y44 z44 �,� z11 y22 z22 �,� z22 y11 c3 �}. The
resulting r-graph 〈x00,Tx00〉 (shown in the right part of
Figure 5) is the LCS returned by Algorithm 1.

In order to prove that Algorithm 1 computes the LCS
of 〈a,Ta〉, 〈b,Tb〉, we need the following auxiliary lem-
mata.

Proposition 5. Algorithm 3 implements the function
τ(·, ·) as it is described in Definition 9, restricted to those
pairs of resources ai, b j for which a0 is RDF-connected
to ai and b0 is RDF-connected to b j with two RDF-
paths of the same length.

Proof. When the pair of resources ai, b j is encountered
for the first time in some call of Algorithm 3, either
a new blank node is allocated for the pair if ai , b j

(Rows 6–7), or ai is returned (Rows 4–5). In all
subsequent calls, whenever that pair is encountered
again (Row 1) the same resource already allocated for
that pair is returned. The restriction about RDF-paths
in the domain of τ is implicit in the way Ta, Tb are
jointly explored. �

Without loss of generality, we can assume that the
names of the blank nodes assigned by explore(·, ·) are
the same as in Definition 9—if not, some uniform re-
naming h would map resources in Tcs back to Ta×b—
and in particular, cs = x00. Therefore, every triple
� x y z � added to S at Row 14 is in fact the triple
� τ(ai, b j) τ(p, q) τ(c, d) �.

Proposition 6. Given two r-graphs 〈a0,Ta0〉, 〈b0,Tb0〉,
a resource ai in Ta0 and a resource b j in Tb0 , the follow-
ing two statements are equivalent:

1. there exists n ≥ 0, such that the recursion stack of
explore(·, ·) has n pending calls, and Algorithm 3
is called on resources ai, b j

2. there exists m ≥ 0 such that there are both an RDF-
path of length m from a0 to ai, and an RDF-path of
the same length m from b0 to b j.

We omit this proof for brevity, since it is a straightfor-
ward induction on the height n of the recursion stack.
We just note that we need an integer n for the height of
the call stack and a (possibly different) integer m for the
length of the RDF-path since there might be multiple
RDF-paths from the roots to ai in Ta0 and b j in Tb0 , and
Algorithm 3 does not explore twice the same pair of re-
sources. Hence, there can be two RDF-paths of length
m in (2), yet in (1), a different pair of RDF-paths of
length n led Algorithm 3 to issue a call to explore(ai, b j)
on top of n stacked calls.

Theorem 6. Algorithm 1 computes a representation of
the Least Common Subsumer of 〈a,Ta〉, 〈b,Tb〉 under
Simple Entailment.

Proof. Since Algorithm 1 just initializes S , Ta, Tb,
and collects the sets of triples built by Algorithm 3, we
concentrate on the latter algorithm. Although cs = x00
(as assumed after Proposition 5), we distinguish here
between Tcs (the triples built by Algorithm 1) and Tx00

(the set of triples representing the LCS in Theorem 3),
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explore(ai, b j);
Input : resource ai, resource b j

Output: a resource x
1 if for some resource xi j, there is already the record

[ai, b j, 〈xi j,Txi j〉] ∈ S then
2 let x = xi j

3 else
4 if ai = b j then
5 let x = ai

6 else
7 let x be a new blank node not occurring

in S ;
8 let Tx = ∅ ;
9 add [ai, b j, 〈x,Tx〉] to S ;

10 foreach t1 =� ai p c � such that
σTa (t1) = true do

11 foreach t2 =� b j q d � such that
σTb (t2) = true do

12 let y = explore(p, q);
13 let z = explore(c, d);
14 add � x y z � to Tx ;
15 return x;

Algorithm 3: Joint depth-first exploration of Tai

and Tb j

and we prove separately that (i) Tcs ⊆ Tx00 and (ii)
Tx00 ⊆ Tcs.

(i) Proposition 5 implies that Algorithm 3 adds
triples � τ(ai, b j) τ(pi, q j) τ(ci, d j) � to the records
in S , and Proposition 6 proves that there are two
RDF-paths of equal length, one path from a0 to ai in
Ta, and another from b0 to b j inTb. The latter statement
implies (from Theorem 5) that x00 is RDF-connected to
� τ(ai, b j) τ(pi, q j) τ(ci, d j) �, hence Tcs ⊆ Tx00 .

(ii) We can reverse the above line of reasoning:
from Definition 10, every triple � xi j wi j yi j � in Tx00

has a subject xi j such that there is an RDF-path from
x00 to xi j. Then Theorem 5 proves that there are two
RDF-paths of equal length in Ta and Tb, from a0 to ai

and from b0 to b j, respectively, and finally Proposition 6
proves that the triple � τ(ai, b j) τ(pi, q j) τ(ci, d j) � is
added to S . Therefore, Tx00 ⊆ Tcs. �

We recall that since 〈x00,Tx00〉 is the LCS of 〈a,Ta〉,
〈b,Tb〉, under Simple Entailment, which is the weak-
est entailment relation, 〈x00,Tx00〉 is also a (possibly
non-least) Common Subsumer under stronger entail-
ment regimes, like RDF- and RDF-S-entailment.

6. Proof-of-concept

In this section, we exemplify how CSs could be useful
in three possible application scenarios. Although previ-
ous sections focused on LCSs, in this section we show
that even non-least Common Subsumers (CSs) may be
a useful support in the solution of several problems:

• in Section 6.1 we show how to use CSs to model an
Named Entity Linking (NEL) and Disambiguation
(NED) problem;

• in Section 6.2 we show how CSs may be useful for
clustering RDF resources;

• in Section 6.3 we present the use case of drugs
comparison to provide an evidence of the impor-
tance of CSs and show that knowing what features
two resources have in common is much more im-
portant than counting how many such features are.

All scenarios share the guidelines below:

• a complete solving approach for the addressed
tasks is out of the scope of this article; we just
hint how the solution processes may benefit from
CSs and we provide a formalization only for the
r-graphs to be adopted as inputs and the CSs that
could be used to solve the problem;

• the automated extraction of CSs in each task is re-
alized by a Java application implementing the three
algorithms of Section 5, adopting Apache Jena li-
braries11 for RDF data querying and processing;

• for each scenario, we report online at http://

193.204.59.20/rdfcs/ the complete results of
the calls to Algorithm 1 both for na = nb = 1 and
for na = nb = 2; in order to ease readability, we
here refer to simplified sets of triples describing
the two resources to be compared and we explic-
itly show both such sets and the related results;

• although a different predicate φ, selecting rele-
vant triples, may be adopted to specific prob-
lems, for a given dataset, φ can be set to ex-
clude general stop-patterns12, that match triples
not relevant for our analysys. For example, �
?s rdf:type rdf:Property � is a stop-pattern.
A complete definition of the predicates φ we used
in all examples can be found at http://193.204.
59.20/rdfcs/.

11http://jena.apache.org/
12The name stop-patterns is given in analogy with the previously

cited stop-URIs [16] and with well-known stop-words in Information
Retrieval
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The Least Common Subsumer of a pair of r-graphs
might include a number of triples which are not in-
formative in the application scenarios. We call such
triples uninformative-triples.The set of uninformative-
triples has been determined on the basis of a deep in-
vestigation we made on the results provided by Algo-
rithm 1. For instance, in the previous Example 3, one
such uninformative-triple is � y11 y44 z44 �, which
adds no informative content to the description of the
LCS. In general, all triples of the form � xi j yi j zi j �

where xi j, yi j, zi j are all blank nodes, and neither yi j

nor zi j are subjects of some other triples in Tx may be
considered uninformative-triples. We show that also a
(non-least) CS, in which uninformative-triples are elim-
inated, is useful. Hence, we modify Algorithm 1 so
that it computes a CS 〈x,Tx〉 in which Tx contains no
uninformative-triple13. Triples are discarded recursively
based on this criterion, e.g., all triples in chain (meaning
that the predicate or the object of a triple is the subject
of the next one) are discarded starting from the last one,
if they are uninformative-triples. Such a modification
substitutes Row 14 in Algorithm 3 with the following
row:

if� x y z � is not an uninformative-triple
then add� x y z � to Tx (9)

6.1. Named Entity Disambiguation

NED in the Semantic Web is the challenge of de-
termining a correct resource out of various candidate
ones [23]. In the literature, different kinds of knowl-
edge models have been adopted to resolve disambigua-
tion: ontologies [24], textual information sources like
Wikipedia [25], multiple and heterogeneous sources
[26, 27]. We refer to the problem of disambiguating
RDF resources, which arises when trying to export in
RDF the content of textual documents. This task deals
with choosing the resource which best fits a given do-
main of knowledge, when more than one homonym re-
source is retrieved. In particular, we propose the use of
CSs as a service supporting the selection among candi-
date entities and adopt the Web of Data as information
source for the disambiguation. So far, techniques based
on natural language processing [28] or graph similarity
[29] have been adopted, but it is our belief that a Knowl-
edge Representation service (although not completely

13In our current implementation, the set of uninformative-triples
includes 16 items.

solving the problem by itself) would significantly im-
prove the results of the disambiguation task.

As an example, consider the phrase “I prefer an or-
ange to a mandarin”. A typical task in information ex-
traction from unstructured text is determining the cor-
rect entities to be associated to the words “orange” and
“mandarin”, out of all candidate ones (including, e.g.,
the phone company Orange Ltd. and the Chinese dialect
Mandarin). For the sake of simplicity, let us retrieve in
DBPedia only two RDF resources for each ambiguous
word in the sentence14, reported hereafter:

1. http://dbpedia.org/resource/Orange_(fruit)

2. http://dbpedia.org/resource/Orange_(UK)

3. http://dbpedia.org/resource/Mandarin_

orange

4. http://dbpedia.org/resource/Mandarin_

Chinese

In order to correctly link the two entities, we propose a
semantic-based approach relying on CSs of all the four
candidate pairs. The following calls to Algorithm 1 are
performed:

1–3. FindLCS (dbpedia:Orange (fruit), na,
dbpedia:Mandarin orange, nb,DBPedia, φ);

1–4. FindLCS (dbpedia:Orange (fruit), na,
dbpedia:Mandarin Chinese, nb,DBPedia, φ);

2–3. FindLCS (dbpedia:Orange (UK), na,
dbpedia:Mandarin orange, nb,DBPedia, φ1);

2–4. FindLCS (dbpedia:Orange (UK), na,
dbpedia:Mandarin Chinese, nb,DBPedia, φ);

For all of them, we set RDF-distances both to na =

nb = 1 and to na = nb = 2 , D = DBPedia
(i.e., the dataset accessible at the SPARQL [30] end-
point http://dbpedia.org/sparql), and a predi-
cate φ such that, for each triple t, φ(t) = true if
and only if t does not match any pattern in a set
of stop-patterns SP, defined at http://193.204.59.
20/rdfcs/disambiguation.html.

Once the CSs of candidate pairs are computed, some
preference relation has to be adopted for choosing the
pair resolving NEL. A ranking criterion for CSs, sup-
porting entity disambiguation has been recently pro-
posed [31].

14The reader may verify that many more related URIs are avail-
able as of November 2015, instead (see http://dbpedia.org/
page/Orange and http://dbpedia.org/page/Mandarin).
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In order to make the paper self-contained, we sketch
in the following all the steps involved in the CSs com-
putation, adopting a more compact representation of re-
sources15. Moreover, we remark that we are not delving
into all details of the disambiguation process, which are
out of the scope of this article.

According to Section 3, the candidate resources have
to be modeled as rooted graphs (Definition 5) in order
to elicit one of their CSs. The possible r-graphs of the
four resources are presented in Table 3.

By applying Definition 7 to each pair of r-graphs
shown in Table 3, the reader may easily verify that pos-
sible CSs are the following ones16:

1–3. CS(〈dbpedia:Orange (fruit),TOF〉,
〈dbpedia:Mandarin orange,TMF〉) = 〈 : cs1,T :cs1〉, with
:cs1 a blank node, and

T :cs1 = :cs1 rdf:type dbpedia-owl:Species,

dbpedia-owl:Eukaryote,

dbpedia-owl:Plant;

dbpedia-owl:family dbpedia:Rutaceae;

dbpedia-owl:genus dbpedia:Citrus;

dbpprop:binomialAuthority :z1.

1–4. CS(〈dbpedia:Orange (fruit),TOF〉,
〈dbpedia:Mandarin Chinese,TMC〉) = 〈 : cs2, ∅〉,
with :cs2 a blank node

2–3. CS(〈dbpedia:Orange (UK),TOC〉,
〈dbpedia:Mandarin orange,TMF〉) = 〈 : cs3, ∅〉,
with :cs3 a blank node

2–4. CS(〈dbpedia:Orange (UK),TOC〉,
〈dbpedia:Mandarin Chinese,TMC〉) = 〈 : cs4, ∅〉,
with :cs4 a blank node

Evidently, CS 1–3 makes explicit the common
context of resources (dbpedia:Orange (fruit),
dbpedia:Mandarin orange), and it is the most spe-
cific one (the results on the complete list of triples con-
firm this for na = nb = 1 ). We remark that the candidate
pairs in the real case are much more than four. Any-
way, we here just aim at showing that CSs are a logical
basis for extracting common features, and therefore for
selection criteria among candidate pairs. Although au-
tomated tools for entity recognition and disambiguation
do exist in the literature [28], a solution based on CSs
would differ from most of them in grounding the disam-
biguation on a semantic basis, which should reduce (if
not eliminate) the number of false positives. In fact, a
high-ranked CS of two resources denotes a high sharing
of informative triples between them [31], which may
never apply to resources not related to each other.

15The interested reader is referred to the complete list of results at
http://193.204.59.20/rdfcs/disambiguation.html

16The pattern� :x rdf:type :z� where : z has no successors
belongs to the set of uninformative-triples.

6.2. Clustering

Automated clustering of collections of RDF re-
sources has been investigated since 2001 [32], also with
specific focus on Semantic Web data [33]. Our target
here is hinting how CSs may support automated clus-
tering of collections of RDF resources. In particular,
the approach we have in mind performs unsupervised
learning from the resources in the collection. The whole
approach relies on the computation of a CS of a ran-
domly selected seed–pair of resources. The CS descrip-
tion is in fact adopted as a search pattern for other re-
sources in the collection sharing the same features as
the two in the seed pair. The set made up by the seed
pair and the retrieved resources is one cluster of the col-
lection, described in terms of RDF triples related to the
computed CS. By removing this cluster from the ini-
tial collection and iterating the process over the rest of
it, a final clustering of the entire collection is reached.
We outline that, thanks to its fully deductive nature, the
hinted approach retrieves at the same time not only sub-
sets in the collection, but also an abstract representative,
in terms of an r-graph 〈x00,Tx00〉, whose Tx00 models ex-
plicitly what all resources of the cluster have in com-
mon. The inference of such an abstract representative
is completely new in the literature, except for a brief
and preliminary introduction in a previous work of ours
[2]. Intuitively, the choice of the seed-pair strongly af-
fects the quality of clustering results. A complete ap-
proach to clustering should therefore iterate the random
selection of the seed-pair and implement a mechanism
to compare results and select the clustering with the best
quality performance.

We remark that a detailed description and evaluation
of the approach to solve clustering is out of the scope of
this article. Here, we just use clustering as an applica-
tion scenario motivating the extraction of CSs in RDF.

Consider a collection made up by RDF re-
sources describing places of interest. In or-
der to cluster it, the pair made up by the
well-known architectural works Eiffel Tower
(http://dbpedia.org/resource/Eiffel_Tower)
and Chrysler Building (http://dbpedia.org/
resource/Chrysler_Building) is selected as seed.
Coherently with Definition 5, we model both resources
as r-graphs, 〈dbpedia:Eiffel Tower,TET 〉, and
〈dbpedia:Chrysler Building,TCB〉.

Formally, the following call to Algorithm 1 is per-
formed:
FindLCS (dbpedia:Eiffel Tower,
na, dbpedia:Chrysler Building, nb,DBPedia, φ);
both for na = nb = 1 and for na = nb = 2. We keep
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Table 3: Possible r-graphs for the example resources in Section 6.1.
r-graph Set of Relevant Triples
〈dbpedia:Orange (fruit),TOF〉 TOF =

dbpedia:Orange (fruit)

rdf:type dbpedia-owl:Species,

dbpedia-owl:Eukaryote,

dbpedia-owl:Plant;

dbpedia-owl:family dbpedia:Rutaceae;

dbpedia-owl:genus dbpedia:Citrus;

dbpprop:binomialAuthority "Osbeck".

〈dbpedia:Orange (UK),TOC〉 TOC =

dbpedia:Orange (UK)

rdf:type dbpedia-owl:Agent,

dbpedia-owl:Company,

dbpedia-owl:Organisation;

dbpprop:industry "Telecommunications";

dbpprop:location "Hatfield, England, UK"

〈dbpedia:Mandarin orange,TMF〉 TMF =

dbpedia:Mandarin orange

rdf:type dbpedia-owl:Species,

dbpedia-owl:Eukaryote,

dbpedia-owl:Plant;

dbpedia-owl:family dbpedia:Rutaceae;

dbpedia-owl:genus dbpedia:Citrus;

dbpprop:binomialAuthority dbpedia:Francisco Manuel Blanco.

〈dbpedia:Mandarin Chinese,TMC〉 TMC =

dbpedia:Mandarin Chinese

rdf:type dbpedia-owl:Language;

dbpedia-owl:languageFamily dbpedia:Varieties of Chinese,

dbpedia:Sinitic languages;

dbpprop:ancestor dbpedia:Old Chinese,

dbpedia:Middle Chinese,

dbpedia:Old Mandarin.
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using DBPedia in the parameter D and the parameter φ
defined in Section 6.1.

The complete results of the previous calls are re-
ported on-line17. According to the general guidelines,
for readability we use the two reduced sets TET and TCB

below:
TET = dbpedia:Eiffel Tower

rdf:type

dbpedia-owl:ArchitecturalStructure;

dbpedia-owl:architect

dbpedia:Stephen Sauvestre;

dbpedia-owl:location

dbpedia:Paris;

dbprop:title dbpedia:List of tallest

buildings and structures

in the world.

TCB =dbpedia:Chrysler Building

rdf:type

dbpedia-owl:ArchitecturalStructure;

dbpedia-owl:architect

dbpedia:William Van Alen;

dbpedia-owl:location

dbpedia:Manhattan;

dbprop:title dbpedia:List of tallest

buildings and structures

in the world,

dbpedia:Skyscraper.

By applying Definition 7 to our example r-
graphs, the reader may easily see that a Com-
mon Subsumer of 〈dbpedia:Eiffel Tower,TET 〉

and 〈dbpedia:Chrysler Building,TCB〉 is
〈 :cs1,T :cs1〉 where

T :cs1 = :cs1

rdf:type dbpedia-owl:ArchitecturalStructure;

dbpedia-owl:architect :z1;

dbpedia-owl:location :z2;

dbprop:title dbpedia:List of tallest

buildings and structures

in the world.

The description of the extracted CSs may be adopted
as a pattern for grouping together resources in the col-
lection of places of interest by means of the following
SPARQL query:
SELECT DISTINCT ?s WHERE
{?s rdf:type dbpedia-owl:ArchitecturalStructure;

dbpedia-owl:architect ?z1;
dbpedia-owl:location ?z2;
dbprop:title dbpedia:List of tallest

buildings and structures
in the world}

The reader may verify that the query returns, as of

17http://193.204.59.20/rdfcs/clustering.html

November 2015, five places of interest which share the
same features as the input pair.

The choice of a different seed for clustering would
lead to different results. As an example, consider, as
further resource, the architectural work Empire Build-
ing (http://dbpedia.org/resource/Empire_
Building_(Manhattan)). We model it as an r-graph
〈dbpedia:Empire Building (Manhattan),TEB〉,
choosing the following reduced set of triples:
TEB = dbpedia:Empire Building (Manhattan)

dbpedia-owl:architect

dbpedia:Kimball & Thompson;

dbpedia-owl:location

dbpedia:Manhattan;

dbpop:architecture

dbpedia:Neoclassical architecture.

By exploiting CSs associativity, proved in The-
orem 2, we can extract the features shared by
the three resources (dbpedia:Eiffel Tower,
dbpedia:Chrysler Building, dbpedia:Em-

pire Building (Manhattan)) by just com-
puting a CS of the r-graphs 〈 :cs1,T :cs1〉 and
〈dbpedia:Empire Building (Manhattan),TEB〉.
The resulting CS18 is the r-graph 〈 :cs2,T :cs2〉, such
that

T :cs2 = :cs2

dbpedia-owl:architect :z3;

dbpedia-owl:location :z4.

Such a CS may be adopted as pattern for clustering,
by compiling A SPARQL query analogous to the previ-
ous one, but derived from : cs2, which is less specific
than : cs1. As a consequence, the execution of such
a query returns about 10.000 results, which include the
ones returned by the query compiling : cs1.

At this stage of work, we are still not able to provide a
full evaluation of clustering results, or a thorough com-
parison with classical approaches and algorithms [34].
Nevertheless, we remark that even when any of such
well known approaches is performed, it is not trivial to
exhibit a representative for each cluster. Thanks to asso-
ciativity, a CS of resources classified in a cluster (by any
well-known algorithm) is a cluster representative by it-
self; therefore, CSs can provide an added-value service
for clustering.

6.3. Drugs Comparison
As for the third application scenario, we identified a

use case in which the significance of informative content

18Results referred to the complete sets of triples are reported on-
line
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hidden in a CS is self-evident: the extraction of features
shared among drugs. Such a task supports the identi-
fication of classes of drugs whose items are somehow
substitutable with each other.

In this scenario we refer to the DrugBank Database19

as of November 2015, a unique bioinformatics and
cheminformatics resource that combines detailed drug
data (i.e., chemical, pharmacological and pharmaceu-
tical) with comprehensive drug target (i.e., sequence,
structure, and pathway) information. The database
has been converted in an RDF dataset, accessible
at http://wifo5-04.informatik.uni-mannheim.
de/drugbank/, through the D2R Server [35], devel-
oped by the Research Group Data and Web Science at
the University of Mannheim.

Imagine now a health operator in the need for search-
ing the best candidate drug to substitute the one a patient
daily takes: Heparin.

In the addressed dataset, Heparin is identified
by the resource drugs:DB01109. Now, con-
sider two candidate drugs for substituting Hep-
arin: Ardeparin (drugs:DB00407) and Lepidurin
(drugs:DB00001). The choice of the best candidate
drug may be supported by the computation of a CSs
of the pairs (drugs:DB01109, drugs:DB00407) and
(drugs:DB01109, drugs:DB00001). They are ob-
tained performing the calls to Algorithm 1 as follows:

• FindLCS (drugs:DB01109, na, drugs:DB00407, nb,
DrugBank, φ3);

• FindLCS (drugs:DB01109, na, drugs:DB00001, nb,
DrugBank, φ3).

We performed both calls for na = nb = 1 and for
na = nb = 2 and, as parameter φ, we use a pred-
icate φ3 such that, for each triple t, φ3(t) = true if
and only if t does not match any pattern in a set of
stop-patters S P3, defined at http://193.204.59.20/
rdfCS/drugs.html. The reader interested in evaluat-
ing the complete results of the calls above may refer
to the same address. Again, we here show results with
reference to simplified sets: let, for the sake of exam-
ple, compute σ define the sets TH (for Heparin), TA (for
Ardeparin) and TL (for Lepidurin) below.

TH = drugs:DB01109

drugbank:drugCategory

drugcategory:anticoagulants,

drugcategory:fibrinolyticAgents;

drugbank:dosageForm

dosageform:liquidIrrigation,

19http://www.drugbank.ca/

dosageform:solutionIntraperitoneal,

dosageform:solutionIntravenous,

dosageform:solutionSubcutaneous;

drugbank:possibleDiseaseTarget

disease:2210,

disease:2366,

disease:2575,

disease:2695,

disease:2760,

disease:345.

TA = drugs:DB00407

drugbank:drugCategory

drugcategory:anticoagulants,

drugcategory:fibrinolyticAgents;

drugbank:dosageForm

dosageform:liquidIrrigation,

dosageform:solutionIntraperitoneal,

dosageform:solutionIntravenous,

dosageform:solutionSubcutaneous;

drugbank:possibleDiseaseTarget

disease:1130,

disease:4042.

TL = drugs:DB00001

drugbank:drugCategory

drugcategory:anticoagulants,

drugcategory:antithromboticAgents,

drugcategory:fibrinolyticAgents;

drugbank:dosageForm

dosageform:powderForSolutionIntravenous;

drugbank:possibleDiseaseTarget

disease:2210,

disease:2695,

disease:2760,

disease:345,

disease:560,

disease:592.

In order to choose the best candidate drug, we
show the CSs of the pairs (drugs:DB01109,
drugs:DB00407) and (drugs:DB01109,
drugs:DB00001) computed by Algorithm 1, if
the version of Algorithm 3 modified according to 9 is
called at Row 7:

• CS(drugs:DB01109, drugs:DB00407) =〈 :cs1,T :cs1〉,
where :cs1 is a blank node and
T :cs1 = :cs1

drugbank:drugCategory

drugcategory:anticoagulants,

drugcategory:fibrinolyticAgents;

drugbank:dosageForm

dosageform:liquidIrrigation,

dosageform:solutionIntraperitoneal,

dosageform:solutionIntravenous,

dosageform:solutionSubcutaneous;

drugbank:possibleDiseaseTarget

:z1.

• CS(drugs:DB01109, drugs:DB00001) = 〈 :cs2,T :cs2〉,
where :cs2 is a blank node and
T :cs2 = :cs2

drugbank:drugCategory
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drugcategory:anticoagulants,

drugcategory:fibrinolyticAgents;

drugbank:dosageForm

:z2;

drugbank:possibleDiseaseTarget

disease:2210,

disease:2695,

disease:2760,

disease:345.

The reader may notice that the two CSs share the
same number of triples, so a similarity criterion count-
ing triples would consider Heparin equally similar to
both Ardeparin and Lepidurin.

Thus, this example clarifies the importance of infer-
ring a description of the common content of two RDF
resources, rather than just evaluating their degree of
similarity. In particular, let us figure out that the pa-
tient mentioned before is affected by Dysprothrombine-
mia (disease:345) and specific conditions force him
to take the dosage of Heparin in the form of subcu-
taneous solution. Even though Lepidurin shares with
Heparin Dysprothrombinemia as target disease, it does
not include subcutaneous solution among dosage forms.

The computed CSs may be used in a Deci-
sion Support System for aiding health operators
in deciding which is the best candidate—Ardeparin
(drugs:DB00407) or Lepidurin (drugs:DB00001)—to
substitute Heparin (drugs:DB01109), on the basis of
what features do these two drugs share with Heparin.

Of course, we are not proposing the automated selec-
tion of drugs. Nevertheless, also in this case CSs for-
malize logically knowing “in what” two RDF resources
are similar, rather than only “how much” they are.

6.4. Implementation: analysis and properties
We give just a hint of our implementation to demon-

strate its feasibility in terms of execution times. In order
to support the claim of feasibility, we report in Table 4
some information about the execution20 of some calls,
including all the ones described in Subsections 6.1–6.3.
In particular, we show:

• cs: the total time for solving each call (whose five
inputs a, b, na, nb, D, are reported in the same row,
for the sake of completeness);

• σ: the total time for computing Ta and Tb;

• |Ta|, |Tb|, |Tcs|: the number of triples21 in each of
the three sets.

20All tests have been executed on an AMD eight-core server,
equipped with a 3.10 GHz processor and 8 GB RAM.

21Datasets as of November 2015.

When the execution time is high, as in the fourth row,
this is because the number of triples of Ta and Tb is
quite high from the beginning. Moreover, such times are
the worst-case ones, which include the response times
of the DBPedia SPARQL endpoint. When we used a
dump of the triples on our computers, the execution
times were two to six times smaller, at the price of using
a rapidly obsolete version of DBPedia. Hence, there is
a tradeoff between up-to-date data and communication
overhead. Anyway, since our algorithm is anytime, an
execution cutoff can always be set, sacrificing complete-
ness.

Execution times and sizes were significantly reduced
by adding as many items as possible to the list of stop-
patterns (set SP). In particular, by adopting a list of 43
stop-patterns, we achieved the execution time cs in the
tenth row of Table 4, while a previous implementation
with only 13 stop-patterns (all stop-URIs) generated
cs = 15618156 ms (due to the bigger sizes |Ta| = 1629
and |Tb| = 1720). As a matter of fact, a larger list of
stop-patterns reduces also the size of Tcs.

The size of the result set Tcs is further reduced by dis-
carding uninformative-triples, as previously introduced:
we do not add to Tcs 16 kinds of triples we identified
as useless w.r.t. to the objective of describing features
shared by two resources. As a consequence, the size of
Tcs is significantly reduced. As an example, we refer
to call described in the tenth row of Table 4: in a pre-
vious implementation including uninformative-triples,
the achieved values for |Tcs| and cs were 326763 and
11131266 ms, respectively. We believe that this experi-
ence can be shared: when passing from restricted and
highly controlled datasets (e.g., DrugBank) to DBPe-
dia, general filters on many useless triples are crucial
for feasibility. In fact, the reader may verify that the ex-
ecution times in the examples involving DrugBank are
much more feasible for a prototype implementation.

7. Related Work

Recall that we already distinguished LCSs from
the problem Maximum Common Subgraph (MCS), by
showing in Section 3 that blank nodes can be collapsed
or duplicated in an LCS, while they cannot in MCS, and
by proving in Section 4 that the two problems belong to
different complexity classes (LCS to polynomial-time
vs. MCS to NP-complete). Moreover, we already com-
pared our proposal with the ones about how subsets of
triples can be selected, in Sections 3 and 5.

To the best of our knowledge, (least or non-least)
Common Subsumers of RDF resources have never been
proposed in the literature so far. There are only some
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Table 4: Run times and sizes for the CSs computation processed in this section (for the characterization of function φ, we refer to Section 6). Run
times include response times of the online SPARQL endpoints..

a b na =

nb

D cs(ms) |Tcs | σ(ms) |Ta | |Tb |

dbpedia:Orange (fruit) dbpedia:Mandarin orange 1 DBPedia 1803 26 1471 81 31
dbpedia:Orange (fruit) dbpedia:Mandarin orange 2 DBPedia 2753087 2813 38392 920 689
dbpedia:Orange (fruit) dbpedia:Mandarin Chinese 1 DBPedia 3308 2 1632 81 79
dbpedia:Orange (fruit) dbpedia:Mandarin Chinese 2 DBPedia 41828066 8576 62317 920 1213
dbpedia:Orange (UK) dbpedia:Mandarin orange 1 DBPedia 1870 0 1711 47 31
dbpedia:Orange (UK) dbpedia:Mandarin orange 2 DBPedia 797924 822 28243 416 689
dbpedia:Orange (UK) dbpedia:Mandarin Chinese 1 DBPedia 2221 2 1551 47 79
dbpedia:Orange (UK) dbpedia:Mandarin Chinese 2 DBPedia 5185691 2614 45045 416 1213

dbpedia:Empire Building (Manhattan) dbpedia:Chrysler Building 1 DBPedia 2172 15 1568 48 70
dbpedia:Empire Building (Manhattan) dbpedia:Chrysler Building 2 DBPedia 781050 1009 42012 629 769

dbpedia:Eiffel Tower dbpedia:Chrysler Building 1 DBPedia 4652 40 2385 95 70
dbpedia:Eiffel Tower dbpedia:Chrysler Building 2 DBPedia 19515661 2081 66835 1438 769

drugs:DB01109 drugs:DB00407 1 DrugBank 6001 59 2316 139 61
drugs:DB01109 drugs:DB00407 2 DrugBank 260788 287 172784 751 123
drugs:DB01109 drugs:DB00001 1 DrugBank 6483 56 1805 139 65
drugs:DB01109 drugs:DB00001 2 DrugBank 822662 426 184035 751 224

works somehow related to ours, which can be divided
into three groups.

7.1. Similarity among RDF graphs
Already in 2002, Zhu et al. [21] proposed to evalu-

ate the similarity between two RDF graphs by a mea-
sure which combines the similarity between arcs and
the similarity between nodes appearing at peer position
in the two graphs. Zhu et al. decided not to choose
MCS algorithms as a tool for evaluating similarity for
complexity reasons, as we do—but observe that in ad-
dition we proved that MCS is not the right formaliza-
tion, either. The position of arcs and nodes in RDF
graphs is referred to the so-called entries of the the in-
put graphs, which are the nodes the matching process
starts from. The authors propose an application in the
clothes market which maps clothes descriptions in RDF
graphs whose entry is set to the clothes category; on the
demand side, the users searching for clothes are asked
to give the entries for the RDF graphs corresponding to
their queries. Both graphs are then indexed in a Word-
Net category according to their entries. Differently from
our proposal, the work by Zhu et al. lacks of generality
in some aspects: i) entries of graphs to match seem to
be not referred to any URI; ii) the criterion for choosing
resources representation is subjective, not flexible and
not made explicit to the reader.

Grimnes et al. [18] spend instead much effort in
finding the most suitable representation of a resource
as an RDF graph, proposing and evaluating three differ-
ent approaches to the selection of a relevant portion of
an RDF model including the resource to analyze. This
work therefore shares with us the need to find a criterion

for cutting out from the Web of Data a subgraph which
is representative of the resource. Each of the three ap-
proaches adopts its (fixed) criterion: the first one selects
only the triples whose subject is the resource of inter-
est; the second one describes resources through their
CBD introduced before (see Section 3.2 for a compar-
ison); the third approach selects triples by limiting the
sub-graph by depth and traversing the graph two edges
forward and one edge backwards from the resource of
interest. We notice that our approach to triples selection
is more flexible: it manages RDF-connected graphs and
allows for choosing the depth limit for selection, the
datasets of interest and any filtering criterion (through
the predicate φ). In other words, except for the edge
backwards of the third criterion, the subgraph selected
by each of the three approaches from Grimnes et al. can
be easily retrieved by properly setting parameters to the
function σTr we compute in Algorithm 2.

Very recent proposals address the problem of evalu-
ating similarity between RDF graphs through the adop-
tion of metrics which are typical of information theory.
In particular, Dojchinovski et al. [17] ground their ap-
proach to recommendation on the similarity between
users, which are described by specifically introduced
RDF models, called resource context graphs by the au-
thors. Such models are defined as sub-graphs of the
graph corresponding to a given dataset, including only
nodes within a given distance with respect to resource
of analysis. Resources similarity is computed starting
from the so-called shared context of an input pair, which
is a set of resources shared by context graphs of the two
input items. The authors make the assumption that i)
the more is the information the two resources share, the
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more they are similar; ii) better connected shared re-
sources carry more similarity information; iii) less prob-
able shared resources carry more similarity information
than the more common ones. As a consequence, their
algorithm for measuring similarity adopts also measures
to evaluate connectedness and frequency of shared re-
sources. We notice that also Dojchinovski et al. share
our need to cut out a portion of the Web of Data to op-
erationally compute similarity and propose to adopt an
input dataset and graph distance as selecting criterion.
Our approach is instead more general in allowing users
also to specify a function φ that we used for excluding
stop-patterns, and in taking into account triples RDF-
connected to the input resource (see Figure 2). More-
over, Dojchinovski et al. consider only nodes in the
shared context and therefore do not take the graph struc-
ture into account when computing similarity.

Zhang et al. [22] point out the need for RDF-specific
graph matching solutions, which on the one hand over-
come the complexity issues of traditional graph theory
algorithms and, on the other hand, are able to take into
account not only arcs and nodes but also the whole
structure of RDF graphs when computing graph simi-
larity. The authors therefore propose a multilevel simi-
larity measure, which embeds a component for structure
similarity, but reduces the comparison of the so-called
query and target graphs to the computation of a numer-
ical value.

D’Amato et al. [36] propose a semantic similarity
measure for concepts in DLs which takes into account
also an underlying ontology. However, the measure
specifically proposed applies only to concepts in DLs,
which are not comparable to RDF (see next section).
This makes the measure by D’Amato et al. [36] not
suitable for RDF.

As a general comment, since all of the above
cited works compute measures—i.e., numbers—none
of them is able to extract an RDF graph represent-
ing the common informative content of the two RDF
graphs that are compared, as we do with the LCS. More-
over, while all similarity measures limit the compari-
son to a neighborhood of triples around each resource,
such neighborhoods do not consider RDF-connection
through predicates, and the criteria for the selection—
e.g., some kind of distance—are fixed. Our proposal of
LCSs may give a logical basis for new, (semantic) sim-
ilarity measures.

7.2. Generalizations of RDF graphs and Description
Logics

Kernel methods have been proposed [37, 38] to
generalize hypotheses from RDF graphs. However,

when looking to common properties of two graphs,
only triples with the same predicate are extracted
[38, Def.3]. In the highly heterogeneous Web of
Data, this constraint makes kernel methods too depen-
dent on how syntactically different, but similar, pred-
icates are used to express knowledge, even in the
same dataset. We note that experiments with ker-
nels focus on very controlled datasets—usually trans-
lated from databases. It is unclear how kernel meth-
ods would behave on loosely structured datasets. For
instance, looking back at our example in Figure 3,
kernel methods by Lösch et al. would extract noth-
ing in common between dbpedia:Orange (UK) and
dbpedia:Vodafone Spain because the triples stem-
ming from the two resources use different pred-
icates. Moreover, the paths considered by ker-
nel methods are the usual Graph Theory paths [38,
Def.5], which disregard commonalities that stem
from other commonalities between predicates: going
back to Figure 3, kernel methods do not find the
common path between both dbpedia:Orange (UK)

and dbpedia:Vodafone Spain on one hand, and
dbpedia-owl:Company on the other hand.

A completely different approach by Ławrynow-
icz&Potoniec [39] tries to generalize RDF triples as
SPARQL queries, aiming at supervised clustering of re-
sources. Such queries have a special variable denot-
ing a resource, and the pair (variable, pattern) might
be compared to our r-graphs—although there is no
canonical translation between r-graphs and SPARQL
queries. We note that while r-graphs can be ordered
using entailment, allowing for a definition of minimal
element (which we proved is unique, so it is a least ele-
ment), for their queries Ławrynowicz&Potoniec define
a generality relation which is not query containment,
and for which they do not prove existence of minimal
elements—not to say about uniqueness or associativity.
When analyzing the algorithm refining queries, qual-
ity criteria for stopping are established by referring to
thresholds. Apart from clustering, a comparison with
LCSs is not possible, since SPARQL queries were never
used (nor even proposed) as instruments for solving En-
tity Disambiguation, or drug comparison.

The above comment applies also to the work by
Lehmann&Bühmann [19], who model simple SPARQL
queries as query trees rooted in a resource. Given two
query trees Ta and Tb, rooted in a and b respectively,
they find another tree that generalizes both queries. If
we translate their roots and query trees into r-graphs
〈a,Ta〉 and 〈b,Tb〉, it can be proved that the general-
ization computed by Lehmann&Bühmann is only a CS
of 〈a,Ta〉 and 〈b,Tb〉; however, it is not an LCS in gen-
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eral. The proposed generalization misses three aspects
of RDF graphs: (i) it compares trees and not graphs
(i.e., cycles are excluded), (ii) it does not consider gen-
eralized triples (predicates can never be blank nodes),
and (iii) the trees are composed only by usual paths
and not RDF-paths (i.e., a triple whose subject is the
predicate of another triple in the tree as in Figure 2
is not considered). On the contrary, the approach by
Lehmann&Bühmann bears strong similarities with the
definition of LCS in the Description Logic EL [40].
Hence, the same three differences (i)–(iii) can be drawn
when comparing our LCS in RDF with LCS in EL.

A general comparison between our LCSs and the
ones computed in DLs, reveals that LCSs for DLs with
the meta-modeling capabilities specific of RDF have
not been studied yet. On one side, the proposal of ex-
tending DLs with higher-order features either focused
on query answering only [41] or included only fixpoint
constructs [42] that are orthogonal with LCSs in RDF.
On the other side, existing results on LCSs for (First-
Order) DLs—notably, LCSs for the EL family of DLs
[43]—do not include (so far) higher-order features. In
general, even when DLs are extended with higher-order
features, they assume a strongly typed logic in the sense
of Russell&Whitehead, while RDF does not (basically,
triples forming a cycle in which one of the predicates is
rdf:type are allowed), and this fact makes any com-
parison possible only when RDF is restricted in some
way [44]. Our results on LCS for RDF, on the con-
trary, are valid without any restriction. In fact, we did
not revert to the DL-fragment of RDF/RDF-S—which
would be not significant both for DLs and for RDF—but
we propose a new RDF-specific definition and compu-
tation algorithm for Common Subsumers.

7.3. Alternative approaches: discussion

It is also worth discussing whether results about LCSs
in DLs could be applied to the First-Order reification
of a dataset. Namely, RDF can also express a triple
t =� a p c � by reifying the triple as a new individual
t̂, and then expressing t with the set

Dt =


t̂ rdf:subject a .
t̂ rdf:predicate p .
t̂ rdf:object c .


(to make Dt equivalent to the original triple t, however,
one has to use RDF-entailment, and not just Simple
Entailment). It might be argued that the reified triples
could be expressed in some DL knowledge base, and an
LCS could be computed with known algorithms. How-
ever, a DL expressing reified triples would need at least

both inverse roles and individuals—using conventions
on DL names, such a DL should be named ELIO. For
this DL, only a subsumption algorithm has been devised
[45], but LCSs have never been proposed, to the best of
our knowledge.

One more chance could be translating an r-graph in
logical formulas and adopt approaches using punning.
As an example, consider the simple r-graph in Figure 2;
its translation in logic formulas is p(r, s)∧q(p, t). When
punning can be assumed—i.e., the different occurrences
of the resource (as an individual, a class, or a predicate)
do not interfere—contextual First-Order Logic (FOL) is
sufficient to correctly interpret the triples p occurs in
[11]. However, observe that considering r connected to
t via p in Figure 2 is actually making the different oc-
currences of p interfere: if we index the first occurrence
of p (a predicate) as p1 and the second occurrence of p
(an individual) as p2, the path exists only because the
formula p1 = p2 is true. Hence, our approach cannot
be captured by logically simpler approaches using pun-
ning.

8. Conclusion

In this work, we proposed the definition and the com-
putation of Least Common Subsumers in RDF. In order
to manage the peculiarities of such a reasoning service
in RDF, we made some original and fundamental refor-
mulations:

• we extended the definitions of path and connect-
edness from Graph Theory to RDF-graphs, taking
into account the fact that labels of nodes and arcs
can be mixed, producing paths that jump from an
arc to a node with same label, as shown in Figure 2;

• we defined rooted RDF-graphs (r-graphs), in or-
der to focus on a particular resource inside an
RDF-graph, and adapted RDF-entailments to en-
tailments between r-graphs, in which roots must be
preserved in the mappings;

• we devised a new definition of Least Common
Subsumer of two r-graphs, changing the definition
originally set up for Description Logics.

Thanks to such reformulations, we studied the computa-
tional properties of computing an LCS, and proved that
the problem is not related to Graph Matching, but to
a particular form of composition of the two r-graphs,
which is computable in polynomial time. This result
clearly distinguishes the computation of an LCS from
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graph matching problems related to NP-complete Sim-
ple Entailment—in spite of the fact that the definition of
LCS involves entailment too. We divided the computa-
tion of an LCS into three coordinated algorithms, and
presented a prototype implementation of our approach,
which demonstrates its feasibility in terms of execution
times, with reference to the three application scenarios
we analyzed: entity disambiguation, unsupervised clus-
tering, and drugs comparison.

So far, we concentrated on Simple Entailment, and
just sketched how our results apply, or could be ex-
tended, to RDF- and RDF-S-entailment. The future
work will be mainly devoted to the extension of the pro-
posed approach to stronger entailment regimes, and to
the analysis of possible heuristics for the selection of
relevant triples. Furthermore, each of the suggested mo-
tivating scenarios will be investigated in detail.
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