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Abstract 16 

The European technical standard EN 14961 on solid biofuels determines the fuel quality classes and 17 

specifications for wood chips. Sieving methods are currently used for the determination of particle 18 

size distribution. Some authors suggested that image analysis tools could provide methods for a 19 

more accurate measure of size integrated with shape. This work for the first time analyzes how 20 

image analysis combined with multivariate modeling methods could be used to construct 21 

cumulative size distribution curves based on chip mass (or weight). This has been done through a 22 

Partial Least Squares Regression model for the weight prediction of poplar chips and Partial Least 23 

Squares Discriminant Analysis models for estimation of chips size classification. Images of 7583 24 

poplar chips were analyzed to extract size and shape descriptors (area, major and minor axis 25 

lengths, perimeter, eccentricity, equivalent diameter, fractal dimension index, Feret diameters and 26 

Fourier descriptors). The weight prediction model showed an high accuracy (r = 0.94). The chip 27 

classification based on three size fractions (8-16 mm, 16-45 mm and 45-63 mm), with or without 28 

Fourier descriptors, showed accuracies equal to 92.9% of correct classification for both models in 29 

the independent test. The combination of image analysis with multivariate modeling approaches 30 

allow a better conversion of image analysis results to sieve results using the esteemed weight. The 31 

proposed method will allow to standardize processes applicable by biofuels laboratories and 32 

machinery certifiers. 33 

 34 

Keywords: Cumulative size distribution curve; Sieving; Size classification; Biofuel quality 35 

determination; Modeling; Partial Least Squares. 36 

37 
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Abbreviations 38 

Cmin = chip width measured by digital caliper 39 

Cmax = chip length measured by digital caliper 40 

Dmin = minimum Feret diameter 41 

Dmax = maximum Feret diameter 42 

FD = Fourier descriptor 43 

LV = Latent Variable 44 

P = designation for particle size distribution 45 

PLS-DA = Partial Least Squares Discriminant Analysis 46 

PLS-R = Partial Least Squares Regression 47 

RMSEC = Root-Mean-Square Error of Calibration  48 

RMSECV = Root-Mean-Square Error of Cross-Validation 49 

RPD = Ratio of Percentage Deviation 50 

SRF = Short Rotation Forestry 51 

VIP = Variable Importance in the Projection 52 

53 
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1 Introduction 54 

The standard EN 14961-1:2010 determines the fuel quality classes and specifications for solid 55 

biofuels [1]. The classification is based on the biofuel origin and source. Woody biomass is biomass 56 

from trees, bushes and shrubs that may only have been subjected to size reduction, debarking, 57 

drying or wetting. Solid biofuels are traded in many different sizes and shapes, which influence the 58 

handling of the fuel as well as its combustion properties. Energy conversion and emissions are also 59 

influenced by the particle sizes. In the case of wood chips, the properties of dimensions, moisture 60 

and ash content are normative in the specification, whereas other properties (net calorific value, 61 

bulk density, ash melting behavior) are informative. Particle size is important also during storage, as 62 

it affects drying, calorific value and durability [2]. Together with moisture content, particle size 63 

distribution defines the product quality. 64 

The European technical standard EN 14961-4: 2011 [3] on solid biofuels determines the fuel quality 65 

classes and specifications for non-industrial wood chips (used in smaller scale appliances, such as in 66 

households and small commercial and public sector buildings). The sensitivity to the fuel quality 67 

imposes a tighter specifications for small-size plants, whose small conveying ducts can be blocked 68 

by oversize particles [4]. 69 

An oscillating screen method (using sieve apertures of 1 mm and above) is currently used for the 70 

determination of particle size distribution, according to the standard EN 15149-1:2010 [5]. The 71 

results of sieving are presented in cumulative size distribution curves: the cumulative percent mass 72 

of each fraction with respect to the total mass of all fractions versus the particle size in mm. Size-73 

sorting by mechanical screening is used in many different industries, including conventional solid 74 

fuels, such as coal. However, the screening of wood chips is not a generalized practice yet [4]. 75 

Particle form (i.e., the combination of shape and size) influences if a particle passes a given sieve, 76 

and the least cross sectional area is an important factor that has effect on the wood chips sieving 77 

results. However, there are some disadvantages associated with sieve analysis, which is considered 78 

a crude method of determining size [6] and not giving an exact measure of any dimension of the 79 
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particles. If a particle passes through a sieve is not only dependent upon its length and width but 80 

also on thickness and shape; as the size difference between width and thickness increases, the 81 

particle tends to pass through the sieve [7]. 82 

Image analysis could provide a method which is sensitive to the geometrical shape for determining 83 

a more accurate measure of size integrated with shape [6]. Image analysis methods are generally 84 

based on two-dimensional images of particle projection area and provide an accurate measure of 85 

particle sizes. Typically, the result of this analysis is presented in size distribution curves, which are 86 

not based on the cumulative percentage mass, as it is for sieve analysis, but refer to the percentage 87 

of the total particle projection area (or particle number). Dynamic online image analysis systems are 88 

considered particularly interesting because they can sort the particle sizes according to more than 89 

just one size parameter [8]. Hartmann et al. [8] suggested it would be useful to launch a 90 

standardization process in order to include the image analysis method to the scope of applicable 91 

standard laboratory principles for biofuels, too, so as to overcome the drawbacks of the screening 92 

methods. Following this suggestion, the aim of this study is to analyze how image analysis 93 

combined with multivariate modeling methods can be used to construct cumulative size distribution 94 

curves based on chip mass (or weight), which can be compared with the sieving results required by 95 

EN standards. This has been done through a Partial Least Squares Regression (PLS-R) model for 96 

the weight prediction of poplar chips and PLS Discriminant Analysis (PLS-DA) models for 97 

estimation of chips size classification. A comparison between two PLS-DA models was conducted 98 

to investigate the influence of the shape on the size fraction determination. 99 

 100 

2 Materials and Methods 101 

2.1 Sample preparation 102 

Wood fuel chips consist of chipped woody biomass in the form of pieces with a defined particle 103 

size produced by mechanical treatment with sharp tools, such as knives. Chips have a sub-104 
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rectangular shape with a typical length of 5-100 mm and a low thickness compared to other 105 

dimensions; wood chips in non-industrial situations have typical length of 5-50 mm [3]. 106 

The wood chips considered in this study came from the experimental harvesting of short-rotation 107 

forestry (SRF) poplar (root four-years and stem two-years old: R4S2). The poplar plantation 108 

(Populus x canadensis) was located in Musile di Piave (Venice, Italy; coordinates: 45°36’38.28” N; 109 

12°31’14.46” E). Whole trees without roots were comminuted with a modified Claas Jaguar 890 110 

machine using a rotor prototyped by CRA-ING [9]. Some samples were transported by van to 111 

CRA-ING laboratory (Monterotondo, Rome, Italy). There, after air-drying, five 8-liter (1 l = 1 dm
3
) 112 

samples of poplar chips were sieved (oscillating screen method) for the determination of particle 113 

size distribution, according to the standard EN 15149-1:2010 [5]. Sieves were used to separate the 114 

wood chips in six dimensional classes: < 3.15 mm, 3.15-8 mm, 8-16 mm, 16-45 mm, 45-63 mm, 115 

63-100 mm. The total weights of the particles between the sieve intervals were determined with a 116 

precision scale and the result was expressed as a percentage of the total mass of all fractions. Then, 117 

the wood chips were stored in the CRA-ING laboratory. 118 

Wood chips may be delivered in specific trade classes, mostly on the basis of the main fraction 119 

(minimum 75 weight-percentage): P16 (3.15-16 mm), P45 (8-45 mm), P63 (8-63 mm), P100 (16-120 

100 mm). The designation symbol for particle size distribution (P) is used in combination with a 121 

number (P-class) for dimension referring to the particle sizes passing through the mentioned round 122 

hole sieve size. The average numerical value from the whole lot (or defined portion from the lot) 123 

determines the class to be used. The cross sectional area of the oversized particles shall be less than 124 

a given value, in cm² (Tab. 1). Gross fraction identifies the particles quantity with dimensions 125 

exceeding those reference values; fines fraction refers to the dimensions below the lower limit (< 126 

3.15 mm). 127 

 128 

[Insert Table 1 here] 129 

 130 
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The commercial classes P16, P45 and P63 describe high grade chips, suitable for the feeding of 131 

small-size domestic (P16, P45) and residential boilers [10]. Generally, products with more uniform 132 

sizes have been required. 133 

While chips produced from logs always contain a smaller proportion of oversize particles and a 134 

higher proportion of accepts (chips in the selected P-class) [2, 11], chips produced from tops, 135 

branches and small stems tend to present a higher incidence of oversize particles [12]. For this 136 

reason the analyzed chips were quite irregular in shape and size, and the sieved fractions were not 137 

very uniform. 138 

 139 

2.2 Chip size determination 140 

The 7583 particles of the three wood chip size fractions (i.e., dimensional classes; 8-16 mm, 16-45 141 

mm, 45-63 mm) were divided in 2 sub-samples, by mass: a sub-sample corresponding to 12.5% 142 

(1/8) of the mass of each fraction (706.4 g; 706 chips) and a sub-sample corresponding to remaining 143 

mass (4946.9 g; 6877 chips). Each single chip in the first sub-sample (706 chips) was weighed, at 144 

constant temperature and moisture content below 20 weight-percentage, with a resolution of 0.01 g; 145 

then individual length (Cmax), width (Cmin) and thickness were measured with a resolution of 0.1 146 

mm, using a digital caliper (Borletti CDJ 15). 100 chips were randomly selected for the 147 

determination of moisture content (oven dry method, EN 14774-2:2009 [13]): the mean moisture 148 

value, measured on the particles singularly, was 9.1 ± 0.8 %. The result was calculated to two 149 

decimal places and rounded to the nearest 0.1 % for reporting. 150 

The chip length was measured as the maximum expansion of the particle when oriented in a stable 151 

position (longitudinal direction); the chip width was recorded as the second longest expansion 152 

(perpendicular to the longitudinal direction), while the thickness was the third longest expansion 153 

perpendicular to both length and width [8]. The particles were saved and numbered for future 154 

analysis. Chips in the size fraction that passed the 8 mm sieve were not individually measured nor 155 
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further considered in the analysis. No wood chips in the 63-100 mm dimensional class were 156 

obtained. 157 

Digital images (Fig. 1a) of all chips in both sub-samples were acquired using a high resolution (600 158 

dpi) digital scanner A3 Epson GT-10000+. The 2-D numerical data were processed in Matlab (rel. 159 

7.1) environment. Images were segmented using the following procedure: i. a median filter (7x7) 160 

was applied to each RGB channel, ii. for each pixel an Euclidean distance was calculated basing on 161 

the RGB values and iii. a minimum error thresholding algorithm [14] was applied to binarize the 162 

image. 163 

 164 

[Insert Figure 1 here] 165 

 166 

After image segmentation (Fig. 1b), the following 10 size descriptors were extracted from each 167 

object: area, major and minor axis lengths, perimeter, eccentricity, equivalent diameter, fractal 168 

dimension index [15], maximum, minimum and mean Feret diameters. Feret diameter is defined as 169 

the distance between two parallel tangential lines restricting the object perpendicular to that 170 

direction; it measures a particle size along a specified direction. The maximum and minimum Feret 171 

diameters, Dmax and Dmin, are often used as the dimensions of the particles; they represent the 172 

longest (length) and intermediate (width) dimensions of the particle projected area. Typically, 173 

cumulative distribution curves of the size distribution based on image analysis use the actual lengths 174 

of Feret diameters. Pixels were converted into metric scales through a scale factor (25.4/600). 175 

Moreover, 99 Fourier coefficients were extracted; they summarize the shape of an object in the 176 

frequency domain. Complex shapes can be represented with a small number of invariant 177 

coefficients, which can be viewed as features extracted from the original shape boundaries [16]. 178 

Generally, a subset of the components of the Fourier descriptors (lower frequencies) is enough to 179 

capture the overall features of the shape and to discriminate the different shapes [17]. 180 

 181 
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2.3 Multivariate modeling 182 

PLS-R is a particular type of multivariate analysis which uses a two-blocks predictive PLS model. It 183 

relates the two data matrices (X and Y) by a linear multivariate model and models also the structure 184 

of X (K column vectors: x1,.., xK) and Y (M column vectors: y1,.., yM); both these blocks are 185 

assumed to be, at least partly, modeled by the same latent variables (not directly observed or 186 

measured), LVs [18, 19]. The regression analysis objective is achieved by using the equation that 187 

minimizes the residual mean square error, or maximizes the coefficient of multiple determination r
2
, 188 

which is the most commonly used statistic to measure the forecasting potential of a multiple 189 

regression equation [20]. The predictive ability of the model depends also on the number of latent 190 

vectors used. Because fit and prediction are different aspects of a model’s performance, Root-191 

Mean-Square Error of Calibration (RMSEC) and Root-Mean-Square Error of Cross-Validation 192 

(RMSECV) values for PLS were calculated as a function of the number of LVs in the model. 193 

RMSEC is a measure of how well the model fits the data; RMSECV is a measure of a model’s 194 

ability to predict new samples that were not used to build the model. Generally, a good predictive 195 

model should have high values of Pearson correlation coefficient (r), low values for RMSE and 196 

maximum Ratio of Percentage Deviation (RPD). RPD is the ratio of the standard deviation of the 197 

laboratory measured (reference) data to the RMSE of the cross-validation [21]. RPD values between 198 

2.0 and 2.5 indicates very good, quantitative model and/or predictions; RPD values major than 2.5 199 

indicates excellent model and/or predictions. [22]. 200 

PLS regression modeling was applied in order to estimate the weight of chips from size and shape 201 

descriptors obtained by image analysis. The model adopted for weight prediction was selected from 202 

540 PLS linear regression models considering the combination among X pre-processings (Abs, 203 

Autoscale, Baseline, Detrend, Mean center, Median center, None, Normalize, Snv), y pre-204 

processings (Autoscale, Median center, None) and number of LVs, from 1 to 20 (the pre-processing 205 

techniques are summarized in [23]). The PLS-R models were developed from a calibration set 206 

(training/evaluation set [24]) of 530 chips (75% of the 706-chip  sub-sample) with 109 X-variables 207 
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(10 size and 99 shape descriptors) and 1 y-variable (weight or mass). The PLS-R models (cross-208 

validated) were then validated on an internal test set of 176 chips (25% of the 706-chip sub-209 

sample). The partitioning were conducted optimally choosing the Euclidean distances based on the 210 

algorithm of Kennard and Stone [25] that selects objects without the a priori knowledge of a 211 

regression model. The PLS-R model selection was mainly based on the efficiencies and robustness 212 

parameters described above. Once selected, the model was applied to the entire sample (7583 213 

chips). 214 

PLS-DA [26-28] is a PLS regression where the response variable is categorical, expressing the class 215 

membership of the statistical units. The objective of PLS-DA is to find a model, developed from a 216 

training set of observations of known class membership, that separates classes of objects on the 217 

basis of their X-variables. The multistate and qualitative response variable, y, may be split into a set 218 

of dummy variables (Y block) whose number is equal to the number of categories or classes. Its 219 

modeling efficiency is the mean of sensitivity and specificity [29]. The sensitivity of the model is 220 

given by the number of samples predicted as in the class divided by number actually in the class 221 

(percent of true positive); the specificity is given, per each category, by the number of samples 222 

predicted as not in the class divided by actual number not in the class (percent of true negative). 223 

Some authors did not observe a direct correlation between the intermediate axis of the particle, 224 

often defined as the ‘image analysis size’ of the particle, and sieve size; so, alternative methods 225 

were investigated [7]. The determination of particle size distribution, as reported in the oscillating 226 

screen method [5], provides a series of mutually exclusive size fractions (or classes) among which 227 

the chips are included. This response variable (the particle class) was the classification criterion 228 

used in discriminant analysis. PLS-DA was utilized as a supervised modeling method using 229 

SIMPLS algorithm [30] to calculate a model for correlating image-analysis with sieving results. 230 

Two different PLS-DA analyses were conducted. The first one considering 109 X-variables: 10 size 231 

descriptors and 99 FDs; the second one considering only 10 explanatory variables, the same 10 size 232 

descriptors, without the 99 FDs. The models adopted for the size fraction prediction of chips were 233 

http://www.camo.com/resources/pls-regression.html
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selected considering the combination between X pre-processing (Abs, Autoscale, Baseline, Detrend, 234 

Diff1, gls weighting, Groupscale, Log1suR, Mean center, Median center, Msc (mean), None, 235 

Normalize, Snv) and the number of LVs (the pre-processing techniques are summarized in [23]). 236 

There was no Y pre-processing. The models with FDs, using between 1 and 20 LVs, were 280; the 237 

models without FDs, using between 1 and 9 LVs, were 126. The chip membership to the three 238 

fractions was known before the analysis. The PLS-DA models were calibrated and validated on 100 239 

chips of fraction 8-16 mm, 100 chips of fraction 16-45 mm and 25 chips of fraction 45-63 mm; the 240 

225 particles were randomly extracted from the 706-chip sub-sample. This dataset was divided into 241 

a calibration set of 169 chips (75% of each group) and an internal validation set of 56 chips (25% of 242 

each group). This was done optimally choosing the Euclidean distances based on the algorithm of 243 

Kennard and Stone [25] that selects objects without the a priori knowledge of a regression model. 244 

The percentages of correct classification were calculated for calibration and validation phases, and 245 

then used for model selection, in both analyses (with and without FDs). The PLS-DA model 246 

selection was mainly based on the efficiencies and robustness parameters described above. 247 

In PLS-R and PLS-DA methods, a summary of the relative importance of the X-variables for both Y 248 

and X model parts is given by Variable Importance in the Projection (VIP) [31,32]. It is a weighted 249 

sum of squares of the PLS weights, taking into account the amount of explained Y-variance in each 250 

PLS component [33]. VIP has also the property of  = K, where K is the number of 251 

predictor variables [34]; the average of squared VIP scores equals 1. The explanatory variables with 252 

larger VIP values tend to be more important than others [32, 35], even if it does not mean that a 253 

variable with a low VIP is not relevant for the classification. In the case of PLS-DA, for each 254 

response variable, ym (m-th column vector of Y), a regression model on the X-components was 255 

considered. For each k-th predictor variable, the VIPk value quantifies the influence on the response 256 

of each variable summed over all components and categorical responses (for more than two 257 

categories in Y) [34]. 258 
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The VIPk scores are a set of values equal in length to the number of X-variables included in the 259 

model (K) and were calculated according to Chong et al. [36]. To summarize the contribution of all 260 

the Fourier coefficients, a single summary variable was considered, whose value was calculated as 261 

the root square of the sum of square of all 99 FDs scores. 262 

 263 

3 Results and discussion 264 

The determination of particle size distribution (standard EN 15149-1:2010 [5]) requires samples (> 265 

8l; 1l = 1 dm
3
) taken from stock or from deliveries (e.g. shipload, truckload) in accordance with the 266 

sampling methods for solid biofuels (EN 14778:2011 [37]); methods for reducing combined 267 

samples (or increments) to laboratory samples and laboratory samples to sub-samples and general 268 

analysis samples are described in ‘Solid biofuels - Sample preparation’ (EN 14780:2011 [38]). In 269 

addition, the standard requests to identify the particles over 100 mm, to specify their number and 270 

size fraction, and to record the length of the longest particle overall. Image analysis accurately 271 

measures several parameters allowing to satisfy these standard requirements. Generally, image 272 

analysis is based on two-dimensional images of particles. Although the shape of the minimum 273 

projected area of a particle theoretically influences how the particle passes the sieves [7], its 274 

automated measurement is not easy to carry out and also the particle could be so long that it cannot 275 

rotate and pass the screen holes vertically, even if it were thin enough to pass through. 276 

 277 

3.1 Typical cumulative distribution curves 278 

The manual measured length (Cmax) and width (Cmin), Feret diameters, Dmax and Dmin, and particle 279 

weight (i.e., observed) were used to construct the size-distribution curves with respect to the 280 

cumulative percentage mass or to the cumulative percentage area (Fig. 2). The x-axis presents the 281 

chip/hole size in mm.  282 

 283 

[Insert Figure 2 here] 284 
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 285 

For data evaluation and statistical processing, the median value of the particles is considered being 286 

less susceptible to outliers with respect to mean value [5, 8]. The median value is the observed 287 

particle size of a sample that separates the cumulative size distribution into two equal parts (half of 288 

the particle mass is below and half is above); graphically, it is given by the intersection point of the 289 

cumulative size distribution curve with the 50%-horizontal line. The comparison among sieving, 290 

image analysis and manual measurements showed a lateral relative displacement among the curves. 291 

The curves relate the different sizes of the chips in the first sub-sample (706 chips). The further 292 

apart the curves are, the more the difference among the axial dimensions of the chips. Observing the 293 

median values, there is some compliance of the horizontal screening (sieve) result with the results 294 

from image analysis method (Dmin). 295 

Hartmann et al. [8] used a digital caliper as a reliable way of chip size determination and such 296 

manual measurements were applied to build a reference distribution curve. Figure 2 shows that the 297 

cumulative distribution curves based on Cmin and Dmin were very close each others. Even though 298 

manual measurements of chip width (Cmin) are affected by errors and a slight tilting of the chip 299 

position changes its projection area, and then its Dmin size, the linear correlation coefficient (Pearson 300 

r) between Dmin and Cmin of the 706 chips was very high, 0.989. It is confirmed that image analysis 301 

sizing could be considered a more accurate way of measuring chips with respect to the manual one, 302 

due to human error and subjectivity associated with the manual measurements [39]. 303 

 304 

3.2 Weight (or mass) prediction 305 

For the first time a cumulative distribution curve completely based on 2-D image analysis has been 306 

constructed. The PLS-R model adopted for the weight prediction presents the characteristics and 307 

principal results reported in Table 2. The selected model was not pre-processed. The estimated 308 

number of LVs was 10; this number of significant components minimizes the residual errors for the 309 

validation phase (RMSECV). The first two LVs, which capture most of the variance in X-block 310 
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(99.97%) and Y-block (92.47%), have the maximum ability for the predictive model. The 311 

cumulated variance of X-block was 100%, and the cumulated variance of Y-block was 95.1%. The 312 

model correlation coefficient was 0.96, while the test correlation coefficient was 0.89; these values 313 

are relatively high. The model RPDRMSE value was 3.65, while test RPDRMSE value was 2.16; these 314 

values indicate an excellent/very good model [22]. The bias value was negligible (< 10
-3

). The 315 

loading values and VIP scores obtained by the PLS regression showed that area and perimeter 316 

variables were truly significant for the model (data not shown). 317 

 318 

[Insert Table 2 here] 319 

 320 

Figure 3a shows the predicted weights vs. the observed weights of both 530 model and 176 test 321 

chips; the Pearson r value between the observed and predicted weights of the 706 chips was 0.94. 322 

The deviation between observed and predicted weight of chips was higher at higher weight values. 323 

The predicted weight of the 706-chip sub-sample was 682.7 g, 96.6% of the observed weight. This 324 

prediction model was developed using poplar chips at 9.1 ± 0.8 % moisture content. Using the same 325 

chips, but with different moisture content, and adopting the same model, the predicted weight 326 

values would remain the same, even if the measured weights were different; however, these 327 

predicted values could be used for the subsequent construction of the cumulative size distribution 328 

curve, because the cumulative particle share (%) is the same in both cases. Many existing methods 329 

based their conversion of image-analysis size to sieve size on the intermediate axis [7]. Typically, 330 

minimum Feret diameter (Dmin) and manually weighted mass of each particle were used to construct 331 

the cumulative distribution curves with respect to the cumulative percentage mass [7, 8]. Figure 3b 332 

shows the size-distribution curves with respect to the cumulative percentage mass, where the ‘Dmin 333 

predicted mass’ distribution curve refers to the predicted mass. The cumulative distribution curve 334 

completely based on 2-D image analysis is almost completely overlapping the cumulative 335 

distribution curve constructed from the manually weighted mass of each chip. 336 
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 337 

[Insert Figure 3 here] 338 

 339 

3.3 Chip size fraction prediction 340 

The two selected PLS-DA models (with and without FDs) adopted for the size fraction prediction of 341 

chips present the characteristics and principal results reported in Table 3. In both models, the X and 342 

Y blocks were not pre-processed. The models were selected not only considering their 343 

performances but hence considering their robustness (sensu [40]). The selected numbers of LVs, 12 344 

and 9 respectively, minimized the respective RMSECV curves. The mean sensitivity and specificity 345 

were always high: 94.7% and 93.1% for the model with FDs, 95.1% and 92% for the model without 346 

FDs. Their efficiencies were 93.9% and 93.6%, respectively. The mean classification error was low 347 

and equal to 6.1% for the model with FDs and 6.4% for the model without FDs. The mean 348 

percentage of correct classification, calculated on 169 chips (training/evaluation set), was 92.3% for 349 

the model with FDs and 92.9% for the model without FDs; the mean percentage of correct 350 

classification for the internal test (56 particles) was 92.9% in both cases. 351 

 352 

[Insert Table 3 here] 353 

 354 

The discrimination ability is expressed through the percentage of well classified units. The random 355 

probability to assign a generic chip to one of three fractions is 33%. Both PLS-DA models were 356 

applied to all 7583 wood chips (external test) to evaluate their ability to assign the chip size fraction 357 

more accurately than what would occur by chance. The classification results (confusion matrices) 358 

are reported in Table 4. The mean percentage of correct classification for the external test was 359 

89.6% for the model with FDs and 89.2% for the model without FDs. The efficiencies of both 360 

models were slightly higher than 88%. 361 

 362 
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[Insert Table 4 here] 363 

 364 

The VIP scores of both models (12 LVs with FDs and 9 LVs without FDs) are reported in Figure 4. 365 

Figure 4a shows the VIPk parameters per each fraction of the model with Fourier descriptors, where 366 

the FDs variable summarizes the overall contribution of all the Fourier coefficients. All the VIPk 367 

scores were higher than 1, demonstrating that all the explanatory variables were important for 368 

explaining the prediction variables. Area variable had the higher VIP scores, therefore it was the 369 

most significant variable in comparing the difference among the three size fractions. Figure 4b 370 

shows the VIPk parameters per each fraction of the model without Fourier descriptors. The VIPk 371 

scores expressed a relative weight of the explanatory variables: area, equivalent diameter and mean 372 

Feret diameter were more important predictors in comparing the difference among the three 373 

considered fractions; eccentricity and fractal dimension index did not seem to be significant. 374 

 375 

[Insert Figure 4 here] 376 

 377 

Even if the model with FDs is slightly more performing, there are not significant differences 378 

between the two models, when a round hole sieve is used for determination of particle size 379 

distribution. Some papers [6, 41] state that area, perimeter and Feret diameters are able to 380 

mathematically distinguish and differentiate the particle shapes. The obtained results demonstrated 381 

that multivariate analyses are able to technically realize, in a multidimensional space, this shape 382 

distinction and to discriminate among classes, even if FDs are more informative. 383 

 384 

3.4 Sieving software simulation 385 

While traditional image analysis constructs size distribution curves with respect to cumulative 386 

percentage area or percentage number of particles [6, 8], sieve analysis is typically presented in 387 

percentage cumulative weight [5]. In order to use image analysis and construct size distribution 388 
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curves based on cumulative percentage mass, some researchers [42-46] used the determination of 389 

the volume of a particle to calculate its mass. The results of these methods were considered not 390 

perfectly accurate [7]. 391 

Image and multivariate analyses recognize shapes and relate these results to sieve size. Considering 392 

the size fraction assignment obtained by the two PLS-DA models and the weight predicted by the 393 

PLS-R model to each particle of the entire sample (7583 wood chips), a conversion from image-394 

analysis morphometries to sieving result was realized. This conversion depended upon an 395 

appropriate estimate of the chip weights, even if an exact determination of mass is not necessary for 396 

constructing the size distribution curve [7]. In fact, the cumulative size distribution curve refers to 397 

the weight-percentage and is, for this reason, independent of the wood density (i.e., wood species) 398 

or  the moisture content, when the moisture value is the same for all the chips. In the graph of 399 

cumulative size distribution, even if the observed chip weights change, the cumulative particle share 400 

(%) remains the same. This study was conducted on poplar wood chips, but the principles could be 401 

extended, as demonstrated, to other wood species or different, but homogeneous (i.e., low standard 402 

deviation), moisture contents. In the specific case, the predicted weight of the entire three-fraction 403 

sample (7583 chips) was 5539.3 g, 98% of the observed weight. The cumulative size distribution 404 

curves completely based on image analysis are reported in Figure 5, as result of 706-chip and 7583-405 

chip tests. The cumulative curves of the two models were almost completely overlapping and very 406 

close to the traditional curve based on sieve analysis. They give a good quantification of particle 407 

size distribution. The advantage of image and multivariate analyses is to construct cumulative 408 

distribution curves showing a good agreement with the sieve results and without the need of manual 409 

measurements, generally time consuming. Since the proposed method, based on image analysis, and 410 

the traditional sieving method can now produce the same type of curve, a direct comparison of their 411 

results becomes easier. 412 

 413 

4 Conclusions 414 
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The proposed method could be implemented on an online detection machine for particle size 415 

characterization, revealing particularly helpful when the P-class to be specified (the number of 416 

property levels) shall be determined from large quantities (the whole lot) or when frequent sampling 417 

is required (e.g., for an internal quality system). More samples or large amounts would reduce the 418 

uncertainty arising from sampling and potentially could increase the quality and value of wood 419 

chips. 420 

The detailed information of chip form and other dimensional aspects provided by the method 421 

proposed in this work could help: i. quality managers of large biofuel suppliers or purchasers to 422 

check the fulfillment of particle size demands of the quality classes given in the standards, ii. 423 

chipper machine constructors to verify the prototype performances depending from different 424 

settings (knives position and number, cutting and feeding speeds, cutting and sharpness angles, 425 

anvil height, cutting direction, etc.) in a given experimental situation, not easily related to sieve size, 426 

and to optimize parameters of comminution devices in engineering situation, and iii. engineering 427 

machine certification in order to fix standard methodologies highly replicable. An improvement of 428 

the results is expected introducing a thickness measure. A 3-D analysis could prove to be 429 

significant. 430 
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Figure captions 

 

Figure 1: Wood chips; original scanned image (a) and image after segmentation (i.e., 

binarization) (b) 

 

Figure 2: Cumulative distribution curves for different testing methods applied on the 706 poplar 

chips, referring to the chip mass (a) and area (b). 

Notes: Sieve refers to sieving; Cmin and Cmax are the chip width and length measured by digital 

caliper; Dmin and Dmax are the minimum and maximum Feret diameters. 

 

Figure 3: Comparison between the observed weight (or mass) and the predicted one using the 

Partial Least Squares Regression model (a). Comparison between cumulative distribution curves 

applied on the 706-chip sub-sample, referring to observed and predicted mass (b). 

Notes: Sieve refers to sieving; Dmin is the minimum Feret diameter. 

 

Figure 4: Partial Least Squares Discriminant Analysis models for size fraction prediction. VIP 

(Variable Importance in the Projection) scores of X-variables for the three size fractions (8-16, 16-

45, 45-63), with Fourier descriptors in contracted form (i.e., root square of the sum of square of all 

99 FDs scores) for the 12 LVs model (a) and without Fourier descriptors for the 9 LVs model (b). 

The y axes have different magnitude because refer to two different models, and the VIP scores 

express the relative importance of the X-variables within each model. 

 

Figure 5: Comparison among cumulative distribution curves determined by horizontal sieving 

(sieve - observed) and image analysis coupled with the Partial Least Squares Discriminant Analysis 
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models, with (12LVs with FDs) and without Fourier descriptors (9LVs without FDs), applied on the 

706-chip (a) and 7583-chip (b) samples. 

 



Tables 

 

Table 1: Dimensions for wood chips (EN 14961-1:2010) considered in this work. 

Particle size 

distribution 

Main fraction, mm 

(min. 75 w-%) 

Cross sectional 

area, cm
2
 

Coarse fraction, max 

length of particle, mm 

P16 3.15-16 < 1 < 31.5/120 

P45 8-45 < 5 < 120/350 

P63 8-63 < 10 < 350 

P100 16-100 < 18 < 350 

 

Tables



Table 2: Characteristics and principal results of the Partial Least Squares Regression model to 

estimate the chips’ weight (or mass).  

Number of particles 530 

n° LVs 10 

% Cumulated variance X-block 100 

% Cumulated variance Y-block 95.14 

RMSEC 0.1937 

RMSECV 0.2020 

Bias - 0.00067 

r model 0.96 

r test 0.89 

RPDRMSE model 3.65 

RPDRMSE test 2.16 

LVs = Latent Vectors; RMSEC = Root-Mean-

Square Error of Calibration; RMSECV = Root-

Mean-Square Error of Cross-Validation; RPD = 

Ratio of Percentage Deviation. 

 



Table 3: Characteristics and principal results of the selected PLS-DA models, with Fourier 

descriptors (FDs) and without Fourier descriptors (no FD), to predict the three size fractions (8-16, 

16-45, 45-63). 

PLS-DA model FDs no FD 

Number of particles 169 

n° size fractions (Y-block) 3 

n° LVs 12 9 

X pre-processing None 

% Cumulated variance X-block 100 100 

% Cumulated variance Y-block 82.2 80.3 

Mean sensitivity, % 94.7 95.1 

Mean specificity, % 93.1 92 

Efficiency 93.9 93.6 

Random probability, % 33.3 

Mean classification error, % 6.1 6.4 

Mean RMSEC 0.2382 0.2501 

Mean % correct classification model 92.3 92.8 

Mean % correct classification test 92.9 92.9 

Mean % correct classification external test 89.6 89.2 

PLS-DA = Partial Least Squares Discriminant Analysis; LVs = 

Latent Vectors; RMSEC = Root-Mean-Square Error of Calibration. 

 

 

 

 



Table 4: Confusion matrices of the 7583-chip external test (3 classes/fractions: 8-16, 16-45, 45-63) 

obtained from the two Partial Least Squares Discriminant Analysis models with and without Fourier 

descriptors (FDs) 

 Predicted (with FDs)  

Observed Fraction 8-16 Fraction 16-45 Fraction 45-63 Total 

Fraction 8-16 4838 106 11 4955 

Fraction 16-45 641 1936 26 2603 

Fraction 45-63 0 8 17 25 

 

 Predicted (no FD)  

Observed Fraction 8-16 Fraction 16-45 Fraction 45-63 Total 

Fraction 8-16 4854 96 5 4955 

Fraction 16-45 687 1890 26 2603 

Fraction 45-63 0 8 17 25 
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