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We consider the problem of the accurate tracing of
long magnetic field lines in tokamaks, which is in general
crucial for the determination of the plasma boundary as
well as for the magnetic properties of the scrape-off layer.
Accurate field line tracing is strictly related to basic
properties of ordinary differential equation (ODE)
integrators, in terms of preservation of invariant proper-
ties and local accuracy for long-term analysis.
We introduce and discuss some assessment criteria and
a procedure for the specific problem, using them to
compare standard ODE solvers with a volume-preserving
algorithm for given accuracy requirements. In particular,
after the validation for an axisymmetric plasma, a three-
dimensional (3-D) configuration is described by means of
Clebsch potentials, which provide analytical invariants

for assessing the accuracy of the numerical integration.
A standard fourth-order Runge-Kutta routine at fixed step
is well suited to the problem in terms of reduced
computational burden, with extremely good results for
accuracy and volume preservation. Then we tackle the
problem of field line tracing in the determination of
plasma-wall gaps for a 3-D configuration, demonstrating
the effective feasibility of the plasma boundary evaluation
in tokamaks by tracing field lines with standard tools.

KEYWORDS: magnetic field line tracing, plasma boundary,
volume-preserving numerical algorithms

Note: Some figures in this paper may be in color only in the electronic
version.

I. INTRODUCTION

Basic equilibria in tokamaksaremostly two-dimensional
(2-D) axisymmetric, whilst the three-dimensional (3-D)
perturbations are considered in different contexts, mainly
related to plasma stability and control. Three-dimensional

effects are associated with magnetohydrodynamic activity,
plasma instabilities (e.g., resistive wall modes, neoclassical
tearing modes, and edge localized modes), and nonaxisym-
metric control coils; however, 3-D magnetic fields are also
produced during normal operation by the eddy currents
induced in the 3-D metallic structures, not to mention the
ripple of the toroidal field and the error fields. Therefore,
when realistic estimations of 3-D parameters have to be
carried out (shape, scrape-off layer, connection length, wall*E-mail: raffaele.albanese@unina.it
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loads, etc.), an accurate tracing of magnetic field lines is
required.1–7

Once the field is known, in either analytical or
numerical form, the problem is easily recognized as the
tracing of a vector field flow, which turns it into the
solution of a given ordinary differential equation (ODE)
set. The problem, in principle trivial, is actually challen-
ging due to the typical very long magnetic lines needed to
trace accurately at an affordable computational cost.8 The
length of typical lines to be traced is ,103 m, with a
required accuracy of 10–3 m, so achieving a factor 10–6 in
relative precision over the entire integration length.

The problem of the long-term behavior in ODE sets is
faced in several science areas, e.g., in classical nonlinear
dynamics for the determination of bifurcation diagrams
and chaotic attractors. Thus, much effort has been devoted
to improving the properties of the algorithms, mainly for
the so-called geometric integrators.9–13 In these cases, the
main interest is in the preservation of some average
properties of the solution. On the other hand, if the plasma
geometry has to be determined in tokamaks, the accuracy
of every single line traced is crucial for a reliable
estimation of the quantities under investigation. The main
aim of this paper is to discuss the performance and results
of some ODE integrators for 3-D field line integration in
tokamaks. In particular, this paper largely extends
methods and results reported by Albanese et al.,14 by
introducing a new full 3-D assessment scheme based on a
magnetic field representation using Clebsch potentials.

This paper is organized as follows. Section II
illustrates in general the problem of B-field line tracing
formulated as the solution of a divergence-free ODE
equation, and then it details the implementation of a
volume-preserving (VP) integration scheme. In Sec. III,
we introduce and discuss some criteria for comparing
algorithms, with reference to the typical tokamak field
structure for both axisymmetric and full 3-D cases; the
implemented VP algorithm is then compared to standard
ODE Runge-Kutta routines, with overall performance of
the latter being favorable. In Sec. IV, the Runge-Kutta
algorithm is viably and successfully used to calculate
plasma-wall gaps with a 3-D line-tracing scheme.

II. FIELD LINE EVALUATION

The problem of tracing field lines with an assigned
magnetic flux density field B is equivalent to the tracing
of a velocity flow v for incompressible fluids in stationary
conditions, due to the common divergence-free property
of both vector fields ð7�v ¼ 0$ 7�B ¼ 0Þ. As such, it
can be formulated as the solution of an ODE flow,

dx=dt ¼ BðxÞ , ð1Þ

from a specified starting point x0 at t5 0, where B(x) is
the magnetic flux density field in terms of the position x

(we consider stationary magnetic configurations). There-
fore, once the required spatial resolution in the mapping of
the plasma boundary is assigned, an accurate solution of
Eq. (1) is needed, also for very long integration lengths, at
an affordable computational burden.

The problem can be faced with standard ODE
integrators, but strict control and verification of the
integration error is needed to ensure reliable results in its
application, for example, in 3-D plasma shape reconstruc-
tions. Moreover, it is highly desirable that intrinsic
invariant properties, such as the divergence-free structure
of the field, are preserved in the numerical solution.
Indeed, correct integration of Eq. (1) is VP, like for
Lagrangian trajectories in incompressible fluids. Such
invariance can be used, a posteriori, as a figure of merit of
the integrator accuracy. In this paper, we consider
classical schemes, such as Runge-Kutta of second order
(RK-II) and fourth order (RK-IV).

A different approach is the implementation of VP
integration schemes that a priori guarantee the volume
invariance.9–11 In particular, we implemented a vector
potential splitting method, which belongs to the class of
generating function algorithms.9 It is based on splitting
the 3-D B field as the sum of 2-D divergence-free
components, as properly obtained from a vector potential
B ¼ 7 £ A (with the Coulomb gauge) and their inte-
gration via any symplectic method, so preserving the
volume. By expressing both the flux density field and the
vector potential in Cartesian components, it is possible to
consider the splitting B ¼ B1 þ B2 þ B3 with

B1 ¼ 7Ax £ ix ,

B2 ¼ 7Ay £ iy ,

and

B3 ¼ 7Az £ iz : ð2Þ

Each Bi component is 2-D (the stream function Bi of the
i’th ODE set has no component along one axis; e.g.,
ix?B15 0), and the corresponding ODE set is Hamiltonian,
with Ai the Hamiltonian function. As a consequence, each
Bi field is divergence-free; thus, the ODE set can be
integrated with a symplectic/area-preserving numerical
integrator, ensuring the preservation of the solenoidal
structure of the given ODE flow. For such a problem, the
midpoint rule (MR) method with step h,

xi,kþ1 ¼ xi,k þ hBi
xi,kþ1 þ xi,k

2

� �
, ð3Þ

where xi,k and xi,k+1 are the positions at steps k and k+1
related to integration of the i’th component Bi of the field,
is symplectic (area preserving).10 This can be easily
verified by writing Eq. (3) in explicit form as

xi,kþ1 ¼ Ii,kþ1ðxi,k,hÞ : ð4Þ
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Note that the associated Jacobian matrix Ji (where
the subscript i identifies the corresponding field
component),

Ji ¼ ›xi,kþ1

›xi,k
¼ 12

hFi

2

� �21

1þ hFi

2

� �
, with

Fi ¼ ›Bi

›xi,k
, ð5Þ

has unitary determinant, since TrðFiÞ ¼ 7�B ¼ 0:

detðJiÞ ¼
1þ h

2
TrðFiÞ þ h2

4
detðFiÞ

12
h

2
TrðFiÞ þ h2

4
detðFiÞ

¼
1þ h2

4
detðFiÞ

1þ h2

4
detðFiÞ

¼ 1 : ð6Þ

Note that the sorted composition of the three 2-D fields,

xkþ1 ¼ x3,kþ1 ¼ I1,kþ1ðxi,k,hÞ8I2,kþ1

� ðx1,kþ1,hÞ8I3,kþ1ðx2,kþ1,hÞ , ð7Þ

is a 3-D VP mapping because the associated determinant
is the product of the unitary determinants associated with
each i’th integration substep in Eq. (3). This formula
defines a first-order accuracy algorithm; a second-order
accuracy multistep algorithm can be obtained via five 2-D
transformations:

xkþ1 ¼ x5,kþ1 ¼ I1,kþ1ðxi,k,h=2Þ8I2,kþ1

� ðx1,kþ1,h=2Þ8I3,kþ1ðx2,kþ1,hÞ8I2,kþ1

� ðx3,kþ1,h=2Þ8I1,kþ1ðx4,kþ1,h=2Þ : ð8Þ

We set up a MATLAB procedure based on the
above ODE integration schemes, providing a tool for the
tracing of 3-D field lines in tokamaks. Figure 1 shows an
example of its graphical output for a kinked plasma
configuration.

III. ACCURACY ASSESSMENT AND CLEBSCH POTENTIALS

The principal aim of this section is to discuss and
compare the performance of standard ODE algorithms
based on the Runge-Kutta method with the VP-MR
scheme of Eq. (3) (Ref. 15).

The error assessment for such a problem in a tokamak
is not trivial because

1. for accurate tracing, the error has to be bounded
after a long integration

2. analytical invariants for plasma equilibria, such
as the poloidal magnetic flux Y, are usually
available only for the 2-D axisymmetric case

3. the transverse (poloidal plane) components of the
field (and therefore the related error) are usually
much smaller than the toroidal one.

A first error estimation of these 3-D integrators can
be given just considering an axisymmetric plasma
configuration,14 by evaluating for such a case the
precision of the poloidal magnetic flux Y, and the
conservation of the Jacobian of the mapping in the 3-D
integration of the field. Such an estimation follows the
conjecture that the combination of high accuracy in flux
evaluation (related to the poloidal component in the 2-D
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Fig. 1. Plot of field lines of a perturbed plasma: (a) 3-D view;
(b) Poincaré cross sections at fixed toroidal angles.
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axisymmetric case) with high volume preservation in the
3-D integration guarantees good accuracy also for
longitudinal components.

Following such an approach, a DEMO configuration
(plasma current Ip5 16 MA, major radius R05 9 m,
minor radius a5 2.25 m, poloidal beta bp5 0.8, plasma
internal inductance li5 0.7, and toroidal field of 7 T at R0)
is considered and B-field lines 1 km long within the
plasma are traced16; then the considered algorithms are
tested in terms of accuracy and computation time as
functions of the integration step size in a cylindrical
coordinate system. Figure 2 shows the relative error in
terms of DY/Y, for different integration step lengths,
whereas in Fig. 3 we illustrate the relative variation of the
Jacobian determinant as a function of the curvilinear
abscissa over the field line. The observed periodic
behavior is explained for the axisymmetry of the
configuration, after one complete turn in the poloidal
plane is made. The local VP condition, |J|215 0, verified
at the round-off error limit, stays within an accuracy of
10210 for both the MR rule and the RK-IV scheme. For
the latter, this gratifying result is mainly due to the small
integration step selected for accuracy requirements.

Note that the relative error DY/Y in the evaluation of
the magnetic flux scales with the integration step in
perfect agreement with the algorithm order (Fig. 2), as
proof that the considered integration step sizes are large
enough to consider round-off errors negligible with
respect to truncation error.

To evaluate the numerical accuracy in volume
preservation of the considered integration schemes, one
has to consider that the Jacobian matrix, Eq. (5), whose
entries consist of partial derivatives, can be numerically
calculated by a central-point derivation rule with a

second-order approximation. Therefore, the accuracy can
be evaluated with a second-order extrapolation as

JðtÞ
Jð0Þ ¼ 2

Jh
2

ðtÞ
Jh
2

ð0Þ2
JhðtÞ
Jhð0Þ þ O½h2� , ð9Þ

where J 5 det(Ji) is the Jacobian determinant and h
indicates the step size for the numerical calculation of the
partial derivatives. As a result we get, for h5 320 mm, the
accuracies of |J|21 5 0 as 0.460 6 10–12 for MR and
3.302 6 10–12 for RK-IV.

In Table I, a general comparison of the considered
algorithms is given in terms of flux accuracy and
computing time.

A fully 3-D tracing accuracy assessment can be
developed by observing that 3-D invariants can be found
using the Clebsch decomposition for the magnetic fields.
Such a representation expresses a divergence-free field as
the cross product of the gradients of two scalar functions as

B ¼ 7U £ 7V : ð10Þ
This representation is used in the description of the
magnetic field lines as a Hamiltonian flow.17 In Eq. (10),
the two Clebsch potentials U and V label magnetic
surfaces (B?7U 5 0 and B?7V 5 0), so a magnetic field
line is given by the intersection of two surfaces:
U 5 constant and V 5 constant.

Using such fundamental properties, a first basic
estimate of the accuracy in the numerical tracing of 3-D
magnetic field lines can be obtained by evaluating the
relative error on the U and V potentials along the traced
field lines. To turn such information into a geometrical
error, it is possible to calculate the minimal distance

Fig. 3. Volume-preserving condition along the integration for
MR and RK-IV at the truncation error limit.
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Fig. 2. Flux accuracy in terms of integration step length for the
considered algorithms: MR, RK-II, and RK-IV.
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kdPkmin between the exact field line U ¼ U0 > V ¼ V0

and the actual numerical line by solving in the least-
squares sense the underdetermined set:

7U�dP ¼ U 2 U0

and

7V�dP ¼ V 2 V0 , ð11Þ

whereU and7U, and V and7V are the actual values of the
Clebsch potentials with their gradients at the points of the
computed field line;U0 andV0 are the corresponding values
of the Clebsch potentials on the analytical field line.

Considering the parametric equations of a toroidal
helix, we choose the Clebsch potentials in such a way that
the corresponding field configuration resembles the field
of a typical axisymmetric plasma:

U ¼ ðr2 R0Þ2
a2

þ ðz2 Z0Þ2
b2

þ U0

and

V ¼ u2
w

q
þ V0 , ð12Þ

where R0 and Z0 are the poloidal coordinates of the center
of the elliptic cross section of the helix, whose axes are a
and b; q is the safety factor; w is the toroidal angle; u is
obtained from ðr 2 R0Þ tanðuÞ ¼ z2 Z0 using the four-
quadrant inverse tangent formula; and U0 and V0 are
arbitrary constants.

Figure 4 shows two surfaces, U 5 constant and
V 5 constant, defined by Eq. (12); their intersection is a
toroidal helix confined inside the vacuum vessel.

Such an axisymmetric field configuration can be
easily modified by adding proper perturbing nonaxisym-
metric terms in the expressions of U and V. In the
following, two kinds of perturbation will be considered,
namely, a global perturbation and a local perturbation.

With regard to the global perturbation, a mode
resembling the typical ripple field is given as

U ¼ ðr 2 R0Þ2
ðaþ dUÞ2 þ

ðz2 Z0Þ2
ðbþ dUÞ2 2 1 ,

dU ¼ dr cosðnwÞ ,
and

V ¼ u2
w

q
þ V0 ð13Þ

and is shown in Fig. 5 for R0 5 9 m, Z0 5 0, a 5 0.75 m,
b 5 1.25 m, q 5 2p, dr 5 0.25 m, and n 5 18.

TABLE I

Flux Accuracy for MR and RK with Respect
to the Integration Step for an Integration

Length of 1000 m

Dt (mm/T) MR RK-II RK-IV

35.0
DY (V?s) 0.911 1.382 5.986e24
CPU time (s) 239 60 116

17.5
DY (V?s) 0.225 0.346 3.907e25
CPU time (s) 480 118 241

8.72
DY (V?s) 0.057 0.087 2.492e26
CPU time (s) 923 245 489

4.36
DY (V?s) 0.014 0.022 1.574e27
CPU time (s) 1594 493 990

2.18
DY (V?s) 0.003 0.005 9.876e29
CPU time (s) 2749 996 1992 Fig. 4. Clebsch surfaces generating a toroidal helix (the solid

line shows the intersection of the two surfaces).

Fig. 5. Ergodic surface covered by a field line in a globally
perturbed field configuration.
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Again, for the Jacobian conservation condition, we carry
out the same extrapolation as for the axisymmetric test case
obtaining the accuracies for |J|21 5 0 as 0.4918 610–11

for the MR and 0.3190 610–11 for the RK-IV algorithms.
For the local perturbation, we consider the following

(Fig. 6), obtained by adding a smooth function dU,Vp to
the unperturbed field:

U ¼ ðr 2 R0 2 dUÞ2
a2

þ ðz2 Z0Þ2
b2

2 1 ,

dU ¼ dr�e

a1
Dz

2
a1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Dz2 2 ðZ1 2 zÞ2
q

�e

a

Dw
2

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dw2 2 ðw1 2 wÞ2

q
uðr2 R0Þ in Vp

and 0 elsewhere ,

and

V ¼ u2
w

q
þ V0 , ð14Þ

with R05 9 m, Z05 0, a5 0.75 m, a15 10 m, b5 1.25 m,
a 5 1 rad, q 5 2p, dr 5 1 m, Dz 5 0.5 m, X1 5 1.56 m,
Y1 5 8.86 m, Z1 5 Z0, Dw 5 20 deg, w1 5 290 deg, and

Vp ¼
jzj # z1

jw2 w1j # Dw

( )
: ð15Þ

Table II shows the accuracy assessments both in the
axisymmetric and in the two full 3-D configurations
mentioned above, for the MR, RK-II, and RK-IV algorithms.

This analysis suggests that standard integrators, e.g.,
Runge-Kutta, are extremely accurate in terms of volume
preservation (basically at the limit of round-off), when
selecting appropriate accuracy requirements (step size).
At the same time, they are by far simpler and less
expensive than VP algorithms from a computational point

Fig. 6. Ergodic surface covered by a field line for a locally
perturbed field configuration.
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of view. Adaptive ODE solvers might be expected to
show better performance than fixed-step integrators in
terms of the trade-off between accuracy and computation
time; however, the use of step adaptivity may not preserve
spatial symmetries with drastic consequences.10

IV. APPLICATION TO PLASMA-WALL GAP CALCULATION

In this section, we determine the plasma-wall gap by
evaluating 3-D field lines using the RK-IV scheme.

A practical way to reconstruct the plasma boundary of
general 3-D field configurations is to define the connec-
tion length as the length of the trajectory covered by the
plasma particles over an entire magnetic field line up to its
eventual intersection to the first wall, from a given starting
point; the Larmor radius at this stage is simply neglected.
The lines that never intersect the wall (periodic or ergodic)
have infinite connection length and are by definition
within the plasma, whilst for a finite connection length,
they have to be considered outside.18 By considering a
sufficiently dense grid of starting points, it is possible to
map the plasma boundary. The problem of tracing infinite
length lines can be practically circumvented by assuming
that a line is closed when it comes back within a given
small distance from the initial point, or by defining a
maximum admissible length much higher than expected
for lines intersecting the wall.

Following such a connection length approach to the
definition of the plasma boundary, we designed a
procedure that iteratively calculates the connection length
for successive initial positions along a given direction.
Once a prescribed accuracy is assigned and a scanning
step defined with reference to the expected accuracy, the
connection length can be calculated along a segment, for
instance, in terms of the distance of the initial point from
the wall.

We consider again the reference case as in Sec. III, with
now a kink perturbation of 2-deg rotation around the x-axis
and a 5-cm shift along the same axis. Referring to such a
plasma configuration, the connection lengths of 20 evenly
spaced lines were calculated along a radial direction on the
midplane in the poloidal plane, from the first wall to the
plasma edge, at w5 0 and w5 p. Figure 7a shows the r–z
values of these field lines, with a blue color map for lines
external to the plasma and red for the first internal line. The
corresponding Poincaré cross points are shown in Fig. 7b.

Figure 8 shows the connection length in terms of the
distance from the first wall for both the considered gaps; a
sharp transition from the external region to the plasma
region is evident as well as the different distances where it
occurs, which is a consequence of the nonaxisymmetric
field configuration.

These results can be considered as a proof of principle
of the viability of 3-D plasma boundary determination by
means of accurate tracing of field lines and evaluation of
the connection length. Strategies for an efficient use of

computing power can be easily implemented by consider-
ing a bisection algorithm for the determination of the
plasma-wall gap on the search direction. Parallel comput-
ing is also suitable for concurrent calculation of several
search directions.19

V. CONCLUSIONS

We considered the problem of accurate tracing of
magnetic field lines in tokamaks, where extremely long

(a)

(b)

Fig. 7. (a) Three-dimensional field lines in the r–z plane; (b)
Poincaré plots of the first internal line at w 5 0 (right)
and w 5 p (left).
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lines with high local integration accuracy have to be
evaluated. A VP ODE solver and standard RK routines
were validated and compared with the reference for a
specific problem. In particular, the error assessment was
conducted by means of analytical invariants, which for the
2-D case are given by the constant poloidal flux values,
and for the 3-D case by means of analytical expressions
based on Clebsch potentials. Accuracy requirements are
met by both integration schemes if the integration step
size is adequate. The volume preservation of the RK-IV
scheme is comparable to that of the VP scheme when
using the same step size, but the overall performance of
the RK solver in terms of trade-off in accuracy and
computational cost is by far higher than the VP scheme.
As a result, standard fixed-step RK integrators are well
suited to the problem and can be effectively used for
B-field tracing in tokamaks. As a demonstration, plasma-
wall gaps in a full 3-D configuration were calculated,
showing the viability of studying the magnetic properties
of plasma boundary in tokamaks using standard tools.
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