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Abstract: 

PURPOSE. In the mouse model of oxygen-induced retinopathy 
(OIR) somatostatin (SRIF) acting at the SRIF receptor subtype 2 
(sst2) inhibits angiogenic responses to hypoxia through a 
downregulation of vascular endothelial growth factor. Information 
on the sites where SRIF-sst2 interactions take place is lacking, and 
downstream effectors mediating SRIF-sst2 antiangiogenic actions 
are unknown.  
METHODS. In the OIR model, retinal expression of SRIF was 
evaluated with RT-PCR and RIA. The bindings of [125I]LTT-SRIF-28 
and [125I]Tyr3-octreotide were measured in coronal sections of the 
eye. With Western blot we evaluated the levels of sst2A as well as 

the expression and the activity of the Signal Transducer and 
Activator of Transcription (STAT)3. The analysis of STAT3 was 
performed in hypoxic mice treated with the sst2 agonist octreotide 
or with the sst2 antagonist D-Tyr8 cyanamid 154806 (CYN). Retinal 
localization of sst2A was assessed by single and double 
immunohistochemistry with an endothelial cell marker. 
RESULTS. In the hypoxic retina, both SRIF and sst2 levels as well 
as [125I]Tyr3-octreotide binding were downregulated. In addition, 
sst2A immunostaining was decreased in the neuroretina, but was 
increased in capillaries. Hypoxia increased both expression and 
activity of STAT3. This increase was inhibited by octreotide, while 
was strengthened by CYN. 

CONCLUSIONS. These data suggest that i. sst2 expressed by 
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capillaries may be responsible of the antiangiogenic effects of SRIF 
and ii. downstream effectors in this action include the transcription 
factor STAT3. These results support the possibility of using sst2-
selective ligands in the treatment of proliferative retinopathies and 
indicate STAT3 as an additional target for novel therapeutic 
approach. 
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PURPOSE. In the mouse model of oxygen-induced retinopathy (OIR) somatostatin (SRIF) 

acting at the SRIF receptor subtype 2 (sst2) inhibits angiogenic responses to hypoxia 

through a downregulation of vascular endothelial growth factor. Information on the sites 

where SRIF-sst2 interactions take place is lacking, and downstream effectors mediating 

SRIF-sst2 antiangiogenic actions are unknown.  

METHODS. In the OIR model, retinal expression of SRIF was evaluated with RT-PCR and 

RIA. The bindings of [125I]LTT-SRIF-28 and [125I]Tyr3-octreotide were measured in coronal 

sections of the eye. With Western blot we evaluated the levels of sst2A as well as the 

expression and the activity of the Signal Transducer and Activator of Transcription 

(STAT)3. The analysis of STAT3 was performed in hypoxic mice treated with the sst2 

agonist octreotide or with the sst2 antagonist D-Tyr8 cyanamid 154806 (CYN). Retinal 

localization of sst2A was assessed by single and double immunohistochemistry with an 

endothelial cell marker. 

RESULTS. In the hypoxic retina, both SRIF and sst2 levels as well as [125I]Tyr3-octreotide 

binding were downregulated. In addition, sst2A immunostaining was decreased in the 

neuroretina, but was increased in capillaries. Hypoxia increased both expression and 

activity of STAT3. This increase was inhibited by octreotide, while was strengthened by 

CYN. 

CONCLUSIONS. These data suggest that i. sst2 expressed by capillaries may be 

responsible of the antiangiogenic effects of SRIF and ii. downstream effectors in this 

action include the transcription factor STAT3. These results support the possibility of using 

sst2-selective ligands in the treatment of proliferative retinopathies and indicate STAT3 as 

an additional target for novel therapeutic approach. 
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Introduction 

Angiogenic eye disease is among the most common causes of blindness worldwide and 

results from a profound imbalance between pro- and anti-angiogenic factors. Current 

treatments such as laser photocoagulation and administration of Vascular Endothelial 

Growth Factor (VEGF) inhibitors are insufficiently effective and there is now a great deal 

of interest to develop new and more efficacious therapeutic agents to treat ocular 

neovascularization. In this respect, analogues of the peptide somatostatin-14 (SRIF) may 

play a role in inhibiting angiogenesis in the retina.1 In a mouse model of oxygen-induced 

retinopathy (OIR), we have recently demonstrated that the severity of angiogenic 

responses to hypoxia is correlated to the expression level of the SRIF receptor subtype 2 

(sst2) in the retina.2 In fact, the lack of sst2, as in sst2-knock out (KO) retinas, is associated 

with heavier effects of hypoxia on retinal neovascularization and proangiogenic factors, 

whereas a chronic overexpression of sst2 (consequent to the genetic deletion of sst1 as in 

sst1-KO retinas)3,4 attenuates hypoxia effects on proangiogenic factors. In addition, we 

have observed, using the SRIF analogues octreotide (a sst2-preferring agonist) and D-Tyr8 

cyanamid 154806 (CYN; a sst2-specific antagonist), that sst2 mediates SRIF 

antiangiogenic effects and that this mechanism involves a down regulation of retinal levels 

of VEGF.5 

Although it is clear that SRIF analogues acting at sst2 affect the expression of VEGF in the 

OIR model, information on the precise sites where this interaction may take place is 

surprisingly lacking. The most parsimonious way to explain the observed inhibitory effects 

of sst2 agonists on VEGF expression and on the proliferation of retinal vessels would be to 

assume that sst2 is expressed by retinal endothelial cells and that its interaction with VEGF 

takes place in these cells. However, localization studies of the mouse retina did not report 

sst2 expression at the level of retinal blood capillaries,6 nor has this expression been noted 
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in any other mammalian retinas,7 although there is some evidence that sst2 is localized to 

retinal vasculature in the human retina.8,9 On the other hand, studies in human umbilical 

vein endothelial cells have shown that sst2 and sst5 are expressed in proliferating but not 

quiescent endothelial cells,10 which suggests that these receptors may be upregulated in 

retinal capillaries in hypoxic conditions. 

Despite the growing evidence that sst2 agonists may exert angioinhibitory activity in the 

retina, the downstream effectors linking sst2 activation to inhibition of angiogenic response 

or to modulation of VEGF expression are still unknown. Recent studies demonstrated that 

the Signal Transducer and Activator of Transcription (STAT)3 is critically involved in a 

wide variety of biological processes, including inflammation and angiogenesis. In the 

retina of OIR mice, for instance, protein levels of STAT3 and pSTAT3 are increased11,12 

with pSTAT3 preferentially localized to newly formed blood vessels.12 In addition, retinal 

levels of both STAT3 and pSTAT3 are also increased in a mouse model of retinal 

ischemia.13 Moreover, STAT3 phosphorylation is increased in retinal macrophages from 

OIR mice.14 There are also results demonstrating that STAT3 is critical to modulate VEGF 

expression and activity in vascular endothelial cells, thus indicating a possible role of 

STAT3 in regulating angiogenic response to the hypoxic insult.15-17  

In the present study, we determined whether low oxygen availability may affect levels and 

localization of sst2 in the mouse retina and whether this effect may be related to altered 

levels of SRIF expression. In addition, we evaluated whether hypoxia affects expression 

and activity of STAT3 and whether the effects of hypoxia on STAT3 are influenced by 

treatment with the sst2 agonist octreotide or the sst2-selective antagonist CYN. 

 

Materials and Methods 

Octreotide was purchased from NeoMPS (Strasbourg, France). The iQ Sybr Green 

Supermix was from Bio-Rad (Hercules, CA). Primers were obtained from Eurofins MWG 
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Operon (Ebersberg, Germany). GelStar was from Cambrex (East Rutherford, NJ). LTT-

SRIF-28 and Tyr3-octreotide were obtained by Peninsula Laboratories (Meyerside, UK) 

and Gen Script Corporation (Piscataway, NJ), respectively. A rabbit polyclonal antibody 

directed to sst2A was purchased from Gramsch Laboratories (Schwabhausen, Germany). 

In addition, a rat monoclonal antibody directed to CD31 was purchased from BD 

Pharmingen (San Diego, CA). A rabbit policlonal antibody to tyrosine hydroxylase (TH) 

was obtained from Chemicon (Temecula, CA). Appropriate secondary antibodies were 

from Molecular Probes (Eugene, OR). Rabbit polyclonal antibodies directed to STAT3 and 

pSTAT3 were obtained from Santa Cruz Biotechnologies (Santa Cruz, CA). The enhanced 

chemiluminescence reagent (WBKLS0500) was from Millipore (Billerica, MA). All other 

chemicals were obtained from Sigma-Aldrich (St. Louis, MO). 

 

Animals 

Experiments were performed on 68 mice (C57BL⁄6) of both sexes at postnatal day (PD) 

17 (6 g body weight). In some experiments, mice at PD12 and PD14 were also used (15 

animals for each age). Experiments were performed in agreement with the ARVO 

Statement for the Use of Animals in Ophthalmic and Vision Research and in compliance 

with the Italian law on animal care N°116/1992 and the EEC/609/86. All efforts were made 

to reduce the number of animals used. 

 

Model of Oxygen-Induced Retinopathy 

In a typical model of OIR,18 litters of mice pups with their nursing mothers were exposed in 

an infant incubator to high oxygen concentration (75% ± 2%) between PD7 and PD12, 

prior to return to room air between PD12 and PD17. Oxygen was checked twice daily with 

an oxygen analyzer (Miniox I; Bertocchi srl Elettromedicali, Cremona, Italy). Individual 

litters were either oxygen or room air reared. In some experiments, pharmacological 
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treatment was also performed including no treatment, treatment with SRIF analogues and 

sham injection. Animals were treated with injections for 5 days from PD12 to PD16. 

Animals were anaestethized by i.p. injection of Avertin (1.2% tribromoethanol and 2.4% 

amylene hydrate in distilled water, 0.02 mL/g body weight). All experiments were 

performed at the same time of day to exclude possible circadian influences. The data 

were collected from both males and females and the results combined as there was no 

apparent gender difference. 

 

Administration of SRIF Analogues 

The sst2-preferring peptidyl agonist octreotide and the sst2-selective peptidyl antagonist 

CYN19-21 were given twice daily subcutaneously from PD12 to PD16 at 0.02 mg kg-1 dose-

1 (octreotide) or at 0.5 mg kg-1 dose-1 (CYN), as previously described.5 The analogues 

were dissolved in 33 mM acetate buffer (pH 5) with 135 mM NaCl. Sham injections were 

performed with that vehicle. 

 

Isolation of Retinal RNA and cDNA Preparation 

Total RNA was extracted from explanted retinas (RNeasy Mini Kit; Qiagen, Valencia, CA), 

purified, resuspended in RNase-free water and quantified spectrophotometrically 

(SmartSpec 3000; Bio-Rad). First-strand cDNA was generated from 1 µg of total RNA 

(QuantiTect Reverse Transcription Kit; Qiagen). 

 

Real-Time Quantitative RT-PCR  

Real-time quantitative RT-PCR (QPCR) was performed according to Dal Monte et al.5 

SRIF primers (forward: CCCCAGACTCCGTCAGTTTCT, reverse: 

TCTCTGTCTGGTTGGGCTCG) were designed using Primer3 software,22 whereas primer 

pairs for Rpl13a (forward: CACTCTGGAGGAGAAACGGAAGG, reverse: 
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GCAGGCATGAGGCAAACAGTC) were obtained from RTPrimerDB.23 Amplification 

efficiency was close to 100% for both primer pairs as calculated (Opticon Monitor 3 

software; Bio-Rad). SRIF target gene was run concurrently with Rpl13a, a constitutively 

expressed control gene. As previously described, samples were compared using the 

relative cycle threshold (CT method).24 The increase or decrease (x-fold) was 

determinated relative to a control after normalizing to RPL13a. All reactions were run as 

triplicate. After statistical analysis, the data from the different experiments were plotted and 

averaged in the same graph. Data are expressed as means ± SE and originated from 4 

samples for either control or hypoxic condition. Each sample refers to the mRNA extracted 

from 3 retinas. 

 

SRIF Measurements 

Explanted retinas were homogenized in 10 v/w acetic acid, 2 N. SRIF levels were 

evaluated by radioimmunoassay as previously described.4,25 The results of the RIA assay 

are normalized for the amount of protein per retina and expressed as means ± SE from 6 

retinas for either control or hypoxic conditions. 

 

Autoradiography 

For SRIF receptor autoradiography, LTT-SRIF-28 and Tyr3-octreotide were iodinated as 

previously described26 and used at a specific activity of 422 Ci/mmol and 662 Ci/mmol, 

respectively. Eyes from three control and three hypoxic mice were enucleated, quickly 

frozen in liquid nitrogen and stored at –80°C. Sections (16 µm) were cut on a cryostat. 

Receptor autoradiography was performed as previously described.4 The sections were 

incubated in 545 pM [125I]LTT-SRIF-28 or 260 pM [125I]Tyr3-octreotide. Non-specific 

binding was determined in a set of adjacent slides by incubation in the presence of 1 µM 

SRIF-14. Autoradiograms were generated by apposing the labelled sections to films 
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(BioMax MR; Kodak, Rochester, NY) at 4°C for 3 days. Photomicrographs of films were 

generated and analysed using a computerized image analysis system with the Mercator 

software (BIOCOM; Explora Nova-Mercator, La Rochelle, France). The autoradiographic 

quantification was expressed as pmol/retina surface and specific binding calculated as 

pmol/retina surface area unit assessed in total binding − pmol/retina surface area unit 

assessed in non-specific binding. Data are expressed as means ± SE and originated from 

6 retinas for either control or hypoxic conditions.  

 

Western Blotting 

Western blot analysis was performed on proteins extracted from 3 samples for each 

experimental condition, according to Dal Monte et al.5 Samples from age-matched control 

subjects were used for comparison. Each sample contained 5 retinas. Western blot 

analysis for STAT3 and pSTAT3 was performed on cytosolic proteins, extracted in buffer 

containing 0.1 mM sodium orthovanadate, 20 mM β-glycerophosphate and 20 mM p-

nitrophenylphosphate. Western blot analysis for sst2A was performed on the fraction 

containing membrane-bound proteins. Aliquots of each sample containing equal amounts 

of protein were subjected to SDS-PAGE on 10% acrylamide gels. β-actin was used as the 

loading control. Rabbit polyclonal antibodies directed to STAT3 (1:200 dilution) or sst2A 

(1:500 dilution) or mouse monoclonal antibodies directed to pSTAT3 (1:200 dilution) or β-

actin (1:2500 dilution) were used as primary antibodies. Mouse anti-rabbit horseradish 

peroxidase-labeled (1:5000 dilution) or rabbit anti-mouse horseradish peroxidase-labeled 

(1:25000 dilution) were used as secondary antibodies. Blots were developed with the 

enhanced chemiluminescence reagent, stripping them in between each assay. All 

experiments were run as duplicate. The semiquantitative analysis of Western blot  signals 

was based on 3 independent blot-analysis experiments. After statistical analysis, data 

from the different experiments were plotted and averaged in the same graph. 
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Immunohistochemistry  

The eyes were removed and immersion fixed in 4% paraformaldehyde in 0.1 M phosphate 

buffer (PB), pH 7.4, for 1 h. The fixed eyes were transferred to 25% sucrose in 0.1 M PB 

and stored at 4°C. Retinal sections were cut perpendicularly to the vitreal surface at 10 µm 

with a cryostat, mounted onto gelatin-coated slides and stored at -20°C. The rabbit 

antiserum against the sst2A isoform was used at 1:500 dilution. In addition, a rat 

monoclonal antibody directed to the well known endothelial cell marker CD31 was used at 

1:200 dilution for detection of retinal vessels.27 Finally, a mouse monoclonal antibody to 

protein kinase C (PKC) was used at 1:200 to label rod bipolar cells, and a rabbit policlonal 

antibody to TH was used at 1:400 to label distinct wide-field amacrine cells.6 The sections 

were incubated with the appropriate secondary antibody conjugated with Alexa Fluor 488 

or Alexa Fluor 546 at a dilution of 1. Control experiments included the omission of the 

primary antibodies. Unspecific staining was not observed. In double labeling studies, 

control experiments were also performed to ensure that the primary antibodies did not 

cross-react when mixed together and that the secondary antibodies reacted only with the 

appropriate antigen-antibody complex. The immunofluorescence images were acquired 

using a 40x plan-NEOFLUAR Zeiss objective, an Axiocam photocamera and the Zeiss 

Axiovision 4 software (Carl Zeiss Vision GmbH, München-Hallbergmoos, Germany). The 

digital images were sized and optimized for contrast and brightness using Adobe 

Photoshop (Adobe Systems, Mountain View, CA, USA). Final images were saved at a 

minimum of 300 dpi. Quantitative analysis of double-labeled retinal sections was 

performed in agreement with Catalani et al.28 Briefly, both the CD31- and the sst2A-

immunoreactive images relative to the same field were visualized. Subsequently, the 

images were turned into grayscale, normalized to the background and thresholded to 

obtain white immunostaining on black background. Using the KS-300 software (Carl 
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Zeiss), the area of CD31 immunostaining and that of sst2A-immunoreactivity (IR) were 

calculated. Finally, the ratio between the area covered by the sst2A staining and that 

covered by the CD31-IR was calculated and used as an index of the overlap area. Data 

are expressed as means ± SE and originated from 6 retinas for either control or hypoxic 

conditions. 

 

Statistical Analysis 

All data were analyzed by the Kolmogorov-Smirnov test on verification of normal 

distribution. Statistical significance was evaluated with unpaired t-test or with ANOVA 

followed by the Newman-Keuls multiple comparison test. The results are expressed as 

mean ± SE of the indicated n values (Prism; GraphPad Software, San Diego, CA). 

Differences with P < 0.05 were considered significant. 

 

Results 

Hypoxia Effects on SRIF  

As shown in Figure 1A, RT-PCR yielded amplified products at 110 bp corresponding to 

SRIF mRNA. Five days of normoxia after hyperoxia (relative hypoxia) did not influence the 

amount of SRIF mRNA, which was similar to that in control retinas (Fig. 1B). In contrast, 

as shown in Figure 1C, SRIF levels measured by RIA were significantly decreased by 

hypoxia (~65% lower than in control retinas; P < 0.05). 

 

Hypoxia Effects on sst2 Binding and sst2A Expression 

The data summarized in Table 1 show high levels of SRIF binding sites in mouse retinas 

as the radioligand concentrations were in the picomolar range. Non-specific binding was 

low for both radioligands used. In hypoxic retinas, [125I]LTT-SRIF-28 binding sites were not 
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significantly different from the respective values in control retinas. In contrast, [125I]Tyr3-

octreotide binding sites were significantly decreased by ~30% (Fig. 2, Table 1). 

Regarding the levels of sst2A, semiquantitative Western blot showed that they were not 

significantly different from control values both at PD12 (end of the period of hyperoxia) 

and at PD14 (2 days of normoxia). In contrast, 5 days after hyperoxia (relative hypoxia, 

PD17), retinal levels of sst2A were significantly lower than those in control conditions 

(~26%, P < 0.05; Fig. 3). 

 

Hypoxia Effects on sst2A Localization  

The immunostaining patterns of sst2A in control retinas were consistent with previous 

observations of the mouse retina.3,4,29 In particular, sst2A-IR was mostly localized to rod 

bipolar cells and to amacrine cells, whereas it was scarcely associated to retinal 

capillaries labeled with CD31 (Figs. 4A,C). Hypoxia caused a drastic reduction of sst2A 

immunostaining in retinal neurons accompanied by an evident increase of sst2A-IR in 

retinal blood vessels (Figs. 4B,D). Retinal vasculature includes three layers of capillary 

networks: the most superfical layer of capillaries lying in the inner part of the nerve fiber 

layer (NFL), the inner capillaries which lie in the ganglion cell layer (GCL), and the outer 

capillary network which runs from the inner plexiform layer (IPL) to the outer plexiform 

layer (OPL) through the inner nuclear layer (INL).30 As shown in Figure 4E, the mean 

overlap area covered by sst2A-IR and CD31-IR almost doubled in the IPL-INL of hypoxic 

retinas in respect with control retinas. In contrast, hypoxia did not affect the mean overlap 

area in the NFL-GCL. Additional experiments were performed to determine whether 

hypoxia-induced decrease of sst2A-IR might result from hypoxia-induced alterations of the 

retinal cells which are known to express sst2A. In the rodent retina, sst2A is in TH-

containing amacrine cells and in rod bipolar cells, as identified by PKC-IR.31 As shown in 

figure 5, hypoxia did not influence the TH nor the PKC immunostaining patterns.  
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Hypoxia Effects on STAT3  

As shown in Figure 6, STAT3 was more than doubled in the hypoxic samples as 

compared to controls (P < 0.001). Similarly, pSTAT3 was also significantly increased in 

the hypoxic retina as compared to control retina (~133%, P < 0.001). Vehicle treatment did 

not affect retinal levels of STAT3 or of pSTAT3, while octreotide significantly decreased 

both STAT3 and pSTAT3 (~28% and 26%, respectively, P < 0.001) in the hypoxic retina. 

In contrast, CYN significantly increased pSTAT3 levels (~10%, P < 0.05) without affecting 

STAT3. 

 

Discussion 

The results of this study demonstrate for the first time that in the OIR model hypoxia 

upregulates sst2A expression by retinal vessels suggesting that the growing endothelium 

overexpresses sst2A and becomes capable to efficiently respond to the angioinhibitory 

action of SRIF. The present findings also indicate that hypoxia upregulates STAT3 

expression and activity in the OIR model and suggest that STAT3 plays an important role 

in mediating sst2 action in proliferative retinopathy. 

 

Hypoxia Effects on SRIF 

As shown herein, retinal levels of SRIF are downregulated in the OIR model. This result is 

consistent with decreased SRIF levels observed in the vitreous and/or in the retina of 

diabetic patients,32-34 and concurs to demonstrate that ocular deficit of SRIF may 

contribute to the onset of diabetic retinopathy. In this respect, protective effects of SRIF 

and its analogues have been recently demonstrated in rodent models of retinal 

neurodegeneration.28,35,36 
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The fact that, following hypoxia, endogenous SRIF decreases in the retina, whereas SRIF 

mRNA does not change suggests a downregulation at the post-transcriptional level, 

involving transduction pathways that do not interact with nuclear regulatory factors. This 

possibility is consistent with previous findings suggesting the involvement of post-

translational mechanisms in the regulation of SRIF expression in the retina of mice with 

genetic deletion of the SRIF receptors sst1 or sst2.
3,4 

 

Hypoxia Effects on sst2  

Our results show that hypoxia downregulates retinal levels of the sst2A isoform of sst2, 

suggesting that sst2A downregulation is associated with the onset of angiogenesis in the 

retina of the OIR mouse model. That hypoxia might regulate the expression of cell surface 

receptors has been demonstrated, in different experimental models, for the adenosine 

receptors of the A2A subtype,37 the delta opioid receptors,38 and the glucocorticoid 

receptors.39 However, to the best of our knowledge no results are available reporting 

hypoxia-induced regulation of SRIF receptors. As shown herein, sst2A reduction is not 

accompanied by changes in sst2 gene expression, as demonstrated by previous findings,2 

indicating the involvement of translational or post-translational mechanisms. 

Our autoradiographic studies confirmed the decrease of sst2 protein levels in hypoxic 

retinas and showed a marked decrease in [125I]Tyr3-octreotide binding sites. Although 

[125I]Tyr3-octreotide labels with high affinity both recombinant sst2 and sst5,
40 the observed 

binding is likely to be due entirely to the presence of sst2.
4 Since [125I]LTT-SRIF-28 labels 

with high affinity all SRIF receptors,40 the fact that in control retinas [125I]LTT-SRIF-28 

binding sites have a density similar to that in hypoxic retinas suggests that the total 

number of SRIF receptors does not change as a consequence of hypoxia, and implies that 

the decrease of sst2 following hypoxia is compensated by an increase in the levels of other 
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SRIF receptors. Indeed, a major effect of sst2 loss on the expression of sst1 has been 

demonstrated previously in the mouse retina.3 

The mechanisms leading to reduced sst2 levels in hypoxic retinas remain to be elucidated. 

It is likely that SRIF, sst1 and sst2 cooperate in complex regulatory mechanisms controlling 

their own expressions in the retina (for discussion, see Ref. 3). Our previous observations 

indicate a strict correlation between retinal SRIF levels and sst2 expression,3,4 but at 

present it is difficult to determine whether an effect of hypoxia on SRIF retinal levels 

would, in turn, affect sst2 expression or, conversely, an effect of hypoxia on sst2 would 

affect SRIF levels in the retina. On the other hand, in the mouse retina, the possibility that 

SRIF levels are regulated by sst2 seems unlikely since only sst1 is expressed by SRIF-

containing amacrine cells.4,41,42 

 

Dynamic Changes of sst2A Localization After Hypoxia 

The localization studies demonstrate for the first time that hypoxia induces a drastic 

reduction in sst2A-IR in retinal cells and processes. Although acute exposure to hypoxia 

was recently shown to cause changes in Muller cells and degeneration of neural cells in 

the retina of neonatal rats,43 the persistence of the cells known to express sst2A, including 

amacrine and rod bipolar cells,6 excludes the possibility that in the OIR model the 

observed reduction of sst2A is caused by hypoxic damage to the cells expressing the 

receptor. 

We observed that in hypoxic retinas endothelial cells display relatively abundant sst2A-IR, 

whereas in normoxic retinas sst2A-IR is scarcely associated with retinal vessels. This result 

is in line with the finding that quiescent human vascular endothelial cells do not express 

sst2 and this receptor is expressed when the endothelial cells begin to grow.10,44 In 

addition, our observations are also consistent with studies in human eyes with choroidal 

neovascularization, where newly formed endothelial cells strongly express sst2.
9 Finally, 
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the pattern of sst2 expression in patients with diabetic retinopathy indicates that beneficial 

effects of sst2 agonists may depend on the presence of sst2 on newly-formed vessels.45 

Our results on hypoxia-induced upregulation of sst2A expression in retinal vessels suggest 

that sst2A in the growing endothelium can receive angioinhibitory action of SRIF analogues 

with high affinity for sst2. A relationship between sst2 levels and octreotide efficacy has 

recently been demonstrated in rats with advanced stages of portal hypertension in which 

sst2 becomes downregulated and this downregulation can be responsible of the failure of 

octreotide therapy to inhibit angiogenesis.46 

 

STAT3 as Downstream Effector 

Our recent work demonstrates that SRIF angioinhibitory effects initiated by sst2 activation 

involve down regulation of VEGF expression.5 Consistent with such observations, 

octreotide has been found to be effective in reducing both choroidal neovascularization 

and VEGF mRNA levels in retinal pigment epithelium and choroidal tissue of rats.47 

Therefore, it would be important to detect downstream effectors to trace a link between 

sst2 activation and VEGF modulation. Much work has been done to clarify the functional 

role of transcription factors regulating target genes involved in angiogenesis.27,48,49 Of 

these transcription factors, STAT3 appears of particular interest because its activation 

appears to be coupled to regulation of VEGF.16,50-53 

STAT3 has been detected in the retina, although its role there has not been entirely 

determined.13,54,55 STAT3 expression and activation are increased in the OIR model,11,12,14 

and activated STAT3 has been localized to retinal neovascular vessels.12 In line with these 

results, we demonstrated that both STAT3 and pSTAT3 are upregulated by hypoxia in OIR 

mice suggesting that STAT3 may help to mediate proliferation of blood vessels in the 

neovascular retina. 
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As also shown here, upregulation of STAT3 in the hypoxic retina is influenced by 

treatment with sst2 agonist or antagonist. In fact, the hypoxia-induced increase of both 

STAT3 and pSTAT3 is consistently reduced by sst2 activation with octreotide, indicating 

that ameliorative effects of octreotide on angiogenic responses in the hypoxic retina are 

likely to involve STAT3 production. In the OIR model, beneficial effects of statins on retinal 

neovascularization have been reported to be associated with statin effects in preventing 

pSTAT3 upregulation.11 In addition, in rats treated with streptozotocin to induce diabetes 

and in retinal endothelial cells maintained in high-glucose medium the ameliorative effects 

of simvastatin seem to prevent STAT3 activation.56 

Our demonstration that octreotide prevents the upregulation of pSTAT3 associated with 

neovascularization in the OIR model is in line with previous results showing an inhibitory 

effect of octreotide on STAT3 activity in myeloid cells.57 This inhibitory effect includes the 

activation of Src homology region 2 domain-containing phosphatase 1 (SHP-1), which in 

turn inhibits STAT3 activation. Interestingly, SHP-1 has been reported to be associated 

with the antiproliferative effect of sst2 in tumor cells (for a review, see Ref. 58). Our 

additional finding that the hypoxia-induced increase in pSTAT3 is further enhanced by sst2 

blockade with CYN adds further evidence supporting sst2 coupling to STAT3 in the mouse 

retina. Although there is indication of possible STAT3 location downstream of VEGF,11,12 

we favour the hypothesis that the sst2-induced inhibition of angiogenesis occurs through 

sst2 functional coupling to STAT3 which, in turn, causes VEGF downregulation. The 

possibility that STAT3 activation is an upstream event with respect to hypoxia-induced 

VEGF upregulation is also suggested by results in bovine microvascular endothelial cells 

in which the activation of STAT3 is required to mediate the effects of peroxynitrite in 

stimulating VEGF expression.15Additional investigations are necessary to verify the role of 

STAT3 in mediating inhibitory effects of sst2 activation on retinal angiogenesis and VEGF 
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expression. Delineating the pathway by which STAT3 mediates sst2 action in retinal 

angiogenesis may provide new targets for pharmacologic modulation of angiogenesis. 

 

Conclusion 

SRIF analogues with high specificity for sst2 exert antiangiogenic effects by interfering with 

the VEGF system in the OIR model. Here, we demonstrate that low oxygen availability 

affects levels and localization of sst2 in the mouse retina and that this effect may be 

related to altered levels of SRIF. We also demonstrate that hypoxia influences expression 

and activity of STAT3 and that hypoxia effects on STAT3 are reduced by sst2 activation 

with octreotide. We suggest the possibility that sst2 expressed by retinal capillaries exerts 

its angioinhibitory action through STAT3-induced modulation of VEGF. The present results 

further support the possibility of the use of sst2-selective ligands in the treatment of 

retinopathy. Considering the eminent function of STAT3 in retinopathy, its targeting may 

represent a novel strategy for therapeutic intervention. However, it is important to 

underline that although the OIR model used in the present study manifests the symptoms 

of retinal angiogenesis, it is not a model of proliferative diabetic retinopathy (PDR) as the 

angiogenesis associated with PDR may well involve different mechanism(s) in diabetes 
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TABLE 1. Autoradiographic analysis of SRIF binding sites from both control and hypoxic  

mouse retinas 

Radioligand Specific binding 

 control hypoxic 

[125I]LTT-SRIF-28 3.91 ± 0.16 3.67 ± 0.28 

[125I]Tyr3-octreotide 3.51 ± 0.26   2.83 ± 0.08* 

 

The data are expressed as specific binding (pmol/retina surface area unit assessed in 

total binding − pmol/retina surface area unit assessed in non-specific binding) ± SE of 12-

17 coronal sections. *P < 0.05 versus the respective control (unpaired t-test)  
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Legends 

 

FIGURE 1. Retinal levels of SRIF in hypoxic mice. (A) PCR products of SRIF mRNA (110 

bp) and the housekeeping gene Rpl13a (182 bp) in normoxic control retinas. (B) SRIF 

mRNA in control (white) and hypoxic (black) conditions. QPCR evaluation showed that 

SRIF messenger was not influenced by hypoxia. Data were analyzed by the formula 2-∆∆CT 

using Rpl13a as internal standard. Each column represents the mean ± SE of data from 4 

samples. Each sample refers to the mRNA extracted from 3 retinas. (C) Endogenous level 

of SRIF in the retina of control (white) and hypoxic (black) mice. RIA measurement showed 

that SRIF level was decreased by hypoxia (*P < 0.05 versus control; unpaired t-test). The 

amount of SRIF is expressed as pg/mg of proteins. Each column represents the mean ± 

SE of data from 6 retinas.  

 

FIGURE 2. Representative photomicrographs of the autoradiographic signals of [125I]LTT-

SRIF-28- (A-B) and [125I]Tyr3-octreotide- (C-D) labelled binding sites in coronal sections of 

control (A, C) and hypoxic (B, D) mouse eyes. Total and non-specific are sequential 

sections from the same eye and determined as described in the experimental procedures. 

Note that hypoxia causes a decrease in [125I]Tyr3-octreotide-labelled binding sites. I: iris, 

P: posterior eye (sclera, choroid), R: retina. Scale bar: 1 mm. 

 

FIGURE 3. Levels of sst2A in normoxic (white) and hypoxic (black) conditions, as evaluated 

by Western blot using β-actin as the loading control in mouse retinas. Densitometric 

analysis showed that sst2A was decreased by hypoxia at postnatal day (PD) 17 which 

corresponds to 5 days of normoxia after hyperoxia (*P < 0.05 versus the respective 

control; ANOVA followed by Newman-Keuls multiple comparison post test). No effects 

were observed at PD 12 which corresponds to the end of hyperoxia (dashed) or at PD 14 
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which corresponds to 2 days of normoxia after hyperoxia. Each column represents the 

mean ± SE of data from 3 samples. Each sample refers to the protein extracted from 5 

retinas. Representative gels are also shown and are numbered progressively in 

correspondence with the histograms. 

 

FIGURE 4. Retinal sections showing cell and capillary profiles immunoreactive for sst2A (A, 

B) and CD31 (C, D) in control (A, C) and hypoxic (B, D) conditions. Arrows point to retinal 

vessel profiles double-labeled with sst2A and CD31. Scale bar: 20 µm. (E) Mean overlap 

area covered by sst2A- and CD31-IR in control (white) and hypoxic (black) conditions. 

Histograms shows that the overlap area is increased by hypoxia in IPL-INL but not in NFL-

GCL (*P < 0.001 vs control; unpaired t-test). Each histogram represents the mean ± SE of 

data from 6 retinas from either control or hypoxic mice. Abbreviations: ONL, outer nuclear 

layer; OPL, outer plexiform layer; INL, inner nucler layer; IPL, inner plexiform layer; GCL, 

ganglion cell layer; NFL, nerve fiber layer. 

 

FIGURE 5. Retinal sections showing TH (A, B) and PKC (C, D) immunolabelling in control 

(A, C) and hypoxic (B, D) conditions. Scale bar, 20 µm. For abbreviations, see the legend 

of Figure 4. 

 

FIGURE 6. Levels of STAT3 (A) and pSTAT3 (B) in hypoxic retinas after treatment with 

vehicle, 0.02 mg Kg-1 octreotide or 0.5 mg Kg-1 CYN, as evaluated by Western blot using 

β-actin as the loading control. (A, B) Densitometric analysis showed that both STAT3 and 

pSTAT3 were increased by hypoxia (*P < 0.001 versus the respective control; ANOVA 

followed by Newman-Keuls multiple comparison post test). STAT3 level in vehicle-treated 

mice was not significantly different from that in hypoxic mice. The hypoxia-induced 

increase in both STAT3 and pSTAT3 was significantly lowered by octreotide (§§P < 0.001 
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versus the respective vehicle-treated; ANOVA followed by Newman-Keuls multiple 

comparison post test). The hypoxia induced increase of STAT-3 was unaffected by CYN 

whereas the hypoxia induced increase in pSTAT3 was increased by CYN (§P < 0.05 

versus the respective vehicle-treated; ANOVA followed by Newman-Keuls multiple 

comparison post test). Each column represents the mean ± SE of data from 3 samples. 

Each sample refers to the protein extracted from 5 retinas. Representative gels are also 

shown. 

Page 29 of 34

http://www.iovs.org/

IOVS

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review
 O

nly

 29

Figure 1. 
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Figure 2. 
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Figure 3. 
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Figure 4. 
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Figure 5. 
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Figure 6. 
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