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Abstract    The inversion of canopy reflectance models is widely used for the retrieval of 

vegetation properties from remote sensing. However the accuracy of the estimates depends on 

a range of factors, most notably the realism with which the canopy is represented by the 

models and the possibility of introducing a priori knowledge on canopy characteristics to 

constrain the inversion procedure. The objective of the present work was to compare the 

performances and operational limitations of two contrasting types of radiative transfer 

models: a classical one-dimensional canopy reflectance model, PROSPECT+SAIL 

(PROSAIL), and a three-dimensional dynamic (4-D) maize model. The latter introduces 

greater realism into the description of the canopy structure and implicit a priori information 

on the crop. The assessment was carried out with multiple view angle data recorded from field 

experiments on maize at stages V5 to V8. The simplex numerical optimization algorithm was 

used to invert the two models, using spectral reflectance data for PROSAIL and gap fraction 

data for the 4-D maize model. Leaf area index (LAI) was estimated with a RMSE of 0.48 for 

PROSAIL and 0.35 for the 4-D model. Retrieval of average leaf inclination angle (ALA) was 

problematic with both models. The effect of the number and distribution of observation view 

angles was examined, and the results highlight the advantage of oblique angle measurements.  

 

Keywords  Multiple-look-angle ∙ PROSPECT ∙ SAIL ∙ PROSAIL ∙Leaf area index (LAI) ∙ 

Leaf inclination distribution function (LIDF) ∙ Average leaf inclination angle (ALA) 
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Introduction 1 

Remote sensing at a range of spatial scales, from close range tractor-based sensors to those on 2 

satellite platforms allows non-intrusive and cost effective monitoring of crop status and of its 3 

spatial and temporal variation. Remote sensing observations should be capable of providing 4 

reliable and quantitative estimates of canopy biophysical properties, such as leaf area index 5 

(LAI), leaf angle distribution (LAD) and chlorophyll content (Cab). Knowledge of these 6 

variables can be useful for several applications, including site-specific crop management in 7 

precision agriculture, leading to more efficient use of inputs together with reduced 8 

environmental impacts.  9 

The performances of such approaches, for example for nitrogen fertilizer management (Baret 10 

et al. 2007; Houlès et al. 2007), depend on the strength of the link between the remote sensing 11 

signals and biophysical variables such as canopy structure and leaf optical properties. They 12 

depend on the type of measurements made, which is defined by the spatial, spectral and 13 

directional sampling and their measurement accuracy, and also and on the methods of 14 

interpretation used.  15 

Inversion of radiative transfer models can potentially estimate biophysical variables from 16 

remote sensing efficiently (Jacquemoud et al. 2000; Weiss et al. 2000) because local 17 

calibration is not required unlike the empirically based methods that use vegetation indices. 18 

However, several difficulties in the model inversion process limit the accuracy with which 19 

canopy properties can be retrieved. For example, different combinations of model input 20 

variables may result in similar simulations of reflectance that correspond  closely to actual 21 

remote sensing observations (Baret et al. 2007). This arises from the generally ill-posed 22 

nature, in mathematical terms, of the inverse problem in remote sensing (Combal et al. 2002). 23 

Radiometric information alone is usually not sufficient to identify a unique solution. 24 

Therefore, the inverse problem needs to be stabilized by exploiting additional information. 25 

Prior knowledge on the statistical distribution of input variables to the model (Weiss et al. 26 

2000) or spatial (Atzberger 2004) and temporal constraints (Baret et al. 2007) can be 27 

introduced into the algorithm for this purpose.  28 

In addition, the simplification included in the canopy radiative transfer model may induce 29 

large deviations from actual observations. During the last few decades, several advances in 30 

radiative transfer and canopy modelling have been made. A large number of models have 31 

been developed. These range from turbid medium to geometrical-optical models, which 32 

describe the vegetation in terms of simple geometrical objects such as cylinders, spheres, 33 

ellipsoids, for which surface properties are known. Finally models that account explicitly for 34 
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the detailed 3-D canopy structure and compute radiative transfer by ray tracing (Disney et al. 35 

2000) or radiosity (Borel et al. 1991) algorithms have been developed (e.g. Chelle et al. 1998; 36 

España 1998). These initial 3-D models were essentially static, whereas dynamic models have 37 

been developed recently some of which take into account interactions with environmental 38 

factors. They result in 4-D or functional-structural plant models (Godin and Sinoquet 2005). 39 

Progress in this field is driven by the availability of increasingly fast hardware, more efficient 40 

computer graphics algorithms and the rapidly-emerging field of 3-D canopy structure 41 

measurement (Godin et al. 1999). 42 

Most radiative transfer models currently used to retrieve canopy characteristics are turbid 43 

medium models, which represent canopy structure in a very simple way (Jacquemoud et al. 44 

2000; Verhoef and Bach 2007). Vegetation elements are treated as infinitely small radiation 45 

scatterers that are randomly distributed within the canopy. Such models are computationally 46 

fast and require few input variables, which make them suitable for non-linear iterative 47 

numerical inversion schemes. This approach minimizes a cost function that quantifies the 48 

difference between simulated and measured reflectance. Although these models played a key 49 

role in describing generalized behaviour and mimicking canopy reflectance reasonably well in 50 

many cases, their application is ultimately limited to the simulation of relatively 51 

homogeneous canopies. This can leads to significant errors and biases, for example when 52 

applied to row crops at the early growth stages. 53 

Recent developments in the use of look-up-table (LUT) and neural network (NNT) methods 54 

reduce the computing constraint for calculating canopy reflectance because they are based on 55 

pre-computed data bases (Knyazikhin et al. 1998). This opens the way for the inversion of 56 

more detailed 3-D models (Casa and Jones 2005; Disney et al. 2000).  57 

Several 3-D or 4-D models have been developed for specific plant species, such as maize 58 

(España 1998; Fournier and Andrieu 1999), sorghum (Kaitaniemi et al. 1999), barley (Buck-59 

Sorlin et al. 2005) rice (Watanabe et al. 2005), wheat (Evers et al. 2007) and cotton (Hanan 60 

and Hearn 2003). These models implicitly include a large amount of prior information on 61 

canopy properties for the given species. 62 

In precision farming applications, considerable prior information is available about the crop 63 

type, the cultivar and cultural practices such as sowing time or row spacing. By exploiting this 64 

information and by improving the realism of the models used for the inversion with remotely 65 

sensed data, more accurate estimates of crop biophysical variables should be obtained in 66 

principle. However, these models should be evaluated in depth in terms of a more accurate 67 
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description of the corresponding radiometric signal, to assess their usefulness in the context of 68 

retrieving canopy properties from model inversion. 69 

The use of inversion techniques based on look-up-tables or neural networks (Baret and Buis 70 

2007) allows very complex models to be used for estimating crop characteristics from 71 

remotely sensed observations. However, there must be a compromise between the realism of 72 

the 3-D canopy description and its parsimonious nature in terms of the number of parameters 73 

and computing time.  74 

The objective of the present work was to compare the performances and operational 75 

limitations of the inversion of two contrasting type of models to retrieve leaf are index (LAI) 76 

and average leaf inclination angle (ALA). The models compared were the classical one-77 

dimensional turbid medium canopy reflectance model PROSAIL (PROSPECT+SAIL) 78 

(Jacquemoud et al. 2009; Verhoef and Bach 2007) and a simple three-dimensional dynamic 79 

(4-D) maize model (Lopez-Lozano et al. 2007). The assessment was based on a set of 80 

multiangular field data recorded from maize canopies in Italy in 2007 and 2008 for this 81 

purpose. The data were representative of maize at the early growth stages, which we 82 

considered more interesting than a fully developed canopy for two reasons: 1) monitoring of 83 

an early stage crop seems more appropriate in the context of precision agriculture applications 84 

(e.g. fertilizer application) because management decisions based on a fully developed crop are 85 

likely to be too late to be effective, and 2) it is at early stages that row crops differ 86 

dramatically from the assumption of randomly distributed leaves present in 1-D models with 87 

an obvious clumping of foliage, whereas at later stages with full cover and more 88 

homogeneous canopy these assumptions pose fewer problems (Jacquemoud et al. 2000). 89 

 90 

Materials and methods 91 

Field data 92 

Measurements were made on field grown maize crops at different growth stages in 2007 and 93 

2008. In July 2007 the measurements were made in the Sele Plain at the Improsta 94 

Experimental Farm (Naples, Italy) on the 18
th

 July, at a maize growth stage V6 (Iowa State 95 

University, 1993). In 2008 the data were collected from the Maccarese Farm (Fiumicino, 96 

Rome, Italy) for maize growth stages V5 on the 15
th

 of May and growth stage V8  on the 28
th

 97 

of May. The interrow spacing of the maize crop was 0.75 m. 98 

Ground based multiple-look-angle remote sensing data were acquired from a height of 3 m (at 99 

nadir) over the canopy with a field sensor positioning system, based on an extending bipod 100 

arm with levelling head hinged on a goniometer to measure angles to the vertical (view zenith 101 
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angles) (Casa et al. 2009). The positioning system held 2 sensors: a spectroradiometer and a 102 

red-infrared camera. The Analytical Spectral Devices (ASD) Field Spec Fr Pro 103 

spectroradiometer measured radiance in the 350-2500 nm spectral range. Reflectance was 104 

then computed using a calibrated Spectralon panel. The field of view of the ASD 105 

spectroradiometer was 25° corresponding to a circular footprint at nadir of about 1.3 m in 106 

diameter. The red-NIR Dycam ADC camera (Dycam Inc., Chatsthereworth, CA, USA) was 107 

aligned with the spectroradiometer and provided images of the canopy with 496  365 pixels 108 

using an 8.5-mm f4.5 lens. Tests were carried out in the laboratory to assess the alignment 109 

between the spectroradiometer and the ADC camera, and a mask image was produced 110 

corresponding to the spectroradiometer footprint over the ADC image area. The mask was 111 

applied to all ADC images before further processing so that data were from exactly the same 112 

target area for both instruments. 113 

In 2007 data were acquired at 9 view zenith angles (VZA) for each set of measurements, 114 

ranging from -40° to +40° with a step of 10°; this was increased to 13 VZAs (from -60° to + 115 

60°) in 2008. Most data were recorded with the sun close to the principal plane, i.e. with view 116 

zenith angles equal to sun azimuth angles irrespective of row orientation. Therefore, angles 117 

between row and view direction varied between different data sets; in a few initial sets (in 118 

2007) the measurement directions were parallel and perpendicular to row directions. 119 

Measurements were made at 4 different sites within a large field in 2007 and at 3 different 120 

sites for each date in 2008. For each site the measurements were replicated 2 to 4 times and 121 

all data from different view azimuth angles were pooled together.  122 

Spectral reflectance data from sunlit soil were acquired separately at close range (nadir) for 123 

both fields at each site. Spectroradiometer data were smoothed using Savitzky-Golay filtering, 124 

with a polynomial of order 3 and frame size of 41 bands; this has been shown to remove noise 125 

without affecting spectral characteristics (Leone et al. 2007).  126 

Dycam ADC images were classified (after applying the spectroradiometer footprint mask) 127 

with a supervised classification procedure using the minimum distance technique (Richards 128 

1999) to obtain the „gap fraction‟, i.e. the fraction of soil visible at different view angles. This 129 

was used subsequently for inversion of the 4-D maize model. In previous tests this procedure 130 

had an overall classification accuracy of 99.4% (Casa and Jones 2005). 131 

Concurrently to acquisition of the remotely sensed data, biophysical characteristics of the 132 

maize plants were measured. Four plants per site (i.e. 16 in total) were characterized fully in 133 

the field in 2007: for each leaf insertion height, length and maximum width together with  134 

inclination angle of the midrib were measured with a rule and electronic clinometer. Stem 135 
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diameters were also measured at each leaf insertion point. Each leaf was assumed to comprise 136 

segments of approximately constant inclination angle, and each segment length and width 137 

were measured together with the inclination angle. Leaf azimuth angles were measured with a 138 

compass. Plants were then taken to the laboratory where the area of each leaf was measured 139 

separately with a Li-Cor Li-3100 area meter. 140 

Eight plants per site (a total of 48 plants for the 2 dates) were characterized similarly in 2008, 141 

except for the leaf inclination measurements which were replaced by digital photographs of 142 

plant silhouettes against a white background (Prevot et al. 1991). These images were then 143 

geometrically corrected and the coordinates of leaf midribs were obtained (Fig. 1). Relative 144 

leaf midrib coordinates were then used, together with all the other biometric data, for the 3-D 145 

reconstruction of each plant with the ADEL model (Evers et al. 2007; Fournier and Andrieu 146 

1999;) in the OpenAlea (http://openalea.gforge.inria.fr) environment. For this purpose relative 147 

leaf width data were calculated with the model of Prevot et al. (1991) from measurements of 148 

leaf lengths and maximum leaf widths. The 3-D reconstruction of maize plants with the 149 

ADEL model resulted in visually similar plants to those measured, although the model did not 150 

account for leaf undulation and curling (Fig. 1). A comparison of the measured area of each 151 

leaf with that reproduced by the ADEL model (each leaf was composed of 20-30 triangles) 152 

gave an RMSE of 32.4 cm
2
, corresponding to an absolute LAI error of 0.02 (i.e. 1% for a LAI 153 

of 2). This indicated an acceptable approximation provided by the Prevot et al. (1991) leaf 154 

width model as well as by the level of triangulation chosen. Therefore, the leaf inclination 155 

distribution from the modelled 3-D reconstructions of the plant could represent that of actual 156 

plants. The virtual plants are defined by a triangular mesh, therefore, the area and inclination 157 

of all leaf triangles were used to calculate the leaf inclination distribution function (LIDF) and 158 

average leaf angle (ALA) from the fraction of leaf area within each inclination angle class of 159 

5°. The processing of silhouette images and subsequent 3-D reconstruction of the plants (Fig. 160 

1) provides a procedure that is  much less time consuming than direct measurements with 161 

clinometers or 3-D digitizers in the field.  162 

 163 

Models and inversion techniques 164 

The PROSAIL model was chosen as it has been widely tested and validated in the last 16 165 

years in a great number of studies both in the direct and inverse mode (Jaquemoud et al., 166 

2009). The version used here included the treatment of the „hotspot‟, i.e. the  peak of 167 

reflectance when the sun and the viewing directions coincide. It assumed that the soil acted as 168 

a Lambertian diffuser, accepting measured soil spectra as input to the model and corresponds 169 
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to the version SAILH (Verhoef and Bach 2007). Inversion of the model against measured 170 

multiangular reflectance spectra was done with an optimization algorithm based on the 171 

simplex search method (Lagarias et al. 1998). The version used made it possible to constrain 172 

the estimated parameters to realistic ranges by providing bounds. Iterative optimization 173 

algorithms are known to be sensitive to the initial set of parameter values, and might also 174 

converge to local minima of the cost function instead of converging to the global minimum. 175 

For these reasons, a procedure was used in which initial parameter values were drawn 176 

randomly from within the specified bounds and the algorithm was rerun 10 times (replicates) 177 

for each estimation. The estimated parameter values retained were those that minimized the 178 

cost function within the 10 initial replicates. The parameters LAI and ALA (average leaf 179 

angle) were estimated simultaneously. The other PROSAIL parameters were fixed at their 180 

nominal values (Table 1), except for the soil spectra that were measured at each site and for 181 

sun and view angles that corresponded to the measurement configurations.  182 

The inversion was carried out for wavelengths 400-1350 nm in steps of 1 nm for the 183 

Maccarese data of 2008 to avoid the absorption bands at longer wavelengths. For the 2007 184 

Sele data they were limited to the 400-900 nm range because the data were very noisy at the 185 

longer wavelengths. 186 

The 4-D model chosen was the one developed by Lopez-Lozano et al. (2007). In this model, 187 

maize plants are represented by simple geometrical shapes: a quadrangular pyramid represents 188 

the stem and each leaf is represented by an isosceles triangle. Leaf number, position on the 189 

stem, area and inclination are defined on the basis of equations derived from measurements 190 

and from a previous model developed by España (1998) which is driven by thermal time (i.e. 191 

degree-days above a base temperature of 10°C). The model has few input parameters (Table 192 

1), but despite the rather crude simplifications it provides a remarkably more realistic canopy 193 

description (Fig. 2) than the homogenous opaque „green slab‟ of a turbid medium model. 194 

This model was chosen because of its simplicity, small number of parameters and fast 195 

execution time, typically 1.4 s on a laptop with an Intel Core 2 Duo Processor 1.66 GHz CPU 196 

for the generation of a 3-D scene such as that in Fig. 2. The attributes make it amenable to 197 

inversion by numerical optimization techniques. 198 

The inversion of the 3-D maize model was done with the same algorithm that was used for the 199 

PROSAIL inversion, i.e. the simplex search method with bounds and 10 replicate runs for 200 

each inversion. However, in this case the cost function expressed the difference between 201 

measured and modelled gap fractions for the view configurations used in the measurements. 202 

Measured gap fractions were obtained from the Dycam ADC image classification data. 203 
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Modelled gap fractions were calculated using the Z-buffer technique. This involves projecting 204 

the generated 3-D scene in a given direction onto a grid. The value of each grid point is then 205 

associated with the depth of the corresponding triangle. The gap fraction is finally computed 206 

as the ratio between the number of soil grid points (maximum depth) to the total number of 207 

grid points. To avoid border effects, the scene was replicated infinitely as described by Chelle 208 

et al. (1998). The parameters to be estimated were T and  leaf (Table 1). The LAI and ALA 209 

(model outputs) were calculated from  model simulations using the estimated parameter 210 

values. 211 

 212 

Results and discussion 213 

Actual LAI values obtained from direct measurements vary between 0.58 and 2.56, 214 

representing situations ranging from incomplete canopy closure to 73% ground cover at nadir. 215 

The average leaf inclination angles obtained from the 3-D plant reconstruction for the 2008 216 

data are consistent with the clinometer data of 2007; most values are around 63° for less 217 

developed plants (stage V5 and V6) and increase somewhat to 67-68° for the more advanced 218 

stage (V8).     219 

Spectral reflectance measurements show strong anisotropy, which is usually observed in 220 

multiangular measurements over plant canopies (Chopping, 2007), with a peak at view zenith 221 

angles roughly corresponding to the sun zenith angle where the minimum fraction of shades is 222 

observed (Fig. 3a). Reflectance values, especially for NIR wavelengths (700-1300 nm), are 223 

smaller for angles close to nadir because a much larger fraction of the field of view of the 224 

sensor was occupied by the soil. This is also shown by gap fraction data derived by 225 

simultaneous image acquisition from the camera (Fig. 3b). 226 

The spectral reflectance data were used in the inversion of the PROSAIL model, which was 227 

generally fast, taking typically less than 30 s for one optimization on a laptop computer (see 228 

above). The chosen constraint settings for the simplex method were: a maximum of 500 229 

iterations and a maximum of 10 000 function evaluations, or a tolerance of 0.1 on the cost 230 

function or 0.01 on the parameter values. These settings applied to the 10 replicates ensured 231 

that the cost function reached a global minimum. This was evident, for example, by plotting 232 

the estimated parameter values against the starting values used to initialize the simplex 233 

procedure. To constrain the estimates to plausible values, the parameters were allowed to vary 234 

within specific ranges only: 0–5 for LAI and 0–90 for ALA.  235 
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Estimation of LAI from inversion of the PROSAIL model shows in general reasonable results 236 

with an overall RMSE of 0.48 and an R
2
 of 0.85 (Fig. 4a). The results for the 2008 data have a 237 

RMSE of 0.24 and an R
2
 of 0.91, whereas some points in the 2007 data are overestimated 238 

giving a RMSE of 0.74 and an R
2
 of 0.86.  239 

Estimation of average leaf inclination angle (ALA) is rather poor by contrast (Fig. 4b) for 240 

both the 2008 data (RMSE 15.98, R
2
 0.56) and especially for the 2007 data (RMSE 25.04, R

2
 241 

0.24), some of which fall on one of the bounds that were set for this parameter. It should be 242 

noted that in 2007 the data had been recorded along or across maize rows irrespective of sun 243 

azimuth angle, whereas in 2008 most data sets were acquired as far as possible along the 244 

sun‟s principal plane (i.e. with view azimuth coinciding with sun azimuth). The latter 245 

approach provided a better sampling of the typical bidirectional reflectance distribution 246 

function (BRDF) features such as the „hotspot‟. In addition, observations in 2007 were 247 

acquired at 9 VZAs (-40° to +40°) compared to 13 VZAs for 2008 (-60° to +60°). For the 248 

inversion of the PROSAIL model, a priori information was not taken into account in the 249 

formulation of the cost function, but it is now advised to do so (Baret and Buis 2007). 250 

Furthermore, the turbid medium models provide an estimate of the „effective LAI‟ (Chen and 251 

Black 1992) because clumping is not taken into account and it is not possible to exclude the 252 

influence of stems, whereas actual LAI measurements include only leaves.  253 

Inversion of the 3-D maize model was much slower than for PROSAIL, typically it took 254 

about 20 minutes for each optimization to run (i.e. 10 replicates) on a laptop (see above). The 255 

same simplex stopping criteria were used as for PROSAIL inversion. The parameters T and 256 

max were constrained by the bounds 50–2500 degree-days and 0–90 degrees, respectively. 257 

Other measured parameter values (Table 1) were obtained from previous field trials in Spain 258 

(Lopez-Lozano 2007). Overall, accuracy of LAI estimation with the 3-D maize model (Fig. 259 

5a) appears to be similar to that obtained with PROSAIL, with a RMSE of 0.25 and an R
2
 of 260 

0.83 for the 2008 data, and a slight underestimation for the 2007 data with RMSE 0.48 and  261 

and R
2
 of 0.78. Estimation of the average leaf angle (Fig. 5b) shows a distinct group of points, 262 

including all 2007 data plus two 2008 data points, for which ALA is markedly 263 

underestimated. The overall RMSE is larger than that obtained from PROSAIL ALA 264 

estimation. The RMSE and R
2
 were 26.48 and 0.02, respectively, for the 2008 data and 49.9 265 

and 0.25, respectively, for 2007 data. 266 

The results obtained from the inversion of the 4-D model on gap fraction data are similar to 267 

those obtained with the turbid medium models although this model should provide a more 268 
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realistic description of a maize canopy. It should be noted that the 4-D model was developed  269 

on relationships describing maize leaf arrangement and size, which had been derived 270 

specifically from maize experimental data (España 1998). This means that much of the a 271 

priori information was included implicitly in the inversion process.  272 

In the comparison between the two models it should be noted that exactly the same inversion 273 

technique was used for both, therefore differences in the estimation results could be attributed 274 

to two possible causes: 1) the use of different types of measurements, i.e. gap fraction or 275 

reflectance data, because gap fraction depends only on plant architecture whereas canopy 276 

reflectance data integrate soil and leaf biochemical information; 2) the different descriptions 277 

of the canopy included in the models, for example the implicit assumption of leaf clumping in 278 

the 4-D maize model which is absent in the turbid medium formalism.  279 

To clarify the relative importance of each of these two effects additional tests were carried out 280 

by inverting a simple Poisson model (Nilson 1971), on which the turbid medium approach is 281 

based, using the measured gap fraction data. The model was 282 

Po(v) = exp
[-k LAI]

  ,                                                (1) 283 

where Po is the gap fraction at view zenith angle v  and k is the extinction coefficient, i.e. the 284 

average projection of leaves on to a horizontal surface, which was calculated as a function of 285 

the view zenith angle v  and the leaf angle distribution parameter  of Campbell‟s ellipsoidal 286 

leaf angle distribution (Campbell 1986). The model was inverted using the simplex method 287 

with the same settings as those used for the PROSAIL and 4-D maize models, and the 288 

parameters LAI and  were retrieved simultaneously, with bounds of 0.1–10 for  and 0–10 289 

for LAI. The average leaf angle (ALA) was then calculated from  with Campbell‟s (1990) 290 

equation.  291 

Although the Poisson model treated canopy structure in a similar way to PROSAIL, there are 292 

some small differences in the estimates of LAI (Fig. 6a). Estimates of the 2007 data are 293 

slightly better (RMSE 0.57, R
2
 0.50) and those of the 2008 data are marginally worse (RMSE 294 

0.30, R
2
 0.86). The ALA is estimated considerably better than it was by both PROSAIL and 295 

the 4-D model; the RMSE is about 6.51° and R
2
 is 0.05 for the  2008 data and 9.62 and 0.14 296 

for the 2007 data (Fig. 6b). 297 

However, none of the models seems to perform satisfactorily in the estimation of ALA. It 298 

should be noted that accurate direct measurement of leaf angle distribution is very difficult 299 

and time consuming, and so assessments of retrieval accuracy from radiometric observations 300 

are very in literature (e.g. Shibayama 2006). In maize the typical undulation and curling of 301 
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leaf blades make it almost impossible to measure correctly the fraction of leaf area that is 302 

actually oriented in each direction. Thus many workers have resorted to measuring inclination 303 

angles of leaf midribs (e.g. Ford et al. 2008; Prevot et al. 1991). In such an approach it is 304 

assumed that leaf blades are flat, which introduces an error in the LIDF that is difficult to 305 

estimate, but that seems to have little effect on the gap fraction (España 1998).  306 

From the estimates of LAI, the sampling of view zenith angles along the sun‟s principal plane 307 

seems to be particularly important because it exploits the maximum angular variation of 308 

canopy reflectance as shown by the results obtained with PROSAIL in 2007 and 2008 (Fig. 309 

4). These results were obtained using data with fairly wide directional sampling. In practice, 310 

measurements with such directional coverage would be unlikely and one would be limited to 311 

data at far fewer view zenith angles. The difference between the gap fraction calculated by  312 

turbid medium models and models that account implicitly for leaf clumping, such as the 4-D 313 

model, depends largely on the viewing direction chosen (e.g. Lopez-Lozano et al. 2007); the 314 

larger discrepancies are for angles close to nadir.   315 

The impact of the number and configuration of the view zenith angles chosen, therefore, was 316 

investigated by inverting different models using the same procedure as described above, but 317 

excluding progressively more view zenith angles from the data. The assessment was done for 318 

LAI only and only for the 2008 data because the 2007 data were not fully consistent with 319 

these, i.e. they had a different sun-view geometry and fewer VZAs.  Two different strategies 320 

were used: in the first, data were gradually removed starting from the most extreme VZAs 321 

(more oblique) until only three VZAs close to nadir remained (0° and 10°); in the second, 322 

the angles close to nadir were deleted until only the two most extreme angles remained 323 

(60°).   324 

The RMSEs from the LAI estimates of the three models show a difference between the two 325 

strategies (Fig. 7). The progressive elimination of the larger VZAs in the direction of nadir 326 

results in a gradual decrease in the accuracy of estimation, especially for the turbid medium 327 

models. When only the nadir and 10° VZA were left, the PROSAIL model performs 328 

marginally better than the others. The results for the second strategy show a relative 329 

insensitivity to the number of VZAs in the accuracy of LAI estimates, which indicates that 330 

data obtained at just a few oblique view angles provide reasonable estimates of LAI. It should 331 

be noted that when only the most extreme VZAs remain (60°), LAI estimation could be 332 

more robust because of the well known insensitivity of the leaf area projection function to leaf 333 

inclination distribution at 57.5° (Warren-Wilson 1963). Information embodied in the 334 
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reflectance of a turbid medium target viewed from the nadir only is poor compared to that 335 

measured at an oblique angle (Jacquemoud et al. 2009); this is confirmed by the results of the 336 

tests shown in Fig. 7. Therefore,  this consideration could also be extended to gap fraction 337 

data. Oblique view angle measurements, even if limited to few extreme angles, provide more 338 

accurate estimates of LAI.  339 

 340 

Conclusion 341 

This work shows the feasibility of inverting a simple 4-D canopy model by using the same 342 

numerical optimization technique as generally used for 1-D models. The results of the 343 

estimation of LAI from inversion of the 4-D model are only marginally better than those 344 

obtained with the 1-D model, whereas average leaf inclination angle (ALA) is not estimated 345 

satisfactorily by any of the models. The use of gap fraction data, instead of spectral 346 

reflectance, is shown to be adequate for the situation in which observations from several view 347 

angles are available. A reduction in the number of view angles severely degrades the accuracy 348 

of estimation, especially when there are only near nadir observations. Conversely oblique 349 

view angle measurements are shown to allow more accurate LAI estimation.  350 

Two problems inherent to the inversion procedure can be mentioned. The first concerns the 351 

arbitrary choice of values for the model parameters that are not estimated. The values chosen 352 

can have a remarkable influence on the results. The simplex algorithm is subject to the risk of 353 

converging to local minima of the cost function if the number of parameters to be estimated is 354 

increased. However, alternative techniques, such as those based on Bayesian methods  could 355 

be more robust and allow the retrieval of several parameters at the same time. This alleviates 356 

the need to provide arbitrarily fixed parameter values. The second problem stems from the 357 

fact that variation in both LAI and average leaf inclination angle (ALA) can produce similar 358 

effects on canopy reflectance and gap fraction. This is highlighted by the difficulties of 359 

retrieving accurate LAI and ALA values simultaneously. 360 

In conclusion, a more thorough comparison is needed to assess the capabilities of 1-D and 4-361 

D models to retrieve canopy properties by exploring a much wider range of canopy types and 362 

observation configurations. For example, it would be useful to investigate the sensitivity in 363 

the inversion of different kinds of models to the well known saturation effect. The latter 364 

occurs with a dense canopy cover and reflectance becomes insensitive to changes in LAI 365 

because the lower layers of foliage are not visible. Comparisons of spectral reflectance from 366 

1-D and 3-D or 4-D models could be improved if they were made under a range of situations, 367 
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for example by using a ray-tracing or radiosity method to calculate reflectance from 3-D 368 

descriptions of the canopy.  369 
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Tables 

Table 1. List of the input parameters of the 1-D model PROSAIL and of the dynamic 4-D 

model of Lopez-Lozano et al. (2007) with the values used for their inversion.  

Model Parameter Description Unit Used values*  

PROSAIL s Sun zenith angle Radians Measured 

 v View zenith angle Radians Measured 

  Angle between sun and view 

azimuth  

Radians Measured 

 Rs Vector of soil reflectance   nm Measured 

 Cab Leaf chlorophyll a+b content µg cm
-2

  40 

 Cw Leaf water content g cm
-2

  0.012 

 Cdm Leaf dry matter content g cm
-2

   0.005 

 Cbp Leaf brown pigment content - 0 

 N Leaf mesophyll structure index - 1.5 

 Ang Leaf surface roughness angle Degrees 59 

 LAI Leaf area index  Estimated 

 ALA Average leaf angle  Degrees Estimated 

 Hot Hotspot parameter  - 0.1 

     

4-D maize  Nmax Maximum number of leaves per 

plant 

N 18  

 Smax Maximum leaf area per plant m
2
 0.5  

 DTc Phyllochron °C d
-1

 50 

 DTs Leaf lifespan °C d
-1

 1200 

 D Plant density  plants m
-2

 7 

 Plasticity Leaf azimuth adjustment parameter - 0.2 

 drows Distance between rows m 0.75 

 Hmax Maximum plant height m 2.5 

 max Inclination of largest leaf Degrees Estimated 

  leaf Difference in inclination between 

the biggest and smallest leaf 

Degrees 20 

 T Temperature sum °C d
-1 

Estimated 

 

*
 values used were obtained from independent data sets obtained previously from maize plant 

canopies (Lopez-Lozano et al., 2007) 
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Figure captions 

Fig. 1   a  Example of the processing of a maize plant silhouette image, b acquisition of leaf 

midrib coordinates and c 3-D reconstruction of the plant using the ADEL model (Fournier and 

Andrieu 1999). 

 

Fig. 2   A typical scene generated by the 4-D maize model of Lopez-Lozano et al. (2007). 

 

Fig. 3  a  Multiangular spectral reflectance data recorded from the maize canopy at a sun 

zenith angle of 43° using the ASD Fieldspec spectroradiometer and b the corresponding gap 

(soil) fraction obtained from the classification of collimated bispectral images acquired 

concurrently to the spectra. 

 

Fig. 4 Results from the inversion of the PROSAIL model for the simultaneous estimation of:  

a LAI  and b ALA on multiangular spectral reflectance data. The other model parameter 

values are those reported in Table 1. Filled triangles: measurements carried out at the Sele 

Plain in 2007; empty circles: measurements carried at Maccarese in 2008.  

 

Fig. 5 Estimates of:  a  LAI and b ALA from inversion of the 4-D maize model of Lopez-

Lozano et al. (2007) on multiangular gap fraction data. The other model parameter values are 

those reported in Table 1. Filled triangles: measurements carried out at the Sele Plain in 2007; 

empty circles: measurements carried at Maccarese in 2008.  

 

Fig. 6 Results from the inversion of the Poisson model of Eq.1 for the simultaneous 

estimation of: a LAI and b ALA on multiangular gap fraction data. Filled triangles: 

measurements carried out at the Sele Plain in 2007; empty circles: measurements carried at 

Maccarese in 2008.  

 

Fig. 7 Sensitivity of LAI retrieval  accuracy to the number of observation view zenith angles 

(VZA): a gradual reduction in the more oblique VZAs in the direction of nadir and b  gradual 

reduction in the less oblique VZAs in the direction of the more oblique angles (i.e. larger 

VZAs). 
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