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Chapter 1 

 

1 Introduction and dissertation overview 

 

In this chapter an introduction to the dissertation is given. An overview on the remote sensing 

technology applied to forestry inventory and on Airborne Laser Scanner role in fuel modeling 

is presented. The main objectives of this dissertation are also shortly illustrated. Finally, the 

structure of the dissertation is described. 

 

1.1 Remote sensing and forest inventory 

During the past decades, forestry has been focused mainly on the assessment of timber 

resources and the management practices have been mostly addressed to the production of 

wood. In the past twenty years, this concept evolved and forests begin to be considered as a 

complex multi-functional system (Ciancio, 1997). For this reason it is important to acquire 

more accurate, timely information about their current status and, in particular, changes over 

time. This information is required for a range of spatial and temporal scales, from local forest 

inventories used for economic resource management purposes and updated annually, up to 

global data on carbon, water and energy fluxes required for environmental management over 

a number of decades (Cohen & Goward, 2004).  

Remote sensing, involving the acquisition of information about a surface, object, or other 

phenomenon from devices that are not in contact with the feature under investigation, can 

play a crucial role in providing information across these scales. It is a useful tool for assessing 

forest condition and it notably supports forest monitoring, allowing the generation of data on 

large scale at regular time intervals.  

There are two types of remote sensing devices that can be differentiated in terms of 

whether they are passive or active. Passive sensors detect only energy emanating naturally 

from an object, such as reflected sunlight or thermal infrared emissions; active sensors 

provide their own energy source as radar waves and record its reflection on the target. Each 

type of sensors has their own specialized purpose or task for which it was designed and often 

used for. (Franklin, 2001).  

Lately, there has been a progressive evolution of remote sensing approaches for the 

collection of forest resource information: remote sensing with GIS and direct field 
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measurements have shown the potential to facilitate the mapping, monitoring and modeling of 

the forest resources. Remote sensing provide a systematic, synoptic view of earth cover at 

regular time intervals and it is useful for detecting changes in land cover and to assess aspect 

of biological diversity directly (Hall et al., 1988; Roughgarden et al., 1991; Turner et al., 

2003; Cohen & Goward, 2004). 

The proliferation of low cost, widely available, remotely sensed data has been the basis 

for many of the important recent technological improvements in forest inventory techniques. 

Forest inventory is the statistical estimation of the quantitative and qualitative attributes of the 

forest resources in a given region. The assessment of the relationship between remotely 

sensed data and the biophysical attributes of forest vegetation (standing wood volume, 

biomass increment, etc.) allows also the construction of maps of the attributes at the sample 

inventory units for the whole region of interest, i.e., the attributes can be predicted for all the 

pixels in the region producing maps. Remotely sensed data have not only contributed to 

enhance the speed, cost efficiency, precision, and timeliness associated with inventories, but 

they have facilitated construction of maps of forest attributes with spatial resolutions and 

accuracies that were not feasible even a few years ago. 

In the present dissertation, specific attention will be given on active remote sensing, with 

a focus on Airborne Laser Scanning, based on a LiDAR system (Light Detection and Ranging 

or Laser Imaging Detection And Ranging) mounted on an airplane or an helicopter. LiDAR is 

an active remote sensing technique in which a pulse of light is sent to the Earth’s surface; the 

pulse reflects off of canopy materials such as leaves and branches. The returned energy is 

collected back at the instrument by a telescope. The time taken for the pulse to travel from the 

instrument, reflected off of the surface and be collected at the telescope is recorded. From this 

ranging information various structure metrics can be calculated, inferred or modeled.  

 

1.2 The role of Airborne Laser Scanning in fuel modeling 

In recent years, the topic of using of ALS data to describe fuel characteristics has been 

studied at a certain extent. Fire researchers and managers have long recognized the influence 

that fuel characteristics have on fire behavior and have attempted to incorporate key 

characteristics into models used to predict fire dynamics. Biomass estimates are needed to 

assess fuels, primary productivity, carbon content and budgets, nutrient cycling, treatment 

effects, and competition within plant communities; they are also needed to assess the effects 

of different fire regimes on plant communities (Murray & Jacobson 1982, Hierro et al. 2000). 
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Accumulation of fuel loadings in forest stands is an important determinant of fire frequency 

and severity (Paatalo, 1998; Cochrane et al., 1999). Therefore, information regarding the 

quantification and distribution of fuels in relation to time elapsed since last fire has been used 

to investigate how rapidly fires will spread, their intensity, and ultimately their ecological 

effects (Rothermel, 1972; Kauffman et al., 1994; Paatalo, 1998). 

Fuel characteristics are difficult to measure for a number of reasons. For uniform forest 

stands, it is assumed that canopy biomass is uniformly distributed vertically, but this 

assumption does not hold true in a complex forest stand. This is due to multiple layers in the 

canopy, presence of ladder fuels and variation within tree species and within the forest stand. 

Although destructive sampling is the most accurate way to measure canopy fuels, it is not a 

desirable or effective way of acquiring data. 

Quantification of vertical structure of the canopy is of importance to wildland fire 

managers, who are interested in managing the landscape for the reduction of ladder or 

transitional fuels that facilitate the spread of fire into the canopy (Skowronski et al., 2011). 

Maps of fuel loading can also be used to predict fire behavior and guide operational responses 

during active fire suppression, to prioritize areas for hazardous fuel reduction treatments, and 

to evaluate the effects of past fires or other disturbances. 

Physical and chemical properties of fuels are characterized by significant variability 

across space and time. This variability took place according to daily (for example, the 

moisture content varies according to the weather conditions), seasonal and yearly 

modifications or in relation to specific processes that occur over decades (successional 

stages). The quantitative assessment of the fuel characteristics in a given area is generally 

unsuitable; however, the considerable need to predict fire behavior on a large scale through 

decision making support tools requires representing this complexity through mapping 

techniques (Rollins et al., 2004; Chirici & Corona, 2006). 

LiDAR is a promising technology for generating reliable representation of the horizontal 

and vertical forest structure, due its capacity to scan wide areas and produce precise vertical 

and horizontal estimates of forest attributes (Ahokas et al., 2003). Recent studies highlight 

that fire behavior modeling can benefit from such technology because, in combination with 

optical remotely sensed images, it improves estimation of forest variables (e.g. Riaño et al., 

2003; Mutlu et al., 2008; Erdody & Moskal, 2010). A certain number of studies, conducted 

mostly in temperate and boreal forests of Europe and North America, indicate the potential of 

ALS data for estimating tree or forest variables as a component of fuel models. For example, 

tree height can be readily estimated from the ALS point cloud (e.g. Magnussen et al., 1999; 
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Means et al., 1999; Lim et al., 2002; Næsset, 2002; Popescu et al., 2002; Corona & Fattorini 

2008; Barbati et al., 2009). ALS technology appears more limited for predicting the 

characteristics of ground fuels (grass, shrubs, small trees), especially for low vegetation 

canopy heights (Riaño et al., 2007). The extraction of data on understory vegetation (e.g. 

percentage cover and height of the shrub layer) has been investigated in only a few studies 

(e.g. Harding et al. 2001; Riaño et al. 2003; Maltamo et al., 2005). 

The utility of ALS data for characterizing forest ecosystems both for mapping forest 

classes or forest types and for estimating quantitative variables such as forest biomass, has 

been confirmed by some studies (e.g. Zhao et al., 2011; Corona et al., 2012). Many of these 

studies focused on estimating variables useful for fire management (Arroyo et al., 2008) and 

relied on the combined use of ALS with optical data (Mutlu et al., 2008; Koetz et al., 2008; 

Garcia et al., 2011). 

All these authors identify the need for more research on the use of ALS data for these 

purposes, especially with reference to Mediterranean forest ecosystems, which are peculiar for 

their complex structural features.  

 

1.3 Objectives of the dissertation 

In this dissertation some of the main questions related to the use of ALS data for the 

assessment of forest structural parameters, with a special focus on forest stand height and 

aboveground biomass estimation, have been addressed. The distinctive overall target of this 

dissertation is to compare different ALS data and methods for assessing forest aboveground 

biomass under Mediterranean environments. 

To accomplish this goal, the research has been set up according to specific objectives that 

can be summarized as follows: 

1. to provide an overview of the current applications of ALS for forestry purposes in 

Italy, with a special focus on the spatial estimation of forest structural parameters; this 

objective has been covered by a detailed review literature, to obtain an exhaustive 

understanding of the topic; 

2. to test the potential for innovation offered by ALS data for the spatial estimation of 

living aboveground biomass through the integration of ALS raw data and ALS-derived 

information and the application of different remote sensing techniques. 
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1.4 Structure of the dissertation 

The dissertation is organized in five chapters. Chapter 2 provides general considerations, 

in the form of a scientific review, about ALS applications under alpine, temperate and 

Mediterranean environments in Italy; the analysis is supported by a remarkable number of 

case studies and provides special considerations to the common problems in the operational 

use of ALS systems. Chapters 3 and 4 are focused on the estimation of aboveground biomass 

using ALS data. Chapter 3 reports an experimental testing of raster Canopy Height Model for 

the spatial estimation of the aboveground biomass by coupling ALS data and field survey in a 

riparian forest. Chapter 4 reports an experimental testing of raw ALS data for detecting forest 

structural variables critical for fuel modeling. Various methods have been analyzed 

integrating remote sensing techniques with field measurements. The final chapter summarizes 

main outcomes drawn by the study and provides recommendations for future applications on 

research development. 

 

  



6 

Chapter 2 

 

2 Current applications of Airborne Laser Scanning for spatial 

estimation of forest structural parameters
1
 

 

In this chapter general considerations with reference to selected experiences of ALS 

applications under alpine, temperate and Mediterranean environments in Italy are provided. 

The main issues concern the potential use for ALS data exploitation in forest inventories on 

large territories, their use for silvicultural systems detection and for the estimation of fuel 

load in forest stands.  

 

2.1 Introduction 

Information about the state and changes to forest stands is important for environmental 

and timber assessment on various levels of forest ecosystem planning and management and 

for the global change science community (Corona & Marchetti, 2007). Standing volume and 

above-ground tree biomass are key parameters in this respect. Currently, fine-scale studies 

have demonstrated the influence of structural characteristics on ecosystem functioning: 

characterization of forest attributes at fine scales is necessary to manage resources in a 

manner that replicates, as closely as possible, natural ecological conditions. To apply this 

knowledge at broad scales is problematical because information on broad-scale patterns of 

vertical canopy structure has been very difficult to be obtained. Passive remote sensing tools 

cannot help for detailed height, total biomass, or leaf biomass estimates beyond early stages 

of succession in forests with high leaf area or biomass (Means et al., 1999). Over the last 

decades, survey methods and techniques for assessing such biophysical attributes have greatly 

advanced (Corona, 2010). Among others, laser scanning techniques from space or airborne 

platforms have developed to the point where they can provide vertical profiles of forest 

vegetation. 

As pointed out in the previous chapter, ALS systems provide a three dimensional point 

cloud, where over vegetated terrain some of the signals are caused by reflections in the 

                                                           
1
 This chapter has been published on European Journal of Remote Sensing, Vol. 45, pp. 27 – 37, March 2012, 

with the title:“Airborne Laser Scanning to support forest resource management under alpine, temperate and 

Mediterranean environments”. Authors: Corona P., Cartisano R., Salvati R., Chirici G., Floris A., Di Martino P., 

Marchetti M., Scrinzi G., Clementel F., Travaglini D. and Torresan. 
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vegetation canopy and some by reflections at the ground surface (Hollaus et al., 2006). Basic 

elaboration processes involves the elimination of LiDAR returns identified as below the 

nominal ground surface or above the expected canopy height, then the remaining LiDAR 

returns from the ground are separated from those from above ground targets (Donoghue et al., 

2007). 

The airborne LiDAR back-scattered signals can be used as they are (i.e. point data or 

waveform) or they can be spatially interpolated to produce digital models. Signals from the 

ground are used to produce Digital Terrain Models (DTM) while above ground returns are 

used to produce Digital Surface Models (DSM). In areas covered by trees the algebraic 

subtraction of DTM from DSM corresponds to the Canopy Height Model (CHM), which 

provides a measure of the height of the upper canopy for each forest pixel in the surveyed area 

(Kraus & Pfeifer, 1998). 

ALS data can convey a rich summary of forest features due to their ability to capture the 

forest heights: the accuracy of retrievable information is highly dependent on both the 

extrinsic specifications of the ALS survey as well as the intrinsic effects of the underlying 

forest structures. Most literature concerns applications under boreal environments (Maltamo 

et al., 2005; Næsset & Gobakken, 2008).  

 

2.2 Data availability  

ALS data most commonly used for forestry applications under alpine, temperate and 

Mediterranean environments are not produced by dedicated flights: forest technicians simply 

exploit the raster CHM available at low (Clementel et al., 2012) or even no cost from ALS 

surveys carried out for purposes other than forest applications. In Italy around 30% of the land 

has been covered so far for accurate hydraulic modeling. Laser-scanning data are the best 

information source for this kind of models, that are necessary to prevent damages by floods, 

as well to assure water resources for people and agriculture.  

However, surveys aimed to generate DTM or topographic measurements, to be used e.g. 

for land planning or hydrogeological purposes, are frequently characterized by a relatively 

low density of points per square meter and, above all, they are usually made in winter to 

minimize the noise by vegetation, since the aim is to achieve a high penetration rate through 

the vegetation canopy, i.e. to ensure that a high number of pulses reach the ground (Kraus & 

Pfeifer, 1998). In summer, penetration rates less than 25-30% are normally obtained under 

forest stands (Kilian et al., 1996). In the case of deciduous species (i.e. without green foliage 

during winter), which are those mostly frequent under temperate and Mediterranean forest 



8 

environments, these rates can significantly be raised by winter surveys (Ackermann et al., 

1994): thus, commercial ALS flights for DTM production are almost always made between 

November and March under temperate and Mediterranean environments and even under 

alpine environments, at least in those areas not permanently covered by snow in that period. 

On the contrary the most favorable season to obtain ALS data specifically suitable for forestry 

applications under temperate and Mediterranean environments is summer, since in winter 

only the wooden part of the prevalently deciduous canopies generates LiDAR-significant 

returns (Clementel et al., 2012). 

Summer and winter CHMs have been compared by Clementel et al. (2010) in an alpine site, 

showing strong correlation but with a systematic, significant stand height underestimation by 

the winter CHM. A tendency to slightly underestimate the real height is unavoidable with 

summer flights as well, because the pulse emitted by laser tends to penetrate into the canopy 

before a significant signal of return can be recorded and also, in the case of raster CHM, the 

point interpolation on regular cells determines a certain smoothing of tree height (Brandtberg 

et al., 2003). However the stand height underestimation from summer ALS data is negligible 

for most operative forestry purposes. In general, the most accurate information on the height 

of the upper canopy in forest areas can be obtained by comparing summer and winter ALS 

data for canopy height and DTM, respectively. 

 

2.3 Area-based and Individual Tree Crown approaches 

Experiences about exploitation of ALS data to support forestry are especially focused on: 

(i) qualitative and quantitative characterization of forest stands and description of their 

morphological and structural attributes; (ii) quantitative spatially explicit estimation of forest 

standing volume and biomass. Data sources and methods for this type of analysis is under 

evaluation at various scales: the value of LiDAR data derives from their ability to support the 

monitoring of ecosystem vertical structure which can be used to estimate aboveground 

ecosystem attributes.  

There are two broad categories of ALS data analysis approaches to support forest 

inventory and management: area-based approaches (AB), called also statistical canopy height 

distribution approaches, and individual tree crown approaches (ITC). 

In the AB approaches, plot level data is related to ALS data aggregated at plot level to 

estimate stand biophysical attributes; AB approaches relates CHM raster pixels or point ALS 

data to measured plot characteristics to build parametric (e.g. regression) or non-parametric 

models to predict the forest attributes of interest. Collective biophysical variables are 
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considered, referred to plots ranging from hundred up to thousand square meters; the 

established models have been shown to explain the majority of the variation in stand height, 

volume, and biomass (e.g. Næsset, 1997; Hudak et al., 2006; Hollaus et al., 2006; Garcia et 

al., 2010). 

The ITC approaches include all the methods based on the detection of the individual trees 

(or at least of the distinguishable trees) in a given forest stand. ITC approaches may use both 

raster CHM and point ALS data to build individual crown polygons and/or 3-dimensional tree 

profiles; these individual tree records can then be aggregated to any scale required to create 

stand-level or ecosystem-level estimates (Akay et al., 2009). 

AB and ITC approaches to estimating biophysical attributes are not mutually exclusive, 

and several authors demonstrated how they can be combined (e.g. Lindberg et al., 2010; 

Vastaranta et al., 2012). 

 

2.4 ALS - assisted assessment of forest stand and structure 

The accuracy and coverage of ALS observations in forestry application is highly 

dependent on both the extrinsic specifications of the LiDAR survey as well as the intrinsic 

effects such as the underlying forest structure. Various AB approaches have been used to 

characterize and classify forest stands in terms of mean height. Floris et al. (2010) have 

observed a correlation coefficient of 0.90 between mean height data measured on the ground 

(plot size of 1256 m
2
) and mean height measured on CHM in an alpine conifer forest. Barilotti 

et al. (2005) and Fusco et al. (2008) have obtained similar results in mixed conifers-

broadleaves forests, and in mixed broadleaved coppices, respectively. Other features related 

to hypsometric variables detected by ALS have been proposed by Floris et al. (2009), like 

stand density and canopy roughness identifying the multi-layered or mono-layered structure 

of the stand: these descriptive features, appropriately combined, can be exploited to guide 

both the delineation of forest management units and to support forest stand stratification for 

inventory purposes. 

Barilotti et al. (2005) have observed that the capability of the laser pulses to reach the 

ground in forest areas (laser penetration index, LPI) is inversely proportional to tree height 

and density of the stands; additionally, LPI proves to be closely and inversely proportional to 

the Leaf Area Index (LAI) measured on the ground, evidencing the potential of ALS data to 

feed ecological process models that rely on LAI assessment. 

ALS data can be used for forest canopy gaps detection, which is relevant both for the 

ecological studies of stand dynamics and even to exclude the gaps from the sampling process 
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for inventory purposes so to increase the sampling efficiency. Barbati et al. (2009) have 

applied the hot-spot analysis based on the calculation of the local statistic variable Gi* of 

Getis-Ord (Getis & Ord, 1992) in a coastal Mediterranean pine forest. Bottalico et al. (2009) 

did a comparison between the hot-spot analysis and the morphological functions proposed by 

Koukoulas & Blackburn (2004) to extract gap boundaries. Floris et al. (2009) have adopted a 

rule of spatial contiguity on a minimum surface under alpine conditions. Barilotti et al. 

(2007a) have developed automated extraction of individual trees from CHM: they have been 

detected through a sequence of morphological transformations by a Top Hat algorithm 

implemented under open-source GrassGIS environment (Neteler & Mitašova, 2004). Top Hat 

is a mathematical function of image processing that allows to highlight the relief structures 

(Schmidt & Hewitt, 2004), which in the case of forest stands are constituted by the tree 

apexes. Barilotti et al. (2007b) have also developed the automatic delineation of tree crowns 

by the subsequent use of a segmentation algorithm able to classify the laser points in subsets 

belonging to the individual crowns. The technique has proved to detect less than 80% of the 

trees in the examined alpine conifer stands, and even less in stands mainly composed by 

broadleaved trees. In the latter case, the delineation of individual tree crown contours is 

generally difficult, due to the frequent high geometric irregularity of crown shapes, high local 

variation of foliage and branch density and the more pronounced tendency of tree crowns to 

interpenetrate each other than in conifer stands (Heurich, 2008). Abramo et al. (2007) have 

applied the methods developed by Barilotti et al. (2007a, b) in various types of spruce, beech-

spruce-fir, spruce-fir, spruce and beech forests, detecting 71% of the trees with a stem 

diameter at breast height (dbh) greater than 5 cm, 89% of the trees with dbh greater than 17.5 

cm and about 94% of the dominant trees. ITC approaches based on segmentation algorithms 

was also used by Dalponte et al. (2011a), exploiting the algorithm developed by Hyyppä et al. 

(2001a, b), and by Forzieri et al. (2009), who have obtained acceptable results for stands 

where the ratio between the mean tree interdistance and the mean tree crown diameter is 

greater than 0.6. 

 

2.5 ALS - assisted assessment of forest standing volume and biomass 

Under alpine, temperate and Mediterranean environments the assessment of the forest 

standing volume and biomass has been mainly carried out by AB approaches (see 2.3). The 

strategy is to establish models predicting the stand attributes of interest on the basis of ALS-

derived metrics. Such metrics are computed by the raw (point or waveform) ALS data, that 
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allow to calculate plot metrics like number of returns, above ground elevation of highest 

return, height percentiles, coefficient of variation of return height, skewness and kurtosis of 

returns height, non-ground percent of total returns, etc., or simply by the raster CHM values, 

that allow to calculate plot metrics like mean height per pixel, coefficient of variation of the 

height per pixel or the sum of the heights of all the pixels in the plot. 

Corona et al. (2008) have examined the correlation between volume measured in circular 

plots of 314 m
2
 and the sum of the CHM heights (raised to a power) within plots in a 

temperate broadleaved forest. The relationship has proved to be heteroschedastic and linear 

through the origin, with correlation coefficient equal to 0.78. Starting from this finding, 

Corona & Fattorini (2008) have subsequently proposed a design-based approach for the AB 

ALS-assisted estimation of forest standing volume: adopting the height of the upper canopy at 

pixel level as auxiliary information, a ratio estimator of the total volume is derived, together 

with the unbiased estimator of its sampling variance and the corresponding confidence 

interval. With reference to the same above mentioned broadleaved forest, these authors have 

shown that the use of ALS data as auxiliary information can give rise to a confidence interval 

of the estimation approximately between half and two-thirds smaller than that obtained by 

field sampling plots only. Barbati et al. (2009) have tested the same estimation approach in a 

coastal Mediterranean pine forest, finding a correlation coefficient between the volume 

measured in circular plots of 1256 m
2
 and the sum of the CHM heights within the plots equal 

to 0.88. A study of Fusco et al. (2008) on mesophillous coppice stands confirms the 

relationship between the woody biomass and the sum of CHM heights, with a correlation 

coefficient equal to 0.87. Extensive AB experimentations for assessing forest standing volume 

under alpine environments have been carried out by Floris et al. (2010): these authors 

developed regression models between CHM metrics and standing volume measured in sample 

plots in spruce forests and found that the CHM mean height (excluding those pixels with 

height less than 2 m) can reliably predict the volume, with a correlation coefficient equal to 

0.94. Under alpine conditions, Tonolli et al. (2011) have also analyzed the relationship 

between the standing volume measured on plots with size ranging from 400 m
2
 to 3600 m

2
 

and metrics obtained from point ALS data: the most explicative metrics resulted the mean 

height of the first return and, with much less importance, the median of the heights of the 

second return. These authors also found that the relationship is significantly influenced by the 

plot size, with correlation coefficient increasing from 0.7 to 0.8 in the considered plot size 

range. 
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For professional application purposes and, distinctively, for forest planning, it is 

interesting to assess the accuracy of the ALS-assisted estimation over forest areas of a certain 

size (e.g., an entire forest compartment). In this case, if the estimates of standing volume by 

ALS metrics are unbiased, a compensation of positive and negative errors can be assumed, 

and good overall accuracy is presumed. Floris et al. (2010) have examined this topic for a 

compartment of 10 ha in an alpine spruce forest where a full callipering was available, 

observing a difference of the estimate of the total volume less than 3% with respect to the true 

value. Moreover, ALS-assisted models allow to map the variability of the volume at sub-

compartment level: this is an important and innovative issue for forest planning aims (e.g. 

harvesting planning), not achievable with the traditional forest inventory practices based on 

field plots only. Overall, the presented results demonstrate that AB approaches have now 

reached the maturity to be used for mapping forest canopy heights and stand volume and 

biomass under complex environments throughout large areas. 

ITC approaches (see 2.3) to predict forest standing volume or biomass comprise various 

steps: (i) single tree detection, (ii) ALS measurement of the height of each detected tree, (iii) 

prediction of dbh of each detected tree by inversion of the height-dbh relationship established 

in the field, (iv) estimation of the volume of each detected trees through double-entry (height, 

dbh) volume equations. Beyond the mentioned difficulties to pinpoint single trees (even if this 

issue is relatively less relevant for stand volume estimation since most volume is due to the 

bigger trees, which are those normally more reliably detected), this approach significantly 

involves error propagation across the considered steps. The results by Dalponte et al. (2011a) 

in alpine spruce forests shows that the capability of the ITC approach to assess tree dbh is 

relatively low (about 6 cm of absolute bias on trees with dbh equal to 45 cm), with 

overestimation for dbh up to 40 cm and underestimation for larger dbh, and standard errors of 

volume estimates around 0.7-0.8 m
3
 for trees with average volume around 2.3 m

3
. However, 

for the whole 481 examined trees, the bias of the volume estimation is only -5%. A study by 

Abramo et al. (2007) shows that the differences between the volume assessed by field plots 

and that predicted by the ITC approach is equal to 5-6% for spruce stands (except for a case in 

which the difference was 11%), 10% for beech high forests and around 19% for beech 

coppices. On the other hand, it is difficult to infer from the above results the reliability of the 

prediction over large areas, since in this case species identification of each detected tree is 

required (distinctive height-dbh and volume models are valid for the different species), 

making mandatory the tree species reconnaissance, e.g. by fusion of ALS data with multi- or 

hyper-spectral optical data (Dalponte et al. 2008; Tonolli et al., 2011).  
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2.6 Conclusions 

In the last years the interest of ALS applications is remarkably increased, because of ALS 

data ability to capture dimensional information of the Earth’s surface. The development of 

methodologies for ALS data processing has led to an increase of the number of applications 

also in forestry. Distinctively, in many boreal countries ALS techniques are already under 

operative use for obtaining information on forest standing volume, biomass and stand 

structural attributes. The overview presented in this paper highlights the relative suitability of 

ALS-assisted inventory procedures also with respect to alpine, temperate and Mediterranean 

environmental and operative conditions in Italy. 

Under such conditions AB approaches have been much more applied than the ITC ones. 

However, these latter may have distinctive relevance when the interest is not only the 

assessment of forest standing volume or biomass but also the 3-D representation of forest 

stands, as required e.g. for ecological studies (e.g. habitat suitability studies) or for studies and 

simulations related to aesthetic preferences. 

One of the main outcomes from the ALS area-based literature here considered is that 

mean height or median height or sum of the heights provides enough information for reliable 

estimation of forest standing volume, making even the simple auxiliary information provided 

by CHM very cost-effective to support forest inventories in many situations. This information 

is often available at low or even no cost from ALS surveys carried out for purposes other than 

forest inventories, while it is usually much harder or more expensive to get the whole original 

dataset of backscattered signal returns, as is required to compute metrics from ALS point or 

waveform data. 

The possibility to integrate ALS data in forest inventory over large areas using 

probability sampling schemes is an aspect to be further developed. In this perspective, the 

availability of ALS data can range between full coverage over a given territory, where ALS 

data can be exploited as ancillary data known for the entire population so to adopt e.g. a ratio 

estimation approach like that proposed by Corona & Fattorini (2008), to a sample of the 

territory based on transects below the flight lines to spot samples within transects, so to adopt 

e.g. a multiphase/multistage estimation approach like those proposed by Gregoire et al. 

(2011) and Ståhl et al. (2011). Maselli et al. (2011) investigated the application of parametric 

and non parametric methods to Landsat satellite imagery in order to extend stem volume 

estimation from LiDAR data taken over few strips to the entire forest area. 

A critical aspect of all the ALS-assisted procedures is the need for georeferencing and 

coregistration of both LiDAR measurements and ground truth locations. Ground reference 
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data collection represents an important element in the prediction of ALS-assisted estimation 

of dendrometrical attributes, and at present it is the most expensive part of such analyses. 

However, an experiment by Dalponte et al. (2011b) in an alpine site, where the presence of a 

complex landscape increases the uncertainty of the Global Positioning System (GPS) 

accuracy, has shown that the GPS error did not significantly influence the volume predict 

accuracy of AB approaches. These results, obtained in a complex mountainous area, allow to 

infer that similar (or better) results could also be obtained within non mountainous areas. 

A poorly investigated topic is the ALS detection of silvicultural systems under 

temperate and Mediterranean conditions, i.e. the discrimination between high forest and 

coppice stands. So far, no published paper covers such an issue, that has been long remained 

unresolved by optical remote sensing: conversely, since ALS can pinpoint the vertical 

structural properties of a forest stand, it should provide effective support information to such 

an end. Moreover, it would be likely possible to detect understory in forest or new forest and 

other wooded lands in rural abandoned spaces rapidly growing. Preliminary evidences seem 

to indicate that ALS data can distinguish sparsely-distributed individual trees and shrubs on 

forest-pasture and forest-field ecotones (Sankey & Glenn, 2011). 

Another relatively poorly investigated topic is linked to the attributes associated to the 

forest structure: for example, to what extent ALS information can be used in forest fuel 

models mapping, which is currently usually based on expensive field surveys. Few studies on 

this aspect (e.g. Seielstad & Queen, 2003; Mutlu et al., 2008) suggest the processing of ALS-

derived metrics able to distinguish some fuel models used as input data in fire behavior 

models, as it improves the forest fuel parameters estimation either by using information 

processed from ALS point data, when ALS metrics are significant predictors of canopy bulk 

density and canopy base height for generating maps of canopy fuels for input into fire 

behavior models, such as in FARSITE (Peterson et al., 2007), or combining multispectral 

passive imagery (e.g. Riaño et al., 2003; Mutlu et al., 2008; Erdody & Moskal, 2010). 

As mentioned, ALS paired with other optical remote sensing data is a well-established 

approach to spatially estimating forest attributes (Ioki et al., 2009; Straub et al., 2010; 

Breidenbach et al., 2010). The use of optical remote sensing data in conjunction with ALS 

data is helpful in both delineating crown boundaries and in differentiating between species. 

The ability to make species level distinctions is especially important when estimating 

merchantable timber volumes and biomass, as these attributes differ between species in trees 

that are the same size. 
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ALS technology is evolving very quickly and the forestry sector can directly benefit 

from it, as shown by the selected literature here presented and discussed. It is important to 

match processing methods with the appropriate scale and scope: some processing methods are 

valid at the plot scale, whereas other procedures perform well at the regional scale; to be 

effective, certain ALS data analyses require a minimum point density, whereas other methods 

perform well using large-footprint sensors (Pirotti, 2011). 

Due to the expected technical innovations of ALS systems (e.g., see Koch, 2010), it can 

be assumed that ALS data will play a even more prominent role in estimation of forest 

standing volume and biomass in the next years. Multitemporal ALS survey will even be 

potentially effective to support the assessment of current annual volume increment and the 

detection of harvesting rates and stand structural degradation. However, it is still particularly 

important to relatively lower data acquisition costs, so to make ALS data even more 

accessible for dedicated professional application. 
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Chapter 3 

 

3 Different applications of multi-temporal monitoring of variation in 

woody biomass availability for energy production in riparian forest
2

 

 

In this chapter an operational methodology to assess and map the aboveground woody 

biomass is presented. This approach couples optical remote sensing, ALS (raster CHM 

values) and field survey data and it is formulated as a case study on a poplar-dominated 

riparian forest in Central Italy. Experimental results point out the effectiveness of the 

proposed approach. 

 

3.1 Introduction  

As described in Section 2.5, many studies have been published in the literature dealing 

with the assessment of the aboveground biomass. In riparian forests, the high level of 

resilience and productivity of riparian tree species like Populus, contributes to the rapid 

biomass accumulation of riparian vegetation making these ecosystems of potential interest for 

biomass production for energy.  

Natural river systems are dynamic bodies that continuously change as a result of their 

inherent physical conditions. Frequent disturbances like floods, caused by seasonal variation 

of weather conditions, affect flow patterns on a local scale originating a complex mosaic of 

landforms and biological communities (Gregory et al., 1991; Dècamps, 1996), making rivers 

the most active component of the rural landscape. Riparian vegetation is adapted to this 

periodical disturbance. It naturally regenerates on the replenished habitat created by the 

redistribution of river sediments during floods, playing an important role in the maintenance 

of stream and riverbank stability (Bradbury et al., 1995).  

Riparian vegetation has an important function as a source of energy and matter for the 

aquatic ecosystems. In addition, riparian zones are an essential component of the integrity of 

river ecosystems, creating ecological corridors between other habitats, such as woodland, and 

promoting biological diversity at different scales. 

                                                           
2
This chapter has been published on Biomass and Bioenergy (2012) 

http://dx.doi.org/10.1016/j.biombioe.2012.10.023, with the title: “Assessing and mapping biomass potential 

productivity from poplar- dominated riparian forests: A case study”. Authors: Cartisano R., Mattioli W., Corona 

P., Scarascia Mugnozza G., Sabatti M., Ferrari B., Cimini D. and Giuliarelli D. 
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Besides these important ecological functions, riparian vegetation is also characterized by 

high biomass accumulation rates. Distinctively, riparian tree species like poplars and willows 

have generally high growth rates and a relevant resilience that allows them to recover 

ecosystem alterations in short times (Spinelli & Magagnotti, 2007). Because of the relatively 

high growth rates, riparian forests store large quantities of carbon whose estimation might be 

of interest for assessing bioenergy production potential in rural areas. In fact, the increasing 

biomass market is leading to a global re-evaluation of the multiple natural sources of energy. 

Current interest in biomass potential productivity from riparian forests is greater than in the 

past, when it was usually neglected due to the alleged poor quality. Nevertheless, very few 

studies have analyzed the potential of riparian vegetation as source of biomass for energy 

production and have considered the connected benefits 

and drawbacks from the economic, environmental and management points of view 

(Recchia et al., 2010). Monitoring data and methods for assessing the status and the rapid 

changes of riparian ecosystems over large geographic areas are lacking. In addition, just a few 

published data are available on the quantification and change of the carbon stock from 

riparian forests in comparison to other terrestrial ecosystems (Fail et al., 1986; Tufekcioglu et 

al., 2001). 

In this section, an experimental methodology for assessing and mapping the aboveground 

woody biomass is presented. The study is carried out on riparian forests that are characterized 

by rapid dynamics and high biomass accumulation rates. Results from this study provide a 

map at very high spatial resolution of the woody aboveground biomass that can be used to 

analyze its spatial distribution and to support the users for planning the harvesting. 

 

3.2 Experimental methodology 

Multitemporal land cover mapping is essential to investigate the dynamics of riparian 

vegetation. The rapid dynamic of riparian vegetation tied with ephemeral morphological and 

topographic conditions might lead to a quick obsolescence of the information acquired, thus 

demanding suitable change detection tools. Additional issues are related to human activities 

and land management (i.e. mineral extraction and agriculture) that can potentially affect 

biomass availability in riparian forest (Giese et al., 2003), making difficult to find an 

appropriate monitoring strategy. On the other hand, analyzing trends over large areas through 

a systematic monitoring approach is necessary to assess the conditions of riparian systems and 

the effectiveness of riparian management programs.  



18 

A methodology to quantify changes in riparian forest ecosystems and estimate variation 

in biomass stock, based on the integration of different remote sensing techniques (Fig. 3.1), is 

presented: 

- land cover change detection by on screen interpretation of multitemporal high 

resolution orthophotos supported by automatic segmentation, exploited in the case 

study to quantify changes in the surfaces of riparian forests along a given river 

tract over a period of seventeen years (see Section 3.2.2); 

- mapping aboveground woody biomass using spatialized biomass estimates at 

selected sampling plots representative of the investigated river tract by means of a 

spatially explicit model based on tree height canopy measured from ALS data (see 

Section 3.2.3). 

 

Figure 3.1 - Flow chart of the procedure proposed to assess and map the aboveground woody biomass of forest 

vegetation. 
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3.2.1 Study area 

The selected case study is located in the Paglia Valley (lat. 42°47'14'' N; long. 11°48'44'' 

E), in Central Italy. Paglia river is a western tributary of the Tiber river (Fig. 3.2 bottom). A 

bottomland two hundreds of meters wide, along a 14.6 km tract of the river was analyzed 

(total area 560 ha), (Fig. 3.2 upper).  

Paglia river drains a watershed of 1338 km
2
 (7.8% of the Tiber watershed) and more than 

27% of this area is above 900 m a.s.l. The climate is classified as temperate Mediterranean 

characterized by a gradient in the average annual precipitation within the watershed. Peak 

flows are reached in 24-48 h with episodic high levels from fall to spring, while low levels are 

generally present throughout summer. Floods are closely related to snow and rainfall patterns 

and sediments deposited where the slowing water can no longer move them, provide essential 

areas for the regeneration of poplars and willows. The forest constantly changes over time as 

a consequence of natural disturbance caused by frequent flooding and by human activities 

(gravel extraction, clearcuts). The riparian vegetation is characterized by vertical and 

horizontal patterning, reflecting the strong influence of flooding and water availability on 

species distribution. 

Tree stocking on the riverbanks is highly variable. Three forest types can be identified in 

the study area: (a) an uneven-aged poplar forest with abundant natural regeneration, both of 

gamic and agamic origin (Fig. 3.3), localized in the most dynamic areas of the river in 

association with willows (Salix spp.); (b) scattered groups dominated by alder (Alnus 

glutinosa L.) in the most frequently flooded areas without drainage; (c) Turkey oak (Quercus 

cerris L.) coppices regularly managed for firewood production, located to a greater distance 

from the river and less disturbed by the river dynamics. Secondary species, like Acer 

monspessulanum L., Acer campestre L., Carpinus betulus L., Fraxinus angustifolia subsp. 

oxycarpa M.Bieb. ex Willd., Fraxinus ornus L., Malus sylvestris Mill., Prunus avium L., 

Pyrus piraster L., Robinia pseudoacacia L., Quercus pubescens Willd., Ulmus minor Mill. 

can also be found. The shrub layer is represented mostly by Cornus mas L., Prunus spinosa 

L., Ligustrum vulgare L., Corylus avellana L., Crataegus monogyna Jacq., Sambucus nigra 

L. 
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Figure 3.2 - In the upper picture, the 200 m-wide buffer of the Paglia river investigated tract (14.6 km length) is 

shown with a black line; white dots show the location of field sample plots. On the bottom picture, the location 

of the study area at the boundary among Latium, Umbria and Tuscany regions (central Italy), within the Tiber 

river basin. 
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Figure 3.3 - Poplar natural regeneration on the Paglia riverbanks; seeds are produced every year and rapid 

germination takes place on moist mineral substrates. 

 

3.2.2 Land cover change assessment 

The dynamics of riparian vegetation was analyzed by comparing land cover maps 

produced by photointerpretation of one meter/pixel resolution greyscale aerial orthophotos, 

taken in summer in 1989 and 2006. The interpretation process was supported by an automatic 

multitemporal segmentation, using eCognition® software (Definiens Imaging, Germany), 

allowing the derivation of two multitemporal segmentation levels (i.e. a set of spectrally and 

spatially coherent objects), identical for both images (Fig. 3.4). The first level, with a scale 

factor equal to 100, a geometric homogeneity equal to 0.3, and a compactness equal to 0.9, 

was suitable to distinguish urban/arable areas from natural areas. At the second level of 
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segmentation, the scale factor was reduced to 50 to allow a correct identification of the limit 

of natural and semi-natural land classes. 

Figure 3.4 - Example of land cover change over the considered period (1989 - 2006); in the upper picture, the 

summer 1989 aerial orthophoto; in the middle the summer 2006 orthophoto; at bottom, the post-segmentation 

classification of land cover change (scale 1:3000). 



23 

Land cover classes were identified for each polygon created by the second level of 

segmentation in the years 1989 and 2006: 1. artificial areas (including gravel extraction sites, 

rural buildings and industrial areas); 2. cropland; 3. riparian forest; 4. shrubland; 5. riparian 

tree regeneration area (colonized mainly by poplar seedlings); 6. river-bed; 7. river; 8. 

grassland; 9. Turkey oak coppices; 10. oak reforestation; 11. fruit orchards. Land cover 

changes from 1989 to 2006 were assessed with reference to minimum mapping units of 5000 

m
2
 for artificial areas and cropland, and of 500 m

2
 for the other classes. 

 

3.2.3 Growing stock and aboveground woody biomass assessment from forest 

For 1986 the growing stock and aboveground woody biomass estimation was based on 

field sample plots. For 2006 the estimation was based on the ALS-assisted area-based 

approach proposed by Corona & Fattorini (2008), coupling ALS and field plots data. 

For the field survey, 37 circular 531-m
2
-wide permanent plots were randomly distributed 

across the area classified as forest. In the second inventory occasion, the center of each plot 

was geo-referenced applying a post-processing differential correction to the data recorded 

through a Global Positioning System (GPS) with an estimated accuracy of less than 1 m. 

The diameter at breast height (dbh) of all the trees within each plot was measured with a 

calliper (minimum threshold of 4.5 cm) and, for a subsample, the height was detected. 

Growing stock (GS) of wood volume from each plot was computed on the basis of allometric 

equations, based on tree dbh and height, developed within the first Italian National Forest 

Inventory (Castellani et al., 1984). The growing stock of wood volume was converted to 

aboveground woody biomass (WB, expressed in Mg) by the application of the equation WB = 

GS*BEF*WBD, where BEFs are the biomass expansion factors and WBDs are the wood 

basic densities reported in Table 3.1. 

The ALS survey was carried out by an ALS ALTM (Airborne Laser Terrain Mapper) 

Gemini which employed a laser at 1064 nm, installed on I-GIFE plane. The average flying 

height was 1300 m a.s.l., with a total scan angle of 23°. The swath width was 700 m and the 

light beam was 1 cm, with a vertical accuracy of 15 cm. A Digital Terrain Model (DTM) and 

a Digital Surface Model (DSM) with a geometric resolution of 1 m were produced through 

ALS data elaboration. The raster Digital Canopy Model (DCM) was derived by algebraic 

subtraction of the DTM from the DSM, providing the height of the upper canopy for each 

pixel included in the forest survey. 

 



24 

Table 3.1 – Adopted biomass expansion factor and wood basic density for each considered forest type (source: 

APAT, 2007). 

 

Typology Forest type BEF WBD 

Coppices 

Hornbeam 1.28 0.66 

Turkey oak 1.23 0.69 

Other oaks 1.39 0.65 

Other broadleaves 1.53 0.53 

Protective Riparian forest 1.39 0.41 

 

For the first inventory occasion, the estimation of the total of the aboveground woody 

biomass (and of the growing stock) was carried out by the classical estimator of simple 

random sampling without replacement. For the second occasion, the estimation was carried 

out according to the mentioned ALS-assisted area-based approach (Corona & Fattorini, 

2008). Distinctively, the total (TA) over a given area A was estimated as 

xAA TkT ˆˆ               (1) 
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 


N

j jxA hT
1


          (2) 

hj = height of the upper canopy provided by DCM for the j-th pixel 

N = total number of pixels over the given area A 

PTk ˆ            (3)
 

 


n

i iT
n

T
1

1
          (4) 

where Ti is the aboveground woody biomass (or the growing stock) measured in the i-th 

sample plot and n is the number of sample plots 
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where Pi is the total of the heights (raised to power β) of the upper canopy provided by DCM 

over the set of the pixels belonging to the i-th sample plot. 

The standard error of   was estimated as 
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where c = A/a, with a equal to the sample plot size (expressed in the same measurement unit 

of A). 
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The value of the power β was pinpointed on the basis of the observed relationship 

between Tis and Pis. The highest correlation coefficient and the lowest relative root mean 

squared error were obtained with a value of β equal to 2.5 (Fig. 3.5), both for the aboveground 

woody biomass and the growing stock. 

The adopted ALS-assisted area-based approach allowed also to map the aboveground 

woody biomass (and the growing stock) by multiplying by k̂  the total of the heights (raised to 

power β) of the upper canopy provided by DCM for each 531-m
2
-wide set of pixels covering 

the entire investigated area. 

 

Figure 3.5 - Relationship between the observed aboveground woody biomass in the sample plots and the total of 

the heights (raised to 2.5) of the upper tree canopy provided by the raster ALS-derived CHM over the set of the 

pixels belonging to the same plots. 

 

3.3 Results 

Land cover change over the observed period is shown in Table 3.2. The most substantial 

land cover change between 1989 and 2006 concerns riparian forests with a meaningful 

expansion of the poplar forest area. In spite of a decrease of 7 ha of the riparian forest, 81 ha 

of poplar forest were created with a mean annual rate of increase of 4.6 percent. Other 

expanding land cover classes are artificial areas and managed Turkey oak coppices, but both 

with a moderate increase. There have not been meaningful changes for cropland, while the 
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area of all the other land cover classes has decreased. The highest mean annual rate of area 

loss was observed in the river-bed class. Shrub vegetation and grassland have also shrunk 

significantly over the examined period.  

 

Table 3.2 – Land cover classes in 1989 and in 2006 and corresponding mean annual rate  

( 100*)1(17
19892006 AA ) of expansion/reduction. 

Land cover classes 
Area (ha) Mean annual rate of 

expansion/reduction 

(%) 
1989 2006 

Artificial areas 14.3 16.0 0.66 

Cropland 255.0 254.1 -0.02 

Riparian forests 64.1 137.9 4.61 

Shrubland 84.1 58.8 -2.08 

Riparian tree regeneration 8.9 4.4 -4.12 

River bed 66.7 28.4 -4.90 

River 22.9 21.2 -0.45 

Grassland 26.4 16.0 -2.90 

Turkey oak coppices 16.2 16.5 0.09 

Oak reforestation 0 3.1 - 

Fruit trees 0 4.8 - 

 

The most significant transition over the 1989-2006 period has concerned the shrubland 

change to riparian forest. Other main classes contributing to the riparian forest expansion 

were the river-bed and the river (Fig. 3.6). 

Around 10 percent of the riparian forest comes from areas detected as riparian 

regeneration in 1989 and, finally, a slight increase of the riparian woodland was also due to 

the change from croplands. There were no substantial transitions from forest to other land 

cover classes: the river dynamic (expressed by the river and river-bed classes) has led to a loss 

of 4 percent in terms of area, while another 4 percent of the riparian forest was changed into 

cropland. 
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Figure 3.6 - Transition to forest from other land cover classes (in black) and from forest to other land cover 

classes (in grey) over the 1989 - 2006 period. 

 

The total volumes assessed for the riparian forest and for the Turkey oak coppices in 

2006 are 19,452 m
3 

(146 m
3 

ha
-1

) and 1650 m
3
 (100 m

3
 ha

-1
), respectively. The overall volume 

in the surveyed area is 137 m
3 

ha
-1

. The total woody aboveground biomass of the riparian 

forest is 5945 Mg (relative standard error = 21.8%) in 1989 and 11,650 in 2006 (relative 

standard error = 11.8%). The higher precision of the estimate from the second inventory 

occasion is due to the contribution by the ancillary ALS data through the adopted model-

assisted procedure. Fig. 3.7 shows the map of the aboveground woody biomass in 2006: the 

highest values were recorded in the lower tract of the river, with a maximum value of around 

340 Mg ha
-1

. 
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Figure 3.7 - Map of the aboveground woody biomass in the investigated tract of the Paglia river. 
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3.4 Discussion 

This study synthesizes the main outcome of a methodological exercise to test the 

assessment and mapping of aboveground biomass dynamics of a poplar-dominated riparian 

forest along a 14.6 km tract of the Paglia river, in Central Italy. The results show that the 

surface of riparian vegetation has significantly changed over the considered seventeen-years 

period. More than 70 hectares of new poplar-dominated forest were naturally regenerated 

during the 1989-2006 period, evidencing the rapid changes characterizing these environments. 

Shrub vegetation and grassland have decreased in favour of the riparian forest. Surfaces 

covered by river and river-bed in 1989 have been colonized by riparian forest as redistribution 

of river sediments during floods has favored the re-colonization of the newly replenished 

habitat. Over the examined period there were no substantial transitions from forest to other 

land cover classes. In the study area, the land cover changes have been probably influenced by 

human operations causing the variation of the hydrological regime due to flood protection 

measures and extraction activities impacting the morphology of the riverine system. This has 

determined the presence of locations where silt and clay settle out and poplar seedlings find 

suitable conditions for a quick establishment. 

The main motivation of this work was to gather reliable information at high spatial 

resolution on the biomass potential from riparian forest environments, for which very few 

data can be found in the literature. Multitemporal optical remote sensing data, combined with 

the imagery segmentation process and improved by ALS data in the second inventory 

occasion, have allowed the rapid identification and quantification of the surfaces affected by 

the dynamics of riparian vegetation. Distinctively, the survey approach here proposed, based 

on the ALS-derived CHM, has proved to be highly effective to support the assessment of the 

riparian forest wood volume and biomass, providing comparable results in terms of accuracy 

to previous experiments carried out under different forest environments (Corona & Fattorini, 

2008; Corona et al., 2008). Using solely canopy height, instead of more sophisticated ALS 

metrics, leaves out some information, but this survey approach is truly feasible from a 

practical point of view: first of all, full coverage of raster CHM is often available at low or no 

cost (as a byproduct from ALS surveys on large territories committed, mainly by public 

administrations, for purposes other than forest applications) while it proves to be much more 

expensive (or harder when public administrations are the data owners) for forest professionals 

to get the whole original data sets of back-scattered LiDAR signal returns, as is required to 

calculate more sophisticated ALS metrics; furthermore, the handling of raster CHM is much 



30 

more straightforward for forest professionals than the handling of the original data sets of 

back-scattered LiDAR signal returns. 

A map of the aboveground woody biomass, as produced in this study, can be used to 

analyze its spatial distribution so to support the users for planning the precision harvesting of 

aboveground woody biomass of riparian stands, whose distribution is usually not 

homogeneous, as demonstrated by the case study: in the examined river, a maximum value of 

about 340 Mg ha
-1

 was found in the last tract of the sampled area while much lower values 

were assessed in the middle tract where the proximity of the extraction quarries has 

continuously influenced negatively the regeneration of the riparian forest. 

Coupling the cleaning of the river bed for hydraulic maintenance to the utilization of the 

obtained biomass for energy production may offer relevant opportunities for the energy 

biomass supply: harvesting practices can be safely encouraged given the assessed high 

regeneration capacity of riparian forests. Nearby the case study, harvesting rates of 80-85% 

(around 70 Mg ha
-1

) of available biomass in poplar-dominated riparian areas managed with 

clearcut did not have a negative impact on the preservation of the riparian forest; these areas, 

in fact, appear to be immediately recolonized by poplar regeneration. However, the 

percentage of the deliverable biomass has to be modulated depending of the levels of the 

hydraulic risk, affecting the different tracts of the river. Despite this, such interventions 

appear to be economically sustainable for the energy production (Spinelli & Magagnotti, 

2007; Spinelli, 2005) and for the actual working conditions, generally favorable to the 

harvesting operations. 

 

3.5 Conclusions 

Woody biomass from riparian forests may constitute an important source of biomass for 

the small-scale energy production. In the examined case study, an average aboveground 

woody biomass of about 90 Mg ha
-1

 was assessed within poplar-dominated riparian forest, 

corresponding to an amount of available biomass of 800 Mg km
-1

 along the river axis. For 

comparison, in Italy the riparian forests, which cover nearly 0.3 million hectares (i.e. 1% of 

the national land area), are characterized, on average, by woody biomass around 60 Mg ha
-1 

(INFC, 2005). A recent study by Spinelli & Magagnotti (2007) estimated the biomass 

available from the cleaning of river beds to be higher than 400 Mg km
-1

, assuming a selective 

wood removal: such an amount, albeit lower than those usually exploitable from specialized 

forest crops, highlights the unnegligible woody biomass harvesting potential within riparian 

environments. 
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Under such a perspective, the innovative strategy here proposed to assess and map at a 

very high spatial resolution the aboveground woody biomass of riparian forest meets the 

monitoring requirements to support energy production based on modern, non-conventional 

biomass harvest planning options (Lasserre et al., 2010).  
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Chapter 4 

 

4 Analysis of the spatial variability of Mediterranean fuel models 

 

In this chapter an experimental test for investigating the structural variability of 

Mediterranean fuel models is presented. An analysis of the effectiveness of ALS raw and 

raster data in the estimation process is performed and two different methodological 

approaches coupling ALS data processing with field sampling are presented . Experimental 

results from this analysis highlight the potential of ALS data to provide detailed map of the 

spatial distribution of forest fuels and the quantification of the structural parameters able to 

characterize fuel types.  

 

4.1 Introduction 

An accurate description of the forest in terms of fuel conditions is essential to support fire 

management and to predict fire risk (Chuvieco et al., 2004). 

The description of fuels is extremely complex because multiple variables must be 

considered. The total amount of biomass in the different forest components (herbs, shrubs, 

trees), fuel structural characteristics (surface-area-to volume ratio, fuel density, fuel loading, 

height and stratification of fuel strata), fuel chemical composition and moisture content all 

affect fire behavior. To simplify the description of a forest area in terms of these 

characteristics, vegetation types with similar fuel conditions are grouped together under "fuel 

types". Forest areas classified within the same fuel type have similar fire hazard and/or fire 

propagation behavior (Hardy, 2005; Pyne et al., 1996).  

Several fuel type classification systems are used worldwide (Arroyo et al., 2008). One of 

the most widely used is the system of 13 standard fuel types developed by the Northern Forest 

Fire Laboratory (NFFL), Rocky Mountain Research Station, U.S. Forest Service (Burgan & 

Rothermel, 1984) and used for input by the most common fire simulation models (Behave, 

Farsite). These fuel type models, known as standard Fire Behavior (Albini, 1976; Burgan & 

Rothermel, 1984), were designed to describe the characteristics of surface fuels over large 

areas. Fuel types associated with the different forest cover types may fall into grassland, 

shrubland or ground litter types depending on the vertical structure of fuelbeds and, 

accordingly, the fuelbed stratum identified as the main vector for surface fire propagation 
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(grass/shrub understory, ground litter); thus, the same fuel model can identify different forest 

stands in terms of species composition, management and silvicultural treatments. In 

Mediterranean areas, landscapes are usually characterized by a fragmented distribution of 

remnant vegetation with high heterogeneity and complex mixed structures (Agee & Skinner, 

2005). For this reason, the parameters of the fuel models can be significantly different if 

compared to standard models. In this direction, specific adjustments of NFFL models to 

Mediterranean conditions have been proposed, in particular through a calibration of 

parameters like surface area-to-volume ratio, fuel load and fuel structure (Rodríguez y Silva 

& Molina Martìnez, 2012).  

In Europe the Prometheus system (Chuvieco et al., 2003) is an adaptation of the NFFL 

classification to Mediterranean conditions and comprises seven fuel types based on the type 

and height of the propagation element divided into three major groups: grasses, shrubs and 

ground litter (Fig. 4.1). 

Semi-empirical fire behavior modeling programs such as FARSITE (Finney, 1998) and 

FlamMap (Finney, 2006) integrate input spatial data including fuel types and their structural 

attributes (crown height, canopy cover), topography and weather to predict wildfire growth 

and crown fire initiation and propagation (Fig. 4.2). Most of these input data are derived from 

layers of coarse spatial resolution which leads the pixels to be spatially homogeneous over 

relatively large areas (Finney & Andrews, 1994). 

 

Figure 4.1 - PROMETHEUS fuel types (Arroyo et al., 2006). 
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Figure 4.2 - FARSITE input layers for landscape topography and vegetation (from Finney, 2007). 

 

As pointed out in Chapter 2, ALS technology provides high spatial resolution data that can 

effectively improve the spatial estimation of fuel structural parameters for fire behavior 

modeling. In this perspective, a key issue is to investigate to what extent ALS information can 

be used for the structural characterization of forest fuel models, currently based on expensive 

field surveys, and for mapping key structural attributes (canopy height, volume, aboveground 

biomass) for fire behaviour simulation.  

Continuous maps of a given attribute can be potentially derived by coupling remotely-

sensed data over the whole region of interest and ground plot data collected by field surveys 

(Corona, 2010). Notably, finding robust statistical relationships between ALS data and ground 

measurements of forest structural variables allows the statistical reliability of the ground 

sampling to be combined with the high spatial resolution of ALS data. In this direction, the 

field data collection has an important role and, when performed according to a defined 

sampling design, permits to generate maps over the entire extent of the ALS data coverage, 

through the statistical analysis of the relationship between ALS metrics and structural 

attributes (Montaghi et al., 2012).  

The spatial localization of the sampling points should be performed according to specific 

sample schemes able to provide an adequate representation of the fuel models in the 

investigated area. In this context, the reference point is given by systematic or stratified 
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sampling designs (Corona & Marchetti, 2007). The accuracy of the sampling points 

positioning is crucial for the development of estimation procedures based on ALS data 

processing. Current Global Positioning Systems (GPS) limit the positional error within 1-2 m 

making possible a comparison of field measurements with ALS data in a neighborhood of a 

magnitude higher ( e.g. circular sampling plots with 12-20 m radius). The sampling plot can 

be structured according to the third phase ground plot of the Italian National Forest Inventory 

of Forests and Forest Carbon Sinks (INFC, 2005; Tabacchi et al., 2006) in order to derive 

quantitative estimates of forest fuels in a standardised way. In this perspective, the sample 

unit can be constituted by circular concentric plots including different size areas around the 

sample point. 

These considerations have motivated the experiments presented in this chapter whose aim 

is to propose a methodological approach based on the integration of ALS data and field 

surveys to: 

- investigate which ALS metrics can be selected for the structural characterization of 

fuel types; 

- perform the spatial estimation of key structural parameters of forest fuels (canopy 

height, volume, aboveground biomass). 

The expected outcome should help future implementations of ALS data in forest fire 

prevention by providing input data for decision support system for planning fuel treatments at 

forest stand and landscape scales. 

This chapter is organized as follows: section 4.2 describes the study area and data used; 

section 4.3 presents the methodological approach through two experiments focusing on the 

integration of ALS data processing and field sampling. Section 4.4 illustrates experimental 

results and, finally, section 4.5 discusses the outcomes of the experiments providing some 

conclusions. 

 

4.2 Dataset description 

Two areas of 487 km
2
 and 165 km

2
, located in Sicily in the provinces of Palermo and 

Agrigento respectively, were considered (Fig. 4.3). Both study areas are characterized by 

typical Mediterranean climate (meso - and termo Mediterranean climate), with a bi-seasonal 

regime of hot/dry summers and cold/wet winters. Elevation ranges from 2 m to 1879 m a.s.l. 

in the largest area and from 198 to 1434 m a.s.l. in the smaller area. A mosaic of land cover 
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types is found in both study areas, including agricultural lands, grasslands, shrublands and 

forest land.  

A digital fuel map was available for both the study sites (source: Sicily Forest Inventory). 

The map was recently developed by manual on-screen delineation of high resolution (1 x 1 m) 

digital orthophotos supported by an intensive field campaign for all Sicily. With an overall 

accuracy of 85%, the fuel type map was assumed to be error free for this study. Details 

concerning the map features can be found in Hoffman et al. (2011). The map depicts a 

classification of fuel complexes with respect to the NFFL fuel types (Burgan & Rothermel, 

1984) for forest stands, open shrublands and grasslands of the Sicily island with a nominal 

geometric resolution of approximately 0.1 ha. Fuel types associated with the different forest 

cover types may fall into grassland, shrubland or ground litter types depending on the vertical 

structure of fuelbeds and, accordingly, the fuelbed stratum identified as the main vector for 

surface fire propagation (grass/shrub understory, ground litter). A full description of the 

nomenclature system is reported in Table 4.1. 

ALS data were available for both the areas and were acquired during July and August 2010 

by an Optech Pegasus system on board of a Piper Navajo I-BGFE with a scan angle of 20° at 

100 KHz resulting in an average density of 1.5 points per square meters.  
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Figure 4.3 - Location of the study sites on the basis of the fuel type map (the legend of the system of 

nomenclature is reported in Table 4.1).  
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Table 4.1 - Fuel characteristics of the fuel types mapped in Sicily. 

NFFL 

Fuel type 

N.° 

Main propagation 

element 
Fuelbed structure 

Associated 

forest types 

Fuel 

load (t ha
-1

) 

1 Grassland 

Dry short grass (< 1 m)  

1-2 Sparsely wooded grassland 

(tree cover < 50%) 

Quercus ilex 

Fagus 

sylvatica 

2 Grassland 

Scrubby land with mainly 

herbaceous vegetation 
 

5-10 
Low cover woodland/shrubland 

(< 50%) with grass understory 
 

Forest plantations with grass 

understory 

Eucalyptus 

plantations 

3 Grassland Dry tall grassland (1 m)  4-6 

4 Shrubland Continuous tall shrubland (2 m)  25-35 

5 Shrubland 

Continuous low open shrubland 

(<1 m) 
 5-8 

Forest with low shrubland 

understory (< 1m) 

6 Shrubland 

Open shrubland (0,6-1,2 m) 

with cover > 50% 

 10-15 Low (< 2m) deciduous 

woodland with shrubland 

understory 

7 Shrubland 

Open high flammable shrubland 

(0,5-2m) 
 

10-15 
Forest with high flammable 

shrubland understory 

Quercus suber 

Quercus 

pubescens 

Pinus 

halepensis, Pinus 

pinea, Pinus 

pinaster 

8 Ground litter 

Broadleaved dominated forest 

with compact litter 

Fagus 

Robinia 

10-12 Short-needle (<5 cm) 

coniferous plantations with 

undecomposed litter 

Abies 

Cedrus 

Cupressus 

9 Ground litter 

Deciduous broadleaved 

dominated forest with not compact 

litter 

Quercus ilex 

Quercus suber 

Quercus 

petraeae and 

Quercus 

pubescens 

Quercus cerris 

Castanea 

sativa 

7-9 

Thermophilous pinewoods 

Pinus 

halepensis, P. 

pinea, P. pinaster 
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4.3 Experimental design 

Two main experiments were performed in the study areas: 

1) Experiment 1: analysis of the potential use of ALS-based metrics for structural 

characterization of fuel types using the bagging/boosting classification tree method 

characterized as Stochastic Gradient Boosting (SGB). This experiment was carried out in both 

study areas described in Section 4.2 using a tessellated stratified sampling scheme for the 

extraction of ALS metrics in different fuel types. Results obtained using SGB are compared to 

results obtained using traditional CART and Random Forests methods. 

2) Experiment 2: spatial estimation of forest structural parameters (canopy height, volume, 

aboveground biomass assisted by ALS-based metrics). The focus for this experiment was the 

study area 1, located in the Oriented Natural Reserve "Bosco Favara and Granza", in the 

Madonie Regional Natural Park. The parameters have been assessed through an integrated 

approach that couples ALS data and field surveys. The methodology allowed to map canopy 

height and the aboveground woody biomass for the areas where ALS coverage and field 

surveys were available.  

 

4.3.1 Experiment 1: use of ALS-derived metrics for the characterization of fuel types 

The study areas were sampled using a tessellation stratified sampling scheme (Barabesi & 

Franceschi, 2011). The areas were divided into 100 x 100 m squares, a point was randomly 

selected in each square, and a 30 x 30 m plot with random orientation was centred at each 

point. This procedure produced 12,772 plots in Area 1 and 3989 plots in Area 2. The plots 

were intersected with the fuel types map, and only those entirely contained in a single fuel 

type were retained for further investigation; the result was a total of 16,761 plots (Fig. 4.4).  

ALS data, in LAS- file format (Graham, 2005), were filtered and classified through 

appropriate techniques in order to eliminate data errors (e.g., low points, isolated and air 

points). A Progressive Triangular Network (TIN) densification method, developed by 

Axelsson (1999; 2000) and implemented in Terrascan software (Soininen, 2010), was used to 

classify the point cloud into ground and non-ground returns. These filtered ground returns 

were used to generate a 1 x 1 m pixel resolution Digital Terrain Model (DTM) using an 

Inverse Distance Weight (IDW) interpolation method (Andersen et al., 2005; Vepakomma et 

al., 2008).  
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Figure 4.4 - Example of the sampling design adopted on the basis of the fuel type map (colors refer to the legend 

in Figure 4.3 and labels to Table 4.1) and the digital orthophoto originally used for its delineation. Sampling 

points (in yellow) inside systematic squares of 100 m x 100 m (in grey). Around each sampling point one 

squared plot 30 m x 30 m (in white) is generated with random orientation. 

 

Based on previous reported research results (e.g. Næsset, 2002; Andersen et al., 2005; 

Evans et al., 2009; Falkowski et al., 2009; Tesfamichael et al., 2010; Estornell et al., 2011), 

31 ALS-based metrics were calculated from the normalized height returns for each 30 x 30 

plot, to investigate structural differences among fuel types. 

Descriptions of the selected ALS-based metrics are reported in Table 4.2. The metrics are 

either pure numbers or "heights above ground level" measured in meters. The majority are 

statistics characterizing the distributions of the "heights" of the returns of ALS pulses within 

the plots. Because stratified structures characterize Mediterranean vegetation, some metrics 

have been derived by splitting the returns into three, equally spaced, vertical levels and 

computing statistics for each level. The "Canopy coverage" metric is calculated as returns 

percentage where pulses with height greater than 0 m are considered as non-crown returns.  
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Table 4.2 - Definition and main statistical parameters for the ALS-based metrics calculated in the study areas. 

Metric in the short name of the metric. 1
st
QU, Median, 3

rd
QU and Max (the first quintile), are the statistical 

parameters in the study sites. 

 Metric Mean Min 1stQu Median 3rdQu Max M.unit Definition 

1 Returns . 10 157 492 1066 13509 count number of returns from the plot 

2 Hmax 6,5 0,1 1.9 5.1 9.5 50.1 m 
above ground elevation of highest 

return 

3 Hmean 2.2 0.0 0.4 1.2 3.2 17.9 m mean height of all returns 

4 Hmin 0.0 0.0 0.0 0.0 0.0 0.3 m lowest height among all returns 

5 CV 80.0 19.6 60.7 76.0 95.1 303.5 p.n. CV of returns height 

6 texture 0.2 0.0 0.2 0.2 0.3 0.4 m 
standard deviation of non-ground 

returns [0 m <  h <= 1 m]; 

7 Skewness 0.9 -2.4 0.2 0.8 1.4 8.1 p.n. skewness of returns height 

8 Kurtosis 1.2 -1.9 -0.7 0.1 1.8 82.3 p.n. kurtosis of returns height 

9 relHmean 0.3 0.0 0.2 0.3 0.4 0.8 p.n. 
relative mean height [(mean-

min)(max-min)] 

10 CanopyC 34.3 0.5 10.3 30.5 56.4 91.8 p.n. non-ground percent of total returns 

11 Pct10 0.5 0.0 0.1 0.1 0.3 13.6 m percentile 10 of heights distribution 

12 Pct20 0.9 0.0 0.1 0.3 0.6 15.8 m percentile 20 of heights distribution 

13 Pct30 1.3 0.0 0.2 0.4 1.3 17.1 m percentile 30 of heights distribution 

14 Pct40 1.7 0.0 0.2 0.5 2.3 18.0 m percentile 40 of heights distribution 

15 Pct50 2.1 0.0 0.3 0.7 3.0 18.6 m percentile 50 of heights distribution 

16 Pct60 2.5 0.0 0.4 1.0 3.7 19.3 m percentile 60 of heights distribution 

17 Pct70 2.9 0.0 0.5 1.4 4.5 25.8 m percentile 70 of heights distribution 

18 Pct80 3.5 0.0 0.6 2.1 5.2 31.2 m percentile 80 of heights distribution 

19 Pct90 4.2 0.1 0.9 2.9 6.3 37.0 m percentile 90 of heights distribution 

20 Pct99 5.7 0.1 1.6 4.4 8.4 46.5 m percentile 99 of heights distribution 

21 Density1 0.4 0.0 0.2 0.4 0.6 1.0 p.n 
cumulative density of returns above 

Hmax/3 

22 Density2 0.1 0.0 0.0 0.1 0.2 0.9 p.n. 
cum. dens. returns between 1 and 2 

times Hmax/3 

23 Rets1pct 58.9 1.6 41.7 62.1 77.6 99.3 p.n. percent of returns above Hmax*2/3 

24 Hmean1 0.9 0.0 0.2 0.5 1.1 5.3 m 
mean height of returns above 

Hmax*2/3 

25 CV1 69.2 0.2 55.7 66.1 79.8 333.4 p.n. CV of heights above Hmax*2/3 

26 Rets2pct 28.8 0.2 15.8 27.5 40.8 81.5 p.n. 
percent of returns between 1 and 2 

times Hmax/3 

27 Hmean2 3.2 0.1 0.9 2.5 4.6 31.4 m 
mean height of returns between 1 and 

2 times Hmax/3 

28 CV2 18.6 0.1 17.7 18.8 20.0 45.4 p.n. 
CV of heights between 1 and 2 times 

Hmax/3 

29 Rets3pct 11.7 0.2 4.2 8.6 16.1 84.5 p.n. percent of returns below Hmax/3 

30 Hmean3 5.1 0.1 1.5 4.0 7.4 41.7 m mean height of returns below Hmax/3 

31 CV3 10.2 0.0 9.0 10.1 11.4 28.2 p.n. CV of heights below Hmax/3 

Note:  p.n. = pure number 

 

 

Observations for a random 10% sample of the 16,761 plots were extracted for each fuel 

type and used as a training dataset for developing CART models.  The remaining observations 

were used as a validation dataset to calculate classification accuracies (Congalton & Green, 

2008). The analyses focused on testing three non-parametric classification algorithms based 
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on the CART approach. The first algorithm is a simple CART (Breiman et al., 1984); the 

second is based on a trees ensemble constructed using the Random Forests procedure 

(Breiman, 2001); and the third is a stochastic gradient boosting (SGB) model (Friedman, 

2002). All three algorithms are implemented in the Salford Systems Predictive Modeling 

Suite (SPM) and are commercially known as CART®, RandomForest® and TreeNet™, 

respectively (http://www.salford-systems.com/spminfo.html). 

For each classification method, the importance of each predictor variable was assessed on 

the basis of the improvement in classification accuracy that could be attributed to the variable. 

For each method, improvement values were scaled relative to the best performing predictor. 

The scores in percentages reflect the contribution each variable makes in classifying or 

predicting the response variable (Tolliver, 2009). In the cases of Random Forest and SGB, the 

values were averaged across all trees. 

The models were constructed using the training datasets and then applied to predict the 

response variable for the validation data set. The resulting classifications were evaluated by 

cross-tabulating predictions and observations using a confusion matrix and calculating 

traditional accuracy indexes: overall accuracy, producer’s and user’s accuracies, and 

commission and omission errors (Congalton & Green, 2008). 

 

4.3.2 Experiment 2: integration of raster ALS data and field survey for spatial 

estimation of target forest structural parameters 

The experiment was carried out only the study area 1, located in the province of Palermo. 

In the selected area, different forest occur: Quercus pubescens, Quercus suber and Quercus 

ilex located between 400 and 600 m a.s.l. in the Oriented Natural Reserve "Bosco Favara and 

Granza"; high forests of Fagus sylvatica between 1000 and 1800 m a.s.l. in the Madonie 

Regional Natural Park. The aim of the study was to assess some of the most relevant 

parameters characterizing the forest fuels, such canopy height, woody volume and 

aboveground biomass using an experimental approach that couples raster ALS data and field 

survey and to produce high resolution maps of the considered variables. For the field survey, 

41 sample plots were distributed throughout the study area according to a non-aligned 

sampling scheme to discriminate the different fuel types and to derive the quantitative 

parameters for each fuel model (Table 4.3). In order to standardize field data collection, 

sample unit (Fig. 4.5) follows INFC design with two concentric circles, respectively of 13 
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(Ads13) and 4 (Ads4) m, for measurement of the attributes reported in table 4.3. Four 1-m
2
 

squared-shaped subplots are designated to assess ground fuel load.  

 

 

Table 4.3 - Attributes detected in the sampling units for the characterization of forest fuel (dbh = diameter at 

breast height of the tree; H = tree height). 

Plot 

sample 

sub-unit 

Measured 

elements 

Size 

threshold 
Attributes 

Main 

assessed 

parameters 

Ads13 
Standing 

trees 

dbh≥ 9,5 

cm 

H≥130 cm 

specie, D1,30, height, 

azimuth, distance from the 

center of the area 

volume 

aboveground 

woody biomass 

Ads4 
Standing 

trees 

dbh≥ 2,5 

cm 

H≥130 cm 

specie, D1,30, height, 

azimuth, distance from the 

center of the area 

volume 

aboveground 

woody biomass 

Subplot Trees 
dbh≤ 2,5 

cm 

Canopy cover, 

mean height 

aboveground 

biomass 

Subplot Shrubs  
Canopy cover, 

mean height 

aboveground 

woody biomass 

Subplot 
Herbaceous 

species 
 

Canopy cover, 

mean height 

aboveground 

woody biomass 

 

Figure 4.5 - Layout of the field sample plot components. Each circle represents a different sampling unit 

with specific measurement (see table 4.3). 
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Within each plot, the dbh and the trees height were measured and the height curve was 

calculated. The volume per hectare was computed on the basis of allometric equations 

(Tabacchi et al., 2011) following the same methodology used in section 3.2.3. 

As detailed in Section 2.1, by the algebraic subtraction of the DSM from the DTM a 

raster CHM at the corresponding location of the sample plots (Fig. 4.6) was obtained and 

used as primary information to retrieve the forest attributes (mean height, volume, 

aboveground biomass). For each sampling plot the mean height from CHM was calculated 

using two thresholds heights above 2 meters and above 5 meters.  

The ALS-derived mean height was then related with key structural variables measured 

in the plot (canopy height, volume, aboveground woody biomass) through regression 

analysis. This relationship was used to map canopy height and the aboveground woody 

biomass variables in the investigated area. 
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Figure 4.6 - Example of ALS data classification in the sample plot located in a mixed oak forest, NFFL fuel 

model n.9: (a) sample plot localization on aerial orthophoto; (b) NFFL fuel model map; (c) ALS return 

classification; (d) Canopy Height Model. 
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4.4 Experimental results 

Experiment 1 

The experiment conducted helps to provide an accurate description of the spatial 

heterogeneity of fuel in the analyzed areas. As depicted in Figure 4.7, the distribution of 

fuel type absolute frequencies features great heterogeneity among classes and between the 

two areas. Comparing the relative frequencies separately for each study area, three fuel 

types were prominent: type 2, observed in approximately 40% of the plots, dominates the 

largest study area, Area 1; type 9 dominates the smaller Area 2; and type 1 has similar 

incidence, approximately 20%, in the two areas; with all other types have much smaller 

frequencies. 

 

Figure 4.7 - Frequency distributions of fuel types in the study areas. Nomenclature of fuel types is reported 

in Table 4.1. 

Analyzing in detail the distribution of the metrics within the fuel models in both study 

areas, we can identify ALS-derived metrics characterizing the general structure and the 

stratification of the stands. Hmax, Canopy Cover and Hmean (Figg. 4.8 a, b, c) are the 

metrics that can give preliminary information about the structure of the fuel types. The 

distribution of the Hmax metric within the nine fuel model (Fig. 4.8 a), shows that the 

above ground elevation of highest return for the fuel types describing the grassland group 

(1-3) is between 3 and 4.2 meters while for the fuel models of the shrubland group (4-7) 

this value ranges from 4.5 and 5.8 meters. For the models 8 and 9 (tree component) the 

aboveground height of the highest return is between 11.5 and 13 meters. Similar trend is 
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observed for Canopy Cover metric (Fig. 4.8 b) in which the non-ground percent of total 

returns ranges between 10 -17% for the models 1 and 3 and is around 25% for the model 2; 

the 33-48% of the non-ground returns is located in the shrub layer (models 4 to 7) while 

the 57-66% is observed in the models 8 and 9. Finally, Hmean distribution (Fig. 4.8 c) 

shows that the  mean height of all returns ranges between 0.6 and 0.7 meters for the models 

1 and 3 while is around 1.31 meters for the model 2. For the tree component the value 

ranges between 4.7 and 6.4 meters.  

Concerning the stratification metrics, Figure 4.8d shows the distribution of percentile 70 

of heights. For grassland and shrubland groups the value is lower than 2 meters while for 

the tree layer it ranges between 6.3 and 8 meters. As showed in Figure 4.9, for the 

grassland and shrubland groups, a greater number of ALS returns is observed in the height 

interval below Hmax/3. This percentage decrease as we reach the maximum height of the 

canopy and the mean height observed for the returns within this interval (Fig. 4.10) ranges  

between 2 and 4 meters; the tree component shows an high percentage of ALS returns 

within in the height interval between 1 and 2 times Hmax/3 and below this interval with a 

mean height 8 and 10 meters. ALS metrics, thus, indicate the vertical fuel structure for 

each fuel model considered. 
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      a)          b) 

                              

      c)          d) 

 

Figure 4.8 - Average values with standard deviation of above ground elevation of highest return (a), non-ground percent of total returns (b), mean height of all returns (c) and percentile 70 of 

heights distribution (d).
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Figure 4.9 - Percent of returns above Hmax*2/3 , between 1 and 2 times Hmax/3 and below Hmax/3. 

 

 

 

Figure 4.10 - Mean height of returns above Hmax*2/3, between 1 and 2 times Hmax/3 and below Hmax/3. 
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The relevance of ALS-based metrics as fuel type predictors for the traditional 

CART approach, the CART approach with bagging called Random Forests, and the CART 

with bagging/boosting called Stochastic Gradient Boosting are reported in Table 4.4. The 

most relevant metric was canopy cover, defined as the percent of non-ground returns. 

Other relevant metrics included percentiles of the height distribution, the mean height of all 

returns, and the number of returns.  

CART and Random Forests with overall accuracies of only 38% and 37%, 

respectively, were not able to achieve sufficiently accurate classifications. However, SGB 

with overall accuracy of 73% produced substantially more accurate classifications for the 

two study areas (Table 4.5). In terms of omission errors, the three models did not differ 

although SGB limited commission errors to an average 16% across the nine fuel types, 

whereas the average errors were 65% and 66%, respectively, for CART and Random 

Forests. The most evident advantage of SGB was the ability to maintain an acceptable 

classification accuracy, especially from the producer’s perspective, for fuel types with 

relatively small numbers of observations (from type 3 to type 8), (Fig. 4.11). On the other 

hand, all the classifiers were able to achieve comparably accurate results for the most 

widespread fuel types (types 1, 2 and 9) which, in the validation datasets, represent 82% of 

total number of observations. 
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Table 4.4 - Relevance of the ALS-based metrics in the different models tested. Metrics are ranked top to 

down on the basis of the sum of the three relevances. The description of the metrics is in Table 4.2. 

 

  

Metric CART Random Forest TreeNet

CanopyC 93.5 52.6 100.0

Pct30 100.0 91.1 28.6

Pct70 17.2 94.7 83.7

Pct50 4.8 100.0 42.6

Pct60 3.1 94.0 42.9

Hmean 4.7 76.5 50.9

Pct10 17.3 66.4 45.8

CV 23.9 58.8 46.5

Pct20 7.9 86.2 34.3

Pct80 7.1 68.0 49.8

Returns 19.8 43.6 60.6

Hmean1 6.3 64.4 46.7

Texture 30.4 33.7 52.8

CV1 37.4 15.9 43.7

Pct90 4.8 42.1 34.4

Pct99 11.5 25.2 35.2

Kurtosis 10.3 28.1 30.2

Rets2pct 14.3 13.9 37.6

Hmean3 11.8 18.4 34.6

CV2 13.1 10.1 34.3

Hmin 11.9 4.1 37.1

CV3 3.4 3.4 35.5

Density2 5.1 7.1 28.8

Hmax 34.9

Hmean2 33.1

Skewness 32.9

Pct40 32.4

relHmean 31.2

Rets3pct 26.4

Density1 22.6

Rets1pct 19.1



52 

 

Table 4.5 - Confusion matrix based on the classification by SGB. 

 

VALIDATION

Fu
el
	

Ty
pe
s

1 2 3 4 5 6 7 8 9 Total
User	

Accuracy
Commission	

Error

C
L
A
S
S
IF
IC
A
T
IO
N

1 1436 404 30 1 2 3 7 0 18 1902 75.5% 24.5%
2 1154 4728 314 44 210 22 320 53 396 7242 65.3% 34.7%
3 14 8 156 0 0 0 2 0 0 180 86.6% 13.4%
4 0 0 0 100 0 0 0 0 0 100 100.0% 0.0%
5 1 37 0 0 326 3 16 0 25 409 79.8% 20.2%
6 0 0 0 0 0 76 1 0 0 77 98.5% 1.5%
7 2 84 6 2 25 1 462 0 20 603 76.6% 23.4%
8 1 14 0 0 0 0 0 269 12 296 90.8% 9.2%
9 51 422 8 7 53 2 99 158 3476 4276 81.3% 18.7%

Total 2660 5697 514 154 617 109 908 480 3946
Producer	
Accuracy

54.0% 83.0% 30.3% 64.7% 52.9% 70.1% 50.9% 56.1% 88.1%

Omission	
Error

46.0% 17.0% 69.7% 35.3% 47.1% 29.9% 49.1% 43.9% 11.9%

C
L
A
S
S
IF
IC
A
T
IO
N
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Figure 4.11 - Omission (A, above) and commission errors (B, below) for the three tested classification 

algorithms for the nine fuel types. 
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Experiment 2 

Figure 4.12 shows the distribution of the sample plots in the study area. Two main 

zones are identified: (a) mixed oak forests where the highest number of sample plots is 

located; (b) beech forests belonging to different fuel models (respectively FM2 and FM8). 

Table 4.4 shows how the structural variability of the forest stands belonging the same fuel 

model is relative large.  

 

Figure 4.12 - Location of the field sample plots. Coloured dots show the distribution of the field plots 

according to the different fuel models. 
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Table 4.6 - Main dendrometric characteristics of the sample plots. 

NFFL 

Fuel model 

number 

Number of 

sample units 
Forest type 

Min and 

max values of 

crown mean 

height (m) 

Min and max 

values of standing 

volume(m
3
 ha

-1
) 

2 11 Beech forest 6.2 - 15.2 9 - 294 

7 1 Mixed oak forest 7.5 36 

8 5 Beech forest 12.1 - 17.2 115 - 475 

9 23 Mixed oak forest 5.1 - 11.8 11 - 212 

9 1 

Mixed oak forest with new 

spontaneous groups of 

Calicotome spinosa 

6.3 10 

 

The relationship between the mean height and the woody volume assessed in the plots 

(Fig. 4.13 b) provides good results (R
2
= 0.60) even if not excellent.  

Figure 4.14 shows the map of the mean stand height for the areas in which ALS data 

and field sample plot are available. The mean height ranges between 5 and 22 meters in the 

zone a) while in the zone b) it is between 5 and 24 meters. Figure 4.15 shows the map of 

the distribution of the aboveground woody biomass. The highest values were recorded 

within the models 8 and 9 with a maximum value of around 507.2 Mg ha
-1

 while lower 

values were observed within the model 3 (on average, 182.5 Mg ha
-1

). 

 

 

Figure 4.13 - Relationship between ALS-derived mean height and ground truth values of woody volume 

within the sample plots. 
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Table 4.7 shows the coefficients and the relative standard errors and confidence 

intervals of the linear regression used for assessing the woody volume. From the statistical 

point of view the relationships are very different both if we use a threshold of 5 meters and 

2 meters. The linear regression is better adapted to beech forests (R
2
= 0.87; 0.86) respect to 

mixed oak forests (R
2
= 0.10; 0.03). 

 

Table 4.7 - Coefficients, standard error and confidence intervals of the linear regression used to assess the 

woody volume. 

Threshold Forest type Coefficients 
Std. 

Error 

95% Confidence Interval for B 

Lower Bound Upper Bound 

2 meters 

Beech forest 
Intercept -177,76 37,81 -263,29 -92,23 

β 37,47 4,69 26,86 48,09 

Mixed oak 

forest 

Intercept 36,99 38,61 -43,30 117,29 

β 10,64 6,67 -3,23 24,51 

5 meters 

Beech forest 
Intercept -227,02 45,71 -330,43 -123,62 

β 40,46 5,29 28,49 52,43 

Mixed oak 

forest 

Intercept 46,19 57,86 -74,13 166,51 

β 7,41 8,38 -10,01 24,84 
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Figure 4.14 - Map of the mean stand height in two zones of the investigated areas. 
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Figure 4.15 - Map of the standing aboveground woody biomass in the investigated areas. The map was 

computed using the mean tree height derived by the relationship between field and ALS data. 
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4.5 Discussions 

In this chapter, an experimental analysis of the spatial variability of Mediterranean fuel 

models has been presented. This analysis has focused on two forest areas characterized by 

different fuel types and was aimed to: i) explore the potential of ALS data for 

characterizing fuel types by using ALS metrics derived from the height values of laser 

points; ii) use raster ALS data to assess the structural parameters of fuel models in order to 

obtain detailed maps to be used in forest fire prevention planning. In particular, the maps 

produced can be exploitable for fire behavior modeling constituting the input layers of fuel 

management simulation decision making support tools as FARSITE. 

The analysis conducted in the experiment 1 resulted in interesting conclusions on the 

characterization of the general structure of the study areas providing interesting 

information about the vertical stratification of the vegetation. Different cover types can 

affect the density of ALS returns and the results obtained by this experimentation confirm 

that ALS data, even if with low pulse density (1.5 points per square meters), are at least 

able to better characterize the tree component from grass and shrub layers. Within the 

grassland group the Canopy Cover metric is even able to characterize the model 2 in 

respect with the models 1 and 3. Referring to the NFFL classification (Table 4.1), Model 2, 

in fact, also includes forest types in which some residual trees still may exist. Additionally, 

the descriptive statistics of these metrics show coherence with PROMETHEUS 

classification and help to quantify where most of the fuel load is located. In consideration 

of these results it would be possible a rational treatments planning aimed at the reduction 

of forest fuels in the areas prone to fire. 

With reference to the results obtained through the experiment 2, that tested ALS data, 

even if with low pulse density, showed a good predictive ability for spatial extraction of 

the mean height of the stands and the aboveground biomass of the forest types 

representative of Mediterranean and temperate environments. As previously stated, the 

maps derived can significantly improve the data layer creation process for wildfire 

simulation models (as FARSITE) enabling a realistic and accurate prediction of fire 

behavior.  

Comparing the results of the two experiments it is possible to draw some 

considerations. First, the analysis of descriptive statistics of ALS metrics within a 

delimited area makes possible a preliminary characterization of fuel models without the 

field survey, a time and cost consuming activity. Moreover, the spatial variability of forest 
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fuels requires the implementation of new methodologies able to satisfy the information 

needs linked to its classification and characterization on large scale. In this direction, the 

integration of the traditional field surveys with innovative remote sensing technologies, as 

ALS data, could be an effective way to produce detailed maps.  
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Chapter 5 

 

5 Conclusions 

The dissertation addressed key questions related to the use of ALS data for the 

assessment of forest structural parameters, with a special focus on aboveground woody 

biomass estimation. The main contribution of this dissertation to the literature are: i) a 

detailed scientific review of the current applications of ALS for forestry purposes in Italy; 

ii) an experimental testing of raster CHM-derived for the spatial estimation of the 

aboveground biomass by coupling ALS data and field survey; iii) an experimental testing 

of raw ALS data for detecting forest structural variables critical for fuel modeling. 

The scientific review produced in chapter 2, provided general considerations with 

reference to selected experiences of ALS applications under alpine, temperate and 

Mediterranean environments in Italy. The main issues concern the potential use for ALS 

data exploitation in forest inventories over large territories, their use for silvicultural 

systems detection and for the estimation of fuel load in forest stands. 

Regarding the estimation part of the work, the dissertation focused on the estimation of 

the aboveground biomass and on the characterization of forest fuels.  

The survey approach proposed in chapter 3, based on the ALS-derived CHM, has 

proved to be highly effective to support the assessment of the riparian forest wood volume 

and biomass, providing comparable results in term of accuracy to previous experiments 

carried out under different forest environments (Corona & Fattorini, 2008; Corona et. al., 

2008). In addition, a map of the aboveground woody biomass, as produced in this study, 

can be used to analyze its spatial distribution so that to support the users for planning the 

precision harvesting of aboveground woody biomass of riparian stands, whose is usually 

not homogeneous. In the examined case study, an average aboveground woody biomass of 

about 90 Mg ha
-1

 (R
2
= 0.85) was assessed within poplar-dominated riparian forest, 

corresponding to an amount of available biomass of 800 Mg km
-1

 along the river axis. 

The second analysis performed in chapter 4 was aimed to analyze the effectiveness of 

ALS raw and raster data in the estimation process. Findings from the first experiment 

demonstrate that ALS metrics, without the use of optical data, would be sufficient to 

discriminate among different fuel types. The non-parametric procedures tested were based 

on classification and regression trees. Good accuracy (73%) was obtained for only the 
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stochastic gradient boosting (SGB) method, whereas traditional CART and Random 

Forests produced poor results. The second approach showed a good predictive ability (R
2
 = 

0.60) for spatial extraction of tree attributes, in particular the mean height of the stands and 

the aboveground woody biomass of the forest types representative of Mediterranean 

environments. Therefore, experimental results from this analysis confirm the potential of 

ALS data to provide detailed map of the spatial distribution of forest fuels and the 

quantification of the structural parameters able to characterize fuel types. 
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