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Two-dimensional electrophoresis coupled to mass spe ctrometry: tips and pitfalls 

Despite alternative technologies that have emerged, 2-dimensional (2-D) electrophoresis 

is currently the only technique that can be routinely applied for parallel quantitative 

expression profiling of large sets of complex protein mixtures. 2-D electrophoresis is a 

powerful and widely used method for the analysis of complex protein mixtures extracted 

from cells, tissues, or other biological samples. This technique separates proteins 

according to two independent properties in two discrete steps. The first-dimension step, 

isoelectric focusing (IEF), separates proteins according to their isoelectric points (pI); the 

second-dimension step, sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-

PAGE), separates proteins according to their molecular weights (Mr, relative molecular 

mass). Each spot on the resulting two-dimensional gel potentially corresponds to a single 

protein species in the sample. Thousands of different proteins can thus be separated, and 

information such as the protein pI, the apparent molecular weight, and the amount of each 

protein can be obtained. Two-dimensional electrophoresis was first introduced by 

O’Farrell (1975). In the original technique, the first dimension separation was performed in 

carrier-ampholyte-containing polyacrylamide gels cast in narrow tubes. 2D-E delivers a 

map of intact proteins that reflects changes in protein expression level, isoforms, or post-

translational modifications. 2-DE shows as main advantages the simplicity, reproducibility, 

awide size range (10 kDa to 500 kDa) and the fact that both moderately hydrophobic and 

very acidic-basic proteins can be isolated and visualized. A large and growing application 

of 2-D electrophoresis is within the field of proteomics. The analysis involves the 

systematic separation, identification, and quantitation of many proteins simultaneously 

from a single sample. Two-dimensional electrophoresis is used in this field due to its 

unparalleled ability to separate thousands of proteins simultaneously. The technique is 

also unique in its ability to detect post- and co-translational modifications, which cannot be 

predicted from the genome sequence.  

Historically, two-dimensional PAGE has been the primary method of separation and 

comparison for complex protein mixtures. This method has been critical in developing our 



understanding of the complexity and variety of proteins contained in cells and bodily fluids. 

Although impressive improvements in two-dimensional PAGE technologies have occurred 

in recent years, limitations are apparent when dealing with low abundance and membrane 

proteins, which escape from detection and may limit the broad mapping of proteins in 

samples. Moreover, two-dimensional PAGE is laborintensive, requires relatively large 

sample quantities, is poorly reproducible, has a limited dynamic range for protein 

detection, and has difficulties in detecting proteins with extremes in molecular mass and 

isoelectric point (Rabilloud, 2002). To address these limitations several types of mass 

spectrometry, in conjunction with various separation and analysis methods, are 

increasingly being adopted for proteomic measurements (Yates, 2000). 

Protein identification can be done only after tryptic digestion of spots cut out from 2DE 

maps, and subsequent mass spectrometry analysis. This can be performed either by PMF 

(peptide mass finger printing) or by MS/MS analysis, although nowadays, to enhance 

proteome resolution it is often necessary to use multiple techniques that provide 

complementary results. A PMF database search is usually employed following MALDI 

TOF mass analysis. The premise of peptide mass finger printing is that every unique 

protein will have a unique set of peptides and hence unique peptide masses. This 

technique does well with 2DE gel spots where the protein purity is high. PMF protein 

identification can run into difficulties with complex mixtures of proteins. Low level 

identification also becomes difficult due to common place contamination by keratin, and is 

not suitable for those organisms with little genomic information (Hughes and Dunn, 1996; 

Gilmour et al., 2000). Moreover, since Peptide Mass Fingerprinting is performed by 

matching their constituent fragment masses (peptide masses) to the theoretical peptide 

masses generated from a protein or DNA database, it can only be used for species where 

the genome is known. Unfortunately, genetic and genomic information for crops and 

vegetables is still limited despite the complement of genome of Arabidopsis, rice and 

Poplar is rapidly advancing. Regarding the MALDI/TOF analysis, a limitation is that the 

measured signal intensity is not linear with the quantity of introduced sample, and 



therefore the method is not applicable for determining concentrations of peptides/proteins 

in a mixture. Strengths of MALDI-TOF, instead, are its high sensitivity, broad mass range, 

relative tolerance to salts/buffers and suitability for the analysis of relatively complex 

mixtures. HPLC and µLC coupled to ESI-MS/MS presently dominate the field of protein 

identification by tandem mass spectrometry and database searching. ESI-MS/MS offers 

definitive information about protein structure; in some cases amino acid sequence and 

specific chemical modifications can be unequivocally deduced from the pattern of product 

ions generated. It is indicated for screening and structural characterization of complex 

mixtures of peptides, giving more reliable results for protein identification. MS/MS 

methods can be employed to identify unknown proteins and posttranslational 

modifications. Additionally, since the technique uses soft ionization, it is possible to 

observe labile species, e.g., nitrosothiols, protein multimers and even biologically native 

non-covalent interactions which would be destroyed and therefore undetected in a MALDI-

TOF MS experiment, such as sites of non-covalent association with small molecules or 

other proteins. Limitations of ESI-MS/MS are the need for relatively high purity protein 

samples and a poor tolerance for electrolytes and detergents. 
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PART I 

The influence of temperature on plant development i n a vernalization-requiring 

winter wheat: a proteomic investigation  

 

Aim of the study 

The first objective of my PhD was the study of the influence of prolonged cold treatment 

on the expression of cold-induced proteins in a vernalized common wheat (Triticum 

aestivum L.), to identify proteomic changes in vernalization-treated plants when the key 

steps in controlling the flowering time occur. Non-proteomic studies on protein changes in 

plants upon prolonged cold exposure have been already performed, leading to the 

undisclosure of new protein isoforms, modulation of pre-existing products and 

accumulation of frost resistance-related proteins  (Karimzadeh et al., 2005; Jahanbakhsh 

et al., 2007). In constrast, proteomics has been used so far to study the mechanisms of 

plant responses to short-term cold treatments, in order to focus on major protein 

modulations which are likely to be involved in defence processes against adverse 

conditions (Goulas et al., 2006; Hashimoto et al., 2007; Lee et al., 2007; Cui et al., 2005). 

Although vernalization is the same as cold treatment except for the length of the low 

temperature exposure, it is physiologically different in that the cold treatment usually does 

not affect flowering time significantly whereas vernalization does it dramatically.  

We choose for this study a winter-habit wheat cultivar (named Cheyenne) with a long 

vernalization requirement and excellent cold tolerance (Mahfoozi et al. 2001). Seedlings 

were grown at optimal environmental conditions for 14 days, then transferred into 

conditioned chambers kept at 4 °C and 20 °C, respec tively, both for a period of 63 days. 

Leaf proteome of cold acclimated and vernalized winter wheat were compared with the 

control non acclimated ones grown at control temperature of 20 °C. Total protein was 

extracted from the leaves of cold treated or control plants, then separated by 2-

dimensional electrophoresis. The identities of differentially expressed proteins were 

determined by tandem mass spectrometry. Cold tolerance and vernalization requirement 



were respectively determined by LT50 and final leaf number (FLN) measurements. Leaf 

proteomes were examined and cross-compared through classical two-dimensional 

electrophoresis maps, followed by LC-ESI-MS/MS analysis. 

The data demonstrated a differential expression of several proteins involved in different 

cellular functions. Identifying proteins that up/down regulated during cold acclimation or in 

response to vernalization does provide information about the mechanisms involved in cold 

tolerance and their effect on regulating vernalization in temperate cereals. 
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Background 

Triticum aestivum L., commonly termed bread wheat, is among the most resistant crops 

able to grow under severe and diverse environmental conditions. This successful fitness is 

achieved through strict control of the flowering process, in other words getting the 

flowering time right is crucial to the plant’s survival.  

Vernalization is defined as a period of exposure to low, non-freezing temperatures, which 

certain plants require in order to be able to flower in spring (Streck et al., 2003). 

This term refers to the acceleration of flowering that occurs in many plant species after a 

prolonged exposure of their imbibed seeds or young seedlings to extended periods of 

cold. This is not all-or-none, but a slow, quantitative process in which increasing periods of 

cold cause progressively earlier flowering until a saturation point is reached. Plants that 

are vernalized as seeds or young seedlings do not flower immediately upon being raised 

to higher temperatures, but often weeks later. There is, therefore, a delay between the 

perception of cold and the switch from vegetative to reproductive growth. The perception 

of and response to cold is localized in the meristematic cells of embryos, growing points, 

and buds. The changes induced in meristems by vernalization are conserved through 

many generations of cell division even at temperatures much higher than those required 

for the cold induction of flowering. In some species, this “memory” of vernalization can be 

maintained for up to 330 d. Vernalization is required in each generation for winter annuals 

and biennials and each year for perennials. Thus, meiosis appears to reset the 

requirement for vernalization. There is tremendous natural variation between Arabidopsis 

ecotypes in the extent to which their time to flowering is shortened by vernalization. 

Many plant species have developed this adaptive strategy, among them fall-planted 

cereals such as winter wheat (Triticum aestivum L.), which survives the cold season in the 

vegetative stage, entering the more sensitive reproductive phase when both long day 

photoperiod and mild climate occur. In contrast, spring cereals do not have a vernalization 

requirement, normally developing rapidly into their reproductive phase when grown under 

long day photoperiod (Fowler et al., 1996a; Mahfoozi et al., 2006). The molecular basis of 



vernalization has been recently elucidated in Arabidopsis (Sung and Amasino, 2004; 

Michaels and Amasino, 1999; Mylne et al., 2006) and wheat (Laurie et al., 2004; 

Trevaskis et al., 2007). 

Through genetic mapping it has been established that winter wheat possesses recessive 

vrn-A1, vrn-B1, and vrn-D1 loci, which are induced upon vernalization, whereas spring 

wheat carries at least one dominant VRN1 allele. This characteristic determines absolute 

independence from (Vrn-A1) or partial requirement of (Vrn-B1 and Vrn-D1) vernalization 

to flower. The three VRN1 loci encode proteins related to the Arabidopsis meristem 

identity APETALA1-like (AP1) MADS-box factors (Danyluk et al., 2003; Trevaskis et al., 

2003; Yan et al., 2003). VRN1 induces flowering competency during the vernalization 

process and also presides over inflorescence meristem development during the second 

stage towards flowering (Preston and Kellogg, 2008). Another important vernalization 

factor is VRN2, which acts as a floral repressor in non-vernalized plants grown under long 

day conditions (Yan et al., 2004). A recent study aimed at characterizing VRN2 gene from 

Triticum aestivum (TaVRN2) demonstrated that its regulation is also exerted by salt, heat 

shock, dehydration, wounding and abscissic acid, suggesting its pleiotropic effect in 

phenological development and plant responsiveness to the environment (Diallo et al., 

2010). Finally, VRN3 is the homologue of the flowering integrator flowering locus T (FT) 

gene in Arabidopsis; it is induced in leaves under long day conditions and promotes early 

flowering when overexpressed in winter wheat (Yan et al., 2006). Allelic differences for the 

three homeologous FT loci on the group 7 chromosomes determine variations in flowering 

times (Yan et al., 2006; Bonnin et al., 2008). On the other hand, the recent molecular 

genetic analyses of Arabidopsis winter annuals revealed that the epigenetic regulatory 

mechanism of vernalization tends to suppress a strong floral repressor located in a 

specific genomic locus, termed FLC (flowering locus C), through a series of modifications 

in the chromatin structure. The result is the triggering of a flowering cascade process 

(Sung and Amasino, 2004). A recent paper (Oliver et al., 2009) has shown that the 

induction of VRN1 in barley is epigenetic, and involves histone modifications of the same 



type as occur in FLC in Arabidopsis. However, these change in opposite directions to 

those in FLC. In VRN1 there is a decrease in trimethylation of histone H3 lysine 27 

(H3K27me3), the mark of a transcriptionally inactive gene, and an increase in 

trimethylation of histone H3 lysine 4 (H3K4me3), a mark of an active gene. 

The requirement for vernalization is linked to a plant capacity to cold acclimate and 

develop freezing tolerance. A study on crop plants has revealed that low temperature (LT) 

tolerance usually depends on a complex network of inducible genes, which are fully 

expressed during the vegetative stage; in contrast, this control appears to be switched off 

during reproductive stage when the plant has limited ability to adapt to cold (Fowler et al., 

1996b). Genes involved in development, such as those involved in the photoperiod and 

vernalization processes, determine the duration of expression of LT-tolerance genes 

(Fowler et al., 1996a; Mahfoozi et al., 2000). It makes sense that these two processes 

should be linked to avoid plants in regions that have cold winters making the transition 

from the vegetative to the reproductive phase too early. It has been postulated that 

developmental genes are mainly responsible for the duration of expression of LT-induced 

structural genes; in contrast, the rate of acquisition of LT tolerance is determined at the 

genetic level by differences in cold-hardiness potential (Fowler et al., 1996a; Mahfoozi et 

al., 2001). Fowler and co-workers, through studies on wheat (T. aestivum L.) and rye 

(Secale cereale L.) cultivars, reported a very close association between the point of 

vernalization saturation and a decline in cold tolerance (Limin and Fowler, 2006). 

Vernalization-requiring plants go through a process of reducing their final leaf number 

(FLN) up to the point of vernalization saturation (Fowler et al. 1996a). After this point, cold 

tolerance is gradually reduced, as it has been observed in many studies on over wintering 

cereals (Fowler et al. 1996a, b; Trevaskis et al., 2007). 
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Material and Methods 

Determination of cold tolerance and phenological de velopment stage. For LT50 

determination, actively germinating seeds were transferred to plastic trays (40 x 25 x 15 

cm) filled with mixture of soil, loamy sand and soft mold leaves (2:1:1) and returned to 

germinating conditions. Germinated seeds were then grown at 20 °C under 12 h day 

lengths at a light intensity of 350 µmol m-2 s-1 for 14 d before being exposed to 4 °C for 

cold acclimation. The procedure outlined by Limin and Fowler (1988) was used to 

determine the LT50 of Cheyenne cultivar at the 0 d (14 d establishment with no exposure 

to cold), 63 d acclimation and vernalization treatment at 4 °C and 63 d at 20 °C (no 

exposure to cold). At the end of each treatment plant crowns were covered in moist sand 

in aluminum weighing cans and placed in a programmable freezer that was held at -3 °C 

for 12 h.  After 12 h, they were cooled at a rate of 2 °C/h down to -17 °C, then cooled at 8 

°C/h. Five crowns were removed at 4 °C intervals fo r each of eight test temperatures in 

each replications. Samples were then thawed overnight at 4 °C. Thawed crowns were 

planted into flats containing soil, sand and soft mold leaves (2:1:1) that was kept moist. 

The flats were placed in a growth room maintained at 20 °C with a 16 h day/8 h night. 

Plant recovery was rated (alive vs. dead) after 3 weeks and a LT50 was calculated for 

each treatment. At the end of each cold-acclimation period (0, 21, 42, and 63 days), pots 

containing two plants were moved to 20 °C until fla g leaf emergence and leaf numbered 

on the main shoot. The control non-vernalized seedlings were maintained continuously at 

20 °C with the same light intensity and length. Two  methods were used to determine the 

stage of phenological development: (i) dissection of the plant crown to reveal the shoot 

apex development, and (ii) the FLN procedure (Fowler et al., 1996b; Mahfoozi et al., 

2001). Plants for FLN measurements were grown in 15 cm pots filled with mixture of field 

soil, loamy sand and soft mold leaves (2:1:1) (2 plants/pot). Plants were uniformly watered 

and fertilized with sustained-release fertilizer and a nutrient-complete water-soluble 

solution. Measurements of FLN were made in a three-replicate completely randomized 

design (CRD) with a 1 (cultivar) x 4 (vernalization period) factorial arrangement. Analysis 



of variance (ANOVA) was conducted by Multi-Factorial Balanced model in Minitab 

Statistical software. Duncan’s Multiple Range Test at 5 % probability level was used for 

mean comparisons. Finally, shoot apices of plants were dissected, recorded and 

photographed at each sampling date to determine when the double ridge (DR) occurred. 

 

Proline content. Proline content was estimated at intervals of 0, 21 and 42 days following 

the method described by Bates et al. (1973). 0.5 g (fresh weight) of spring wheat leaves 

were homogenized with 3% sulphosalicylic acid and centrifuged. The supernatant was 

treated with acetic acid and acid-ninhydrin and boiled for 1 h. The mixture was eluted in 

benzene and the absorbance was read at 520 nm using a Cary 4 Varian 

spectrophotometer.  

 

Soluble sugar extraction.  Total water soluble carbohydrate determination was based on 

the phenol sulphuric acid method of Dubois et al. (1956). Data were measured at 485 nm 

by a Cary 4 Varian spectrophotometer. 

 

Protein Extraction. 1 g of wheat leaves (2-4 leaves above the crown on main stem 

samples) was finely ground in liquid nitrogen and the protein extraction was performed 

according to Damerval et al. (1986) with some modifications. Four biological replicates 

(different plants grown side by side in the same growth chamber) were used. The resulting 

powder was suspended (1 g/10 ml) in chilled (- 20 °C) 10% TCA in acetone containing 

0.007% DTT and 1% plant protease inhibitor cocktail (P9599; Bio-Rad, Hercules, CA, 

USA). The mixture was incubated at - 20 °C for at l east 1 h then centrifuged at 35000 g for 

15 min. The pellet was washed three times (10 ml) with chilled (- 20 °C) acetone 

containing 0.007% DTT centrifuging at 12000 g at 4 °C for 15 min. The supernatant was 

removed and the pellet was lyophilized for 1 h. If dried powder was not to be solubilised 

immediately, it was stored at - 80 °C until use. 

 



Protein solubilisation and two-dimensional electrop horesis. The wheat leaf proteins 

in the dried powder were solubilised in 9 M urea, 4% CHAPS, 1% DTT, 1% pH 3-10 

ampholytes (Bio-lyte; Bio-Rad, Hercules, CA, USA), 35 mM Tris base via incubation at 37 

°C for 1 h with continuous stirring. The mixture wa s centrifuged at 12000 g at room 

temperature for 15 min and a small aliquote was used to determine protein content by 

Bradford assay (Bradford, 1976). IEF was performed using Biorad Multiphore II and Dry 

Strip Kit (Bio-Rad-Protean-IEF-Cell-System). Seventeen centimeter IPG strips (Bio-Rad, 

Hercules, CA, USA) pH 4-7 were passively rehydrated overnight with 750 µg of protein in 

300 µl of solubilisation solution containing 1% carrier ampholyte (Bio-lyte 4-7; Bio-Rad, 

Hercules, CA, USA). The total product time × voltage applied was 80 000 V h for each 

strip at 20 °C. Strips were subsequently reduced (1 % DTT, 15 min) and alkylated (2.5% 

IAA, 15 min) during the equilibration step (30 min in 50 mM Tris-HCl pH 8.8, 6 M urea, 

30% glycerol v/v, 1% SDS, bromophenol blue). Equilibrated strips were then placed on 

SDS-polyacrylamide gels, 16 cm × 20 cm, 13% acrylamide, and sealed with 0.5% 

agarose. SDS-PAGE was performed using the Protean II xi Cell, large gel format (Bio-

Rad) at constant current (40 mA per gel) at 7 °C until the bromophenol blue trackin g dye 

was approximately 2–3 mm from the bottom of the gel. Protein spots were stained by Blue 

Silver (Candiano et al., 2004). To ensure protein pattern reproducibility, four replicates 

were done. 

 

Image Analysis. Two dimension gel images were digitised using a flatbed scanner 

(model ImageScanner-II, GE Healthcare, Uppsala, Sweden) with a resolution of 300 dpi 

and 16-bit greyscale pixel depth. Image analysis was carried out with Progenesis 

SameSpots software vers. 2.0 (Nonlinear Dynamics), which allows spot detection, 

background subtraction, and protein spot OD intensity quantification (spot quantity 

definition). The gel image showing the highest number of spots and the best protein 

pattern was chosen as a reference template, and spots in a standard gel were then 

matched across all gels. Spot quantity values were normalised in each gel dividing the 



raw quantity of each spot by the total quantity of all the spots included in the standard gel. 

For each protein spot, the average spot quantity value and its variance coefficient in each 

group was determined. One-way analysis of variance (ANOVA) was carried out at p < 

0.05 in order to assess for absolute protein changes among the different treatments; only 

1.5-fold or higher quantitative variations were taken into consideration. The false 

discovery rate (FDR) was estimated by calculating q-values with a threshold of 0.05. The 

least significant difference (LSD) test was used to determine significant differences among 

group means. 

 

 

Functional annotation. Gene Ontology (GO) lists were downloaded from the TAIR 

website (http://www.arabidopsis.org/tools/bulk/go/index.jsp): each protein was classified 

with respect to its cellular component, biological process, and molecular function using 

GO annotation. When no GO annotation was available, proteins were annotated manually 

based on literature searches and closely related homologues.  

 

In-Gel Digestion and Protein identification by MS/M S. Protein spots were carefully cut 

out from Blue Silver stained gels and subjected to in-gel trypsin digestion according to 

Shevchenko et al. (1996) with minor modifications. Peptide mixtures were separated using 

a nanoflow-HPLC system (Ultimate; Switchos; Famos; LC Packings, Amsterdam, The 

Netherlands). A sample volume of 10 µL was loaded by the autosampler onto a 

homemade 2 cm fused silica precolumn (75 µm I.D.; 375 µm O.D.; Reprosil C18-AQ, 3 

µm, Dr. Maisch GmbH, Ammerbuch-Entringen, Germany) at a flow rate of 2 µL/min. 

Sequential elution of peptides was accomplished using a flow rate of 200 nL/min and a 

linear gradient from Solution A (2% acetonitrile; 0.1% formic acid) to 50% of Solution B 

(98% acetonitrile; 0.1% formic acid) in 40 minutes over the precolumn in-line with a 

homemade 10-15 cm resolving column (75 µm I.D.; 375 µm O.D.; Reprosil C18-AQ, 3 µm, 

Dr. Maisch GmbH, Ammerbuch-Entringen, Germany). Peptides were eluted directly into a 

High Capacity ion Trap (model HCTplus, Bruker-Daltonik, Germany). Capillary voltage 



was 1.5-2 kV and a dry gas flow rate of 10 L/min was used with a temperature of 230 °C. 

The scan range used was from 300 to 1800 m/z. Protein identification was achieved by 

searching the National Center for Biotechnology Information non-redundant database 

(NCBInr, version 20081128, www.ncbi.nlm.nih.gov) using the Mascot program (in-house 

version 2.2, Matrix Science, London, UK). The following parameters were adopted for 

database searches: complete carbamidomethylation of cysteines and partial oxidation of 

methionines, peptide Mass Tolerance ± 1.2 Da, Fragment Mass Tolerance ± 0.9 Da, 

missed cleavages 2. For positive identification, the score of the result of (- 10 x Log(P)) 

had to be over the significance threshold level (P < 0.05). Even though high MASCOT 

scores are obtained with values greater than 60, when proteins were identified with only 

one peptide a combination of automated database search and manual interpretation of 

peptide fragmentation spectra was used to validate protein assignments. In this manual 

verification, the mass error, the presence of fragment ion series, and the expected 

prevalence of C-terminus containing ions (Y-type) in the high mass range, were all taken 

into account. Moreover, replicate measurements have confirmed the identity of these 

protein hits. 

 

RNA extraction, cDNA synthesis and PCR. Semi-quantitative RT-PCR was carried out 

following extraction of total leaf RNA by applying RNXplus (Fermentas) from the 

pulverized plant leaves, followed by phenol/chloroform/extraction, isopropanol 

precipitation and ethanol wash. The extracted RNA was reverse transcribed using the 

Roche cDNA synthesis kit, as per manufacturer’s instructions. The synthesised cDNA was 

used in the subsequent PCR by applying specific primers designed for tubulin as an 

internal control housekeeping gene and three other genes whose expression was 

subjected to change in response to cold stress (wcor18, protein spots No. 32, 96; wrab17, 

protein spots No. 39, 44, 90; rbcS, protein spots No. 6, 62, 178). The primer pairs used for 

amplification are listed in Table 1. PCR conditions were identical except for the annealing 

temperature which was adjusted for each gene as required. Specifically, 60 °C and 35 



cycles were used for tubulin, rbcS and Wrab17 genes, while a two step annealing 

procedure was used for Wcor18 amplification so that a primary gradient amplification for 

16 cycles starting from 52 °C and terminating at 60  °C was used to enhance amplification 

of Wcor18 followed by 30 cycles of annealing at 60 °C. Apart  from annealing, all other 

conditions of PCR were the same so that initial denaturation was at 94 °C for 4 min 

followed by denaturation at 94 °C 1 min, annealing 1 min according to the above 

description, 72 °C extension for 1 min and final ex tension for 5 min. 



 

Gene Forward 5'-3' Reverse 5'-3' 
tubulin TGATGCTTTCAACACCTTCTTCAG GGGGCGTAGGAGGAAAGCA 

Wcor18 TACACGCTGGAGGGGCAGGGC CCGGGCTGCTTCCAGTCGTTGAC 
Wrab17 GGCTGTCACGAAGGCTGCCTC CCTGCTGGAAGACGTTTTCCTTGG 

rbcS GAGGGCATCAAGAAGTTCGAGACC TCAGGGTACTCCTTCTTGACCTCC 
 

Table 1 . Primer sequences used for RT-PCR assays. 
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RESULTS 

Phenological development and low-temperature tolera nce 

For our study, plants of the winter wheat variety Cheyenne were grown at room 

temperature (RT) for 14 days under a 12 h photoperiod (experimental day 0), then half 

were transferred to 4 °C low-temperature growth cha mber over 63 days of cold-

acclimation. The remaining plants were left to grow at room temperature for the same 

period. Growth morphology of 14-d establishment plants (0-day cold treatment) was not 

much different from 63-d cold acclimated plants, as 0-d and 63-d were in 2 and 4 leaves 

growth stage, respectively. On the contrary, plants grown in continuous 20 °C conditions 

produced about 24 leaves (Figure 1). To exactly establish phenological development 

stages of wheat plants used in this study, both FLN (final leaf number) measurements and 

shoot apex dissection were performed. Analysis of variance for the FLN (Table 2) showed 

that differences of FLN due to the days of vernalization were highly significant (p < 0.001). 

When grown at continuous 20 °C compared to a 21, 42  and 63-d pretreatment at 4 °C, 

Cheyenne wheat (CNN) showed a reduced FLN from 24 to 12.5 (Table 3), indicating that it 

is a winter habit genotype with a vernalization requirement (Mahfoozi et al., 2001). 

Moreover, FLN became constant (12.5) between 42 and 63 days of vernalization 

(vernalization fulfillment), indicating that a long vernalization requirement period in this 

winter cultivar causes a delay in its transition from the vegetative to the reproductive 

phase. On the other hand, double ridge (DR) formation, when leaf and spikelet initials are 

both apparent on the shoot apex, is considered to be another clear indication that transition 

to the reproductive phase occurred (McMaster, 1997). Interestingly, double ridge formation 

was not observed for 0-d and 42-d cold treated CNN plants (Figure 2, panels A-B), 

whereas beginning of shoot apex elongation was visible in 63-d cold treated plants (Figure 

2C). Thus, vernalization fulfillment did not coincide with the physical manifestation of DR 

formation which is generally considered an unquestionable sign of floral initiation (Hay and 

Ellis, 1998). These observations showed conclusively that 63-d represented the time-point 



after vernalization saturation where flowering processes were undoubtedly in progress and 

for this reason was chosen for proteomic analysis. On the other hand, the LT50 (lethal 

temperature at which 50% of the plants are killed) value of CNN at 63-d cold acclimation 

treatment was -9.0 ± 0.8 (mean ± SE; n = 3) °C indi cating the ability of plants to cold 

acclimate after vernalization saturation, while the LT50 of CNN at 0-d (14 d RT) and 63-d 

warm (no exposure to cold) was -2.0 ± 0.0 (mean ± SE; n = 3) °C. Interestingly, plants 

grown at continuous 20 °C conditions maintained in the vegetative stage for a long time 

and produced more leaves, while plants vernalized at 4 °C for 63 days and then moved to 

20 °C (devernalization) emerged its flag leaf short ly after moving to the warm long-day 

condition (20 °C, 16h day-length) indicating the hi ghly progressed phenological 

development toward flowering stage (data not shown).  



 

Figure 1.  Response of Cheyenne winter wheat cultivar to prolonged cold stress 

 

F MS SS df Source 
24.90*** 3.3819 10.146 3 Days of vernalization 

 0.1358 1.630 12 Error 
  11.776 15 Total 

df, degrees of freedom; SS, sum of squares; MS, mean square; F, variance ratio. *** p < 0.001 
 

Table 2. Summary of the ANOVA one-way analysis on the basis of completely randomized design 

(CRD) for final leaf number (FLN) in Cheyenne cultivar. 

 

FLN Days of vernalization 

 24.00 a ± 0.41 
15.50 b ± 0.29 

12.50 c ± 0.29 

12.25 c ± 0.00 

0 
21 
42 
63 

 

1.6  CV % 
1.134 ***  MS 

Means with the same symbol letters are not significantly different (p > 0.05) from each other 
according to Duncan’s multiple range test.  
CV, coefficient of variation; MS, mean square. *** p < 0.001 
 

Table 3. Mean comparison for final leaf number (FLN) in Cheyenne cultivar. 



 
 
 
 
 
 
 
 

 

Figure 2. Phenological development stage of Cheyenne (CNN) winter wheat cultivar grown at 4 °C 

as estimated from shoot apex developmental morphology. A, Shoot apex elongation and single 

ridge stage of 14-d establishment CNN (0-d cold treatment); B, Shoot apex elongation and single 

ridge stage of 42-d cold acclimated CNN plants; C, Double ridge stage of 63-d cold acclimated 

CNN plants. 

 
 

Proteome changes in wheat leaves upon exposure to l ow temperatures 

Figure 3 shows three representative 2DE maps obtained from day 0 (14 d, RT), 63 days 

at room temperature and 63 days at 4 °C. Each stage  of leaf treatment was analyzed in 

four biological and technical replicates. Approximately 1000 spots could be detected on 

each gel (Figure 3A-C). Among these spots, 732 could be reliably matched on all the 

gels and these were included in the statistical analysis. A one-way ANOVA analysis 

identified 101 spots with significantly different expression levels (p < 0.05, absolute 

variation of at least 1.5-fold). These protein spots (indicated with numbers in the 

reference map showed in Figure 3D) were excised from the gels and digested by trypsin. 

Peptide mixtures were then analyzed by LC-ESI-MS/MS for protein identification.  

 



 

 

Figure 3. Representative 2-DE gels of leaf tissues from day 0 (A), 63 days at room temperature (B) 

and 63 days at 4° C (C). Linear IPGs pH 4-7, 17 cm length. Panel D shows the reference map 

derived from computerized image analysis performed by using Progenesis SameSpots software. 

Numbers indicate the differentially expressed proteins. 

 

Table 4 lists the successfully identified proteins, together with the protein spot number, 

the identification parameters, and the indication of their GO (gene ontology) annotation 

(cellular component, biological process, and molecular function). An additional table 

listing peptide sequences of identified proteins is provided in the final section of the 

thesis “Supporting Information”. Figure 4 displays details of specific gel regions in order 

to appreciate quantitative changes caused by development and/or vernalization 

treatment.  



 

 

Figure 4. Close-up views of some 2D-gel regions showing examples of the observed variation 

patterns in protein spot intensity. A: on; B: off; C: up-regulated; D: down-regulated; E: tended to up-

regulation; F: tended to down-regulation. Numbers of spots indicated by the arrows refer to the 

master map shown in Fig. 3D.   

 



 

 

 

Protein name Spot 
No.a 

Mr, kDa 
theor/ 
exper b 

pI 
theor/ 
exper b 

NCBI GI No. Homologue 
At c 

No. of 
peptides 

Mascot 
Score 1-ANOVAd 

Fold of variation 
(63 d 20 °C/63 d 

4°C) e 
GO process GO comp GO funct 

 
OFF 
 

Oxygen-evolving 
enhancer protein 2  
[Triticum aestivum] 

35  27.4/28.1 8.8/6.3 gi|131394 At1g06680 10 752 5.9x10-8 - 0.0082/- 0.8698 photosynthesis oxygen evolving 
activity 

ATPase, beta subunit 
[Hordeum vulgare] 

57 53.9/24.8 5.1/4.8 gi|11583 AtCg00480 3 162 4.2x10-4 - 0.0121/- 0.7479 

electron 
transport 

coupled to ATP 
synthesis 

hydrogen ion 
transmembrane 

transporter activity 

Oxygen-evolving 
enhancer protein 1 
[Triticum aestivum] 

61 35.0/13.0 8.7/4.7 gi|131388 At5g66570 1 104 2.0x10-3 + 0.0254/- 0.7133 photosystem II 
assembly 

oxygen evolving 
activity 

Acyl carrier protein 1,  
chloroplast precursor   

[Hordeum vulgare] 
69 16.2/25.0 5.7/4.4 gi|113165 At4g25050 2 98 5.0x10-3 - 0.0251/- 0.7159 

fatty acid 
biosynthetic 

process 

chloroplast 

acyl carrier activity 

Os08g0478200  
ATP synthase D chain, 

mitochondrial 
[Oryza sativa (japonica 

cultivar-group)] 

118 19.7/24.0 5.2/5.9 gi|115476908 At3g52300 3 150 1.4x10-6 + 0.0037/- 0.4668 

electron 
transport 

coupled to ATP 
synthesis 

mitochondrion 

hydrogen ion 
transporting 

ATPase/ synthase 
activity 

Os08g0382400 
cyclophilin-type 

peptidylprolyl cis- trans 
isomerase  

[Oryza sativa (japonica 
cultivar-group)] 

169 46.8/56.4 4.8/4.7 gi|115476198 At3g01480 7 367 3.1x10-2 + 0.0043/- 0.3779 photosynthesis 
peptidyl-prolyl cis-
trans isomerase 

activity 

2-Cys peroxiredoxin 
BAS1, chloroplastic 
[Triticum aestivum 

179 23.4/27.0 5.7/5.3 gi|2829687 At5g06290 3 166 5.9x10-5 + 0.0041/- 0.3271 response to 
cold 

peroxiredoxin activity 

Os02g0634500 
[Oryza sativa (japonica 

cultivar-group)] 
180 32.1/35.5 6.7/5.8 gi|115447465 At5g23140 2 112 9.2x10-6 + 0.0167/- 0.3100 proteolysis clp protease 

ferredoxin-NADP(H) 
oxidoreductase 

[Triticum aestivum] 
197 40.5/47.2 6.9/5.4 gi|20302473 At5g66190 2 175 3.0x10-3 - 0.0661/- 0.2971 electron transporter 

Os03g0278900 ATP 
synthase B/B' CF(0) 

[Oryza sativa (japonica 
cultivar-group)] 

115 22.8/18.1 5.8/4.9 gi|115452259 At4g32260 4 208 9.0x10-3 + 0.1894/- 0.2838 

electron 
transport 

coupled to ATP 
synthesis 

chloroplast 

hydrolase activity 



Phosphoribulokinase, 
chloroplast precursor 
[Triticum aestivum] 

45.5/53.1 5.7/5.0 gi|125580 At1g32060 16 855 2.0x10-2 
phosphoribulokinase 

activity 

Sedoheptulose-1,7-
bisphosphatase, chloroplast 

precursor 
[Triticum aestivum] 

121 

42.5/53.1 6.0/5.0 gi|1173347 At3g55800 11 588 2.0x10-2 

- 0.0479/ - 0.5437 

carbon 
utilization by 

fixation of 
carbon dioxide 

chloroplast 
sedoheptulose-
bisphosphatase 

activity 

hypothetical protein 
OsJ_031021 

[Oryza sativa (japonica 
cultivar-group)] 

128 20.1/13.2 9.0/4.8 gi|125575528 At4g01150 3 107 8.0x10-3 + 0.0868/- 0.3849 metabolic 
processes 

chloroplast 
serine 

carboxypeptidase 
activity 

OSJNBa0041A02.10 
[Oryza sativa (japonica 

cultivar-group)] 
131 38.0/35.1 8.8/5.6 gi|38344143 At4g09010 3 172 3.4x10-6 + 0.0277/- 0.4213 response to 

oxidative stress 
cytoplasm peroxidase activity 

FtsH-like protein Pftf 
precursor 

[Nicotiana tabacum] 
143 74.5/23.5 6.0/5.1 gi|4325041 At2g30950 4 216 1.0x10-3 + 0.0805/- 0.3547 

protein 
catabolic 
process 

thylakoid 
membrane 

ATPase activity 

RuBisCO small chain, 
chloroplast precursor 
[Hordeum vulgare] 

178 19.7/20.6 9.0/6.2 gi|3914588 At1g67090 5 221 1.6x10-2 + 0.0473/- 0.3312 

carbon 
utilization by 

fixation of 
carbon dioxide 

chloroplast 
ribulose-

bisphosphate 
carboxylase activity 

mitochondrial ATP 
synthase precursor 
[Triticum aestivum] 

190 27.1/34.6 7.7/5.9 gi|47607439 At2g21870 10 604 2.0x10-3 + 0.1062/- 0.2113 

electron 
transport 

coupled to ATP 
synthesis 

mitochondrion  unknown 

Os07g0469100 
 thylakoid membrane 

phosphoprotein 14 kDa 
[Oryza sativa (japonica 

cultivar-group)] 

9 15.8/12.5 9.4/4.7 gi|115472001 At1g52220 2 106 7.0x10-9 + 0.0574/- 1.2379 unknown chloroplast unknown 

Os03g0843400, 30S 
ribosomal protein S6, 
chloroplast precursor 

[Oryza sativa (japonica 
cultivar-group)] 

36 23.3/22.2 7.8/5.2 gi|115456525 At1g64510 1 70 4.4x10-5 + 0.0460/- 0.8308 
translation, 
ribosome 

biogenesis 
ribosome structural constituent 

of ribosome 

Os10g0502000,  
thylakoid lumenal 17.4 kDa 

protein 
 [Oryza sativa (japonica 

cultivar-group)] 

38 25.0/15.5 7.5/5.0 gi|115482792 At1g12250 2 137 7.4x10-5 + 0.0329/- 0.8191 unknown chloroplast unknown 

Translationally-controlled 
tumor protein homolog 

(TCTP) 
[Triticum aestivum] 

46 18.9/30.4 4.5/4.7 gi|75246527 At3g16640 3 175 2.0x10-3 + 0.1370/- 0.7138 regulation of 
cell growth cytoplasm 

calcium binding and 
microtubule 
stabilization 

RuBisCO small subunit 
[Triticum aestivum] 

62 19.7/17.0 9.1/5.6 gi|11990893 At1g67090 6 253 5.3x10-5 + 0.1056/- 0.5908 ribulose-bisphosphate 
carboxylase activity 

Os04g0459500 
glyceraldehyde-3-

phosphate dehydrogenase  
[Oryza sativa (japonica 

cultivar-group)] 

97 43.0/35.9 7.6/5.5 gi|115458768 At1g12900 4 239 1.3x10-4 + 0.1190/- 0.4405 

carbon 
utilization by 

fixation of 
carbon dioxide 

chloroplast glyceraldehyde-3-
phosphate 

dehydrogenase 
activity 



fructose-bisphosphate 
aldolase [Zea mays] 

102 42.0/47.1 7.6/5.3 gi|195634659 At2g21330 10 577 1.0x10-3 - 0.1030/- 0.5283 

carbon 
utilization by 

fixation of 
carbon dioxide 

fructose-
bisphosphate 

aldolase activity 

putative oxygen-evolving 
complex precursor [Triticum 

aestivum] 
103 21.1/16.3 9.7/6.8 gi|134290407 At1g14150 6 280 2.4x10-4 + 0.1038/- 0.4061 photosynthesis oxygen evolving 

activity 

ATP synthase CF1 
beta subunit [Triticum 

aestivum] 
109 53.9/60.0 5.1/5.2 gi|14017579 AtCg00480 9 536 5.0x10-3 - 0.0090/- 0.5002 

electron 
transport 

coupled to ATP 
synthesis 

chloroplast 

hydrogen ion 
transmembrane 

transporter activity 

 
ON 
 

Os06g0608700 
Fructose-1,6-  

bisphosphate aldolase 
[Oryza sativa 

(japonica cultivar-group)] 

30 38.0/50.1 7.6/6.6 gi|115468886 At4g26530 5 311 8.3x10-5 + 0.1532/+ 0.9084 

carbon 
utilization by 

fixation of 
carbon dioxide 

chloroplast 
fructose-

bisphosphate 
aldolase activity 

32 17.8/22.4 4.8/4.8 4 304 3.3x10-4 + 0.0965/+ 0.9121 cold regulated protein  
(wcor18)  

[Triticum aestivum] 96 17.8/22.6 4.8/5.0 

 
gi|26017213 

 
At5g01300 

4 238 4.0x10-3 + 0.0417/+ 0.5122 
unknown unknown phosphatidylethanol

amine binding 

39 17.1/20.7 4.8/4.7 6 376 1.0x10-3 - 0.0009/+ 0.8454 cold-responsive 
LEA/RAB-related COR 

protein  (wrab17) 
[Triticum aestivum] 

44 17.1/20.6 4.8/4.7 
gi|7716956 At3g15670 

2 98 8.0x10-5 + 0.1086/+ 0.8314 

developmental 
processes nucleus unknown 

group3 late embryogenesis
abundant protein (wrab17) 

[Triticum aestivum] 
90 18.3/23.2 5.0/4.8 gi|157073742 At3g15670 9 629 4.1x10-2 + 0.1105/+ 0.6649 developmental 

processes nucleus unknown 
 

cytosolic NADP+-isocitrate 
dehydrogenase [Populus 

tremula] 
48 47.2/58.2 6.1/6.2 gi|75267781 At1g65930 7 388 6.1x10-5 + 0.1067/+ 0.7592 metabolic 

processes cytoplasm 
isocitrate 

dehydrogenase 
(NADP+) activity 

cytosolic malate 
dehydrogenase  

[Triticum aestivum] 
119 24.5/54.1 6.6/6.2 gi|37928995 At5g43330 4 230 8.0x10-3 - 0.1211/ + 0.3856 glycolysis plasma 

membrane 

malate 
dehydrogenase 

activity 
Os12g0244100  

molecular chaperone 
DnaK [Oryza sativa 

(japonica cultivar-group)] 

136 74.3/91.0 5.1/4.8 gi|115487998 At5g28540 17 1118 1.7x10-6 - 0.0470/+ 0.3849 protein folding 
chloroplast 

plasma 
membrane 

ATP binding 

RuBisCO activase A, 
chloroplastic  

[Hordeum vulgare] 
146 51.4/60.1 8.0/5.4 gi|12643756 At2g39730 14 928 6.0x10-5 - 0.0663/+ 0.3530 response to 

cold 
chloroplast RuBisCO activase 

activity 

cp31BHv [Hordeum 
vulgare subsp. vulgare] 

148 30.7/33.9 4.8/4.5 gi|3550483 At4g24770 9 553 6.1x10-5 -0.0523/+ 0.3607 RNA 
processing 

chloroplast 
envelope 

poly(U) binding 
RNA binding 

Plastid glutamine  
synthetaseGS2b  

[Triticum aestivum] 
156 47.0/57.6 6.0/5.2 gi|71362638 At5g35630 2 107 3.4x10-4 + 0.0535/+ 0.3982 

aging, 
ammonia 

assimilation 
cycle 

chloroplast glutamate-ammonia 
ligase activity 

protein disulfide 194 56.8/77.0 5.0/5.0 gi|13925723 At1g21750 20 1296 5.8x10-4 + 0.0527/+ 0.3087 developmental vacuole protein disulfide 



isomerase 1 precursor 
[Triticum aestivum] 

processes isomerase activity 

Os02g0259600, 50S 
ribosomal protein L21, 
chloroplast precursor 

[Oryza sativa (japonica 
cultivar-group)] 

195 23.4/29.2 6.2/5.8 gi|115445399 At1g35680 2 98 1.2x10-2 + 0.0588/+ 0.3213 
response to 

cold, 
translation 

ribosome structural constituent 
of ribosome 

putative fructokinase 
[Oryza sativa Japonica 

Group] 
113 43.8/49.6 6.0/5.0 gi|51535181 At2g31390 6 345 5.6x10-4 + 0.1855/ + 

0.6250 

sucrose 
metabolic 
process 

plasma 
membrane 

kinase activity 

Plastid glutamine  
synthetase GS2c  
[Triticum aestivum] 

153 47.0/57.0 5.7/4.7 gi|71362640 At1g66200 8 488 1.0x10-3 - 0.0518/+ 0.3396 nitrate 
assimilation chloroplast glutamate-ammonia 

ligase activity 

 
DOWN-REGULATED 

 

plastocyanin precursor 
[Hordeum vulgare] 

3 15.8/12.2 5.6/4.6 gi|22705 At1g76100 1 77 9.4x10-4 - 0.2445/- 1.8874 

electron 
transport 

coupled to ATP 
synthesis 

chloroplast  copper ion binding 

Oxygen-evolving 
enhancer protein 2 
[Triticum aestivum] 

4 27.4/13.5 8.8/5.6 gi|131394 At1g06680 3 255 1.9x10-4 - 0.2411/- 1.7634 photosynthesis chloroplast oxygen evolving 
activity 

RuBisCO small subunit 
[Triticum aestivum] 

45 19.7/42.1 9.1/6.2 gi|11990893 At1g67090 10 483 2.0x10-3 - 0.5222/ - 0.7602 

RuBisCO large chain   
[Avena sativa] 

66 53.5/35.5 5.9/6.4 gi|1346964 AtCg00490 4 212 3.6x10-4 - 0.0603/- 0.6772 

carbon 
utilization by 

fixation of 
carbon dioxide 

chloroplast 
ribulose-

bisphosphate 
carboxylase activity 

80 47.4/59.0 5.1/5.0 9 604 1.8x10-5 - 0.1029/ - 0.5976 Glutamine synthetase  
chloroplast precursor 
[Hordeum vulgare] 88 47.4/59.9 5.1/4.9 

gi|121340 At5g37600 
11 649 6.9x10-4 - 0.1251/- 0.5850 

nitrate 
assimilation chloroplast glutamate-ammonia 

ligase activity 

oxygen-evolving 
enhancer protein 1 
[Leymus chinensis] 

104 34.7/22.8 6.1/6.0 gi|147945622 At5g66570 5 297 1.9x10-5 - 0.1333/- 0.5183 
photosystem II 
assembly and 
stabilization 

chloroplast oxygen evolving 
activity 

Os08g0162800  
Acyl-CoA binding protein 
[Oryza sativa (japonica 

cultivar-group)] 

127 10.1/12.9 5.2/5.7 gi|115474931 At5g53470 3 134 3.0x10-3 - 0.1407/- 0.4776 lipid transport plasma 
membrane 

acyl-CoA binding 

 
UP-REGULATED 

 
S-adenosylmethionine 
synthetase 1 [Triticum 

monococcum] 
165 43.2/60.0 5.6/5.9 gi|115589744 At4g01850 6 414 5.1x10-4 + 0.0403/+ 0.3681 

S-AdoMet 
biosynthetic 

process 
cell wall 

methionine 
adenosyltransferase 

activity 
 

Os01g0104400, ricin B-
related lectin domain 

containing protein 
[Oryza sativa (japonica 

cultivar-group)] 

67 30.3/54.9 6.3/6.3 gi|115434012 At2g39050 2 83 2.8x10-5 + 0.2224/+ 0.6793 unknown unknown 

Patatin-13 precursor 
[Solanum tuberosum] 

79 42.4/24.0 5.5/6.0 gi|122201873 At4g37070 6 360 2.4x10-4 + 0.3515/ + 
0.5694 

lipid metabolic 
process 

unknown 

nutrient reservoir 
activity 



enzymatic activity 

 
Os02g0634900 

proteasome alpha type 2 
[Oryza sativa (japonica 

cultivar-group)] 

112 25.8/34.0 5.4/5.5 gi|115447473 At1g16470 9 555 3.1x10-5 + 0.1606/+ 0.4923 

ubiquitin-
dependent 

protein 
catabolic 
process 

cytosolic 
ribosome 

proteasome 
complex 

peptidase activity 

RuBisCO small subunit 
[Triticum aestivum] 

167 19.7/38.9 9.06/6.1 gi|11990893 At1g67090 5 224 6.0x10-3 + 0.2755/+ 0.3671 

carbon 
utilization by 

fixation of 
carbon dioxide 

ribulose-
bisphosphate 

carboxylase activity 

Os08g0532200  
Acetyl ornithine 

aminotransferase family 
[Oryza sativa (japonica 

cultivar-group)] 

177 50.4/57.2 6.5/5.9 gi|115477483 At3g48730 5 308 8.6x10-5 + 0.1909/+ 0.3372 
porphyrin 

biosynthetic 
process 

chloroplast 
glutamate-1-

semialdehyde 2,1-
aminomutase activity 

 
TENDED TO DOWN-REGULATION 

 

RuBisCO small subunit 
[Triticum aestivum] 

6 19.7/16.9 9.1/6.1 gi|11990893 At1g67090 5 221 4.0x10-6 + 0.1447/ - 1.3347 

carbon 
utilization by 

fixation of 
carbon dioxide 

ribulose-
bisphosphate 

carboxylase activity 

Os07g0469100 
 thylakoid membrane 

phosphoprotein 14 kDa, 
[Oryza sativa (japonica 

cultivar-group)] 

18 15.8/12.7 9.4/4.6 gi|115472001 At1g52220 2 96 1.7x10-4 + 0.1435/- 1.0091 unknown unknown 

ATP synthase CF1 
beta subunit  

[Triticum aestivum] 
33 53.9/37.4 5.1/5.3 

 
gi|14017579 AtCg00480 12 800 1.6x10-6 + 0.3185/- 0.5652 

electron 
transport 

coupled to ATP 
synthesis 

chloroplast 

hydrogen ion 
transmembrane 

transporter activity 

VER2 Dirigent-like protein 
[Triticum aestivum] 

34 32.5/42.2 6.7/6.6 gi|16151819 At4g11210 2 94 2.0x10-3 + 0.4677/- 0.4769 
lignan 

biosynthetic 
process 

endomembrane 
system 

unknown 

chloroplast oxygen-evolving
enhancer protein 1 

[Leymus chinensis 
58 34.7/23.0 6.1/5.4 gi|147945622 At5g66570 4 199 2.7x10-7 + 0.1688/- 0.5376 photosynthesis oxygen evolving 

activity 

Cyt b6-f complex iron-
sulfur subunit, 
chloroplastic  

[Triticum aestivum] 

59 24.1/21.3 8.8/5.5 gi|68566191 At4g03280 2 108 4.7x10-8 + 0.1677/- 0.5334 

electron 
transport 

coupled to ATP 
synthesis 

electron transporter 

RuBisCO activase alpha 
form precursor 

[Deschampsia antarctica] 
73 51.4/55.5 6.0/5.4 gi|32481061 At2g39730 13 881 7.0x10-7 + 0.2707/- 0.3358 

response to 
biotic/abiotic 

stresses 

chloroplast 

RuBisCO activase 
activity 

Os05g0110300 
similar to Putative 3-beta 

hydroxysteroid  
dehydrogenase/ 

isomerase 
[Oryza sativa(japonica 

84 31.4/37.1 9.1/5.7 gi|115461679 At5g02240 3 218 1.1x10-4 + 0.1398/- 0.4474 
response to 
abscisic acid 

stimulus 

plasma 
membrane 

coenzyme binding 



cultivar-group)] 
2-Cys peroxiredoxin 
BAS1, chloroplastic 
[Triticum aestivum] 

158 23.4/27.4 5.7/5.0 gi|2829687 At5g06290 9 479 3.9x10-4 + 0.1057/- 0.2864 response to 
cold 

peroxiredoxin activity 

LHC I [Hordeum vulgare] 160 24.4/28.1 8.1/5.2 gi|544700 At3g54890 5 283 5.7x10-5 + 0.1150/- 0.2679 photosynthesis chlorophyll binding 

ATP synthase CF1 epsilon 
subunit 

[Triticum aestivum] 
196 15.3/18.3 5.2/5.6 gi|14017578 AtCg00470 10 554 3.9x10-4 + 0.1187/- 0.1790 

electron 
transport 

coupled to 
cesis 

chloroplast 
hydrogen ion 

transmembrane 
transporter activity 

Os01g0649100 malate 
dehydrogenase 

[Oryza sativa (japonica 
cultivar-group)] 

100 35.7/47.6 8.7/6.6 gi|115438875 At1g53240 3 194 3.6x10-4 + 0.4282/- 0.1353 response to 
cold 

mitochondrion 
malate 

dehydrogenase 
activity 

 
TENDED TO UP-REGULATION 

 

glycine-rich RNA-binding 
protein 

[Triticum aestivum] 
68 16.0/17.2 6.3/5.3 gi|114145394 At2g21660 5 304 6.5x10-8 - 0.1245/+ 0.5280 

vegetative to 
reproductive 

phase 
transition of 
meristem 

chloroplast ss/ds DNA binding 
RNAbinding 

putative chaperonin 21 
precursor [Oryza sativa 

Japonica Group] 
114 26.4/32.3 7.7/5.5 gi|51090748 At5g20720 5 246 1.4x10-7 - 0.1332/+ 0.3483 response to 

cold 
mitochondrion 

chloroplast calmodulin binding 

Phosphoglycerate kinase,  
chloroplast precursor 
 [Triticum aestivum] 

124 50.0/60.1 6.6/5.2 gi|129915 At1g56190 3 244 1.1x10-2 - 0.2263/+ 0.2783 

carbon 
utilization by 

fixation of 
carbon dioxide 

phosphoglycerate 
kinase activity 

159 51.4/56.1 6.0/5.5 12 707 6.4x10-7 - 0.1365/+ 0.2435 RuBisCO activase  
alpha form precursor 

[Deschampsia antarctica] 182 51.4/56.2 6.0/5.4 
gi|32481061 At2g39730 

18 1049 2.7x10-4 - 0.1240/+ 0.2087 

response to 
cold 

RuBisCO  activase 
activity 

fructose 1,6-bisphosphate 
aldolase precursor 

[Avena sativa] 
184 42.1/47.2 9.0/5.5 gi|8272480 At4g38970 10 576 3.0x10-3 - 0.0747/+ 0.2486 

carbon 
utilization by 

fixation of 
carbon dioxide 

fructose-
bisphosphate 

aldolase activity 

peptide methionine 
sulfoxide reductase; 

cPMSR 
[Gossypium barbadense] 

193 28.8/31.7 8.4/5.8 gi|29469000 At4g25130 3 144 1.0x10-3 - 0.1473/+ 0.1622 

protein 
modification 

and metabolic 
process 

chloroplast 

peptide-methionine-
(S)-S-oxide 

reductase activity 
a Spot number represents the number on the master gel (see Figure 1) 
b Theoretical Mr/pI was calculated with Mr/pI tool on the Expasy web site (http://expasy.org/tools/pi_tool.html) 
c TAIR Accession no. of the closest homologue in Arabidopsis thaliana 
d p-value of one-way ANOVA analysis 
e Fold of protein variation is calculated by standardizing the mean of the normalized spot volumes of samples at 63 days 20 °C and at 63 days of cold trea tment with the mean of the normalized spot volumes of the sample at day 0. 

 
Table 4. List of differentially expressed proteins identified by LC-MS/MS 



A schematic representation of main trends observed in spot modulations after quantitative 

analysis of 2-DE gels by Progenesis SameSpots software is provided in Figure 5, whereas spot 

quantification results are shown in Figure 6. To provide a classification of the differential proteins 

into functional categories, we used the automated MapMan annotation dataflow (Thimm et al., 

2004). Figure 7 shows a global overview of the metabolic pathways and cellular processes mostly 

affected by 63-day cold treatment. Most of the proteins were related to metabolism (62.2 %), but 

also, among others, to the following MapMan based categories (BINs): stress (2.7 %), redox (4 

%), RNA (2.7 %), protein (12.2 %), development (6.8 %), not assigned (9.4 %).  

 

 

 

Figure 5. Schematic representation of main trends observed in spot modulations after quantitative analysis 

of 2-DE gels by Progenesis SameSpots software. Proteins identified are listed and grouped into the 

different categories. 

 

 

 

 



 

 

Figure 6 . Histograms representing the mean of the spot normalized volumes for each treatment: 1 stands 

for sample at day 0 (14 days, room temperature), 2 means 63 days at room temperature, 3 is 63 days at 4 

°C. Error bars indicate the SD of four replicates. The analysis was performed by Progenesis SameSpots 

software (Nonlinear Dynamics). The same letters above the bars indicate no statistically significant 

difference, whereas different letters indicate a statistically significant difference (p < 0.05) according to the 

LSD (least significant difference) test. 



 

 

 

Figure 7. Visualization of cellular processes affected by prolonged cold acclimation using the MapMan 

software (http://mapman.gabipd.org/) (Thimm et al. 2004). Protein spots significantly up- and down-regulated 

in 63-day cold acclimated leaves with respect to day 0 are indicated with red and blue squares, respectively. 

Color scale bars display log normalized volumes. Gray dots are automatically assigned to empty 

subpathways by the program.  

 

We also loaded quantitative data into the PageMan program (Usadel et al., 2006) in order to have 

a direct comparison between growth and cold effects on wheat leaves (Figure 8). Although our 

analysis provided direct evidence for a programmed and precise cellular response raised by 

Cheyenne after prolonged cold stress, the question whether such modulations are also influenced 

by short term cold exposures needed to be addressed. For this reason, proteomic investigation 

was extended to intermediate time points (21 and 42 days). Results are presented in Figure 9, 

which also displays the expression trends of proteins whose involvement in cold acclimation has 

been assessed by many previous studies. Table 5 lists those proteins not classically involved in 

cold acclimation which shown a differential expression at these intermediate points, whereas 

Table 6 shows peptides of cold-related proteins identified by means of mass spectrometry. Only 



few new proteins were identified, thus confirming that the deepest changes at the protein 

expression level occurred at 63 days. However, the time-course monitoring of cold-induced 

expression of Cor/Lea gene products yielded interesting information about the development of 

cold hardiness in the examined winter wheat cultivar (Figure 9). Of particular interest was the 

maintenance of high expression level of wrab17 and wcor18 proteins even after vernalization 

fulfillment suggesting a fundamental correlation between their production and cold resistance. 

Multiple spots of both proteins were detected as a result of either post-translationally modified 

forms or different gene copies.  

 

 



 

 

 

Figure 8. Growth and cold-induced changes in proteins, organized at the level of functional categories using 

the PageMan software (http://mapman.mpimp-golm.mpg.de/pageman/) (Usadel et al. 2006). For each 

protein, the difference between the expression level at the given data points (63 d, 20 °C; 63 d, 4 °C ) and the 

control (day 0) was calculated and converted to a false color scale (increasing red and blue indicate an up- 

and down-regulation, respectively). Values are shown as log normalized volumes. The average change for 

all proteins in a functional category is presented. 

 

 

 

 

 

 

 



 

 

 

 

Figure 9. 2-DE proteomic profiling of wheat leaves collected from plants grown at room temperature (day 0) 

or exposed to LT (4 °C) for 21 and 42 days. Lower p anel shows quantitative variations (expressed as 

average normalized volume) of spots identified as typically cold-related proteins. The same letters above the 

bars indicate no statistically significant difference, whereas different letters indicate a statistically significant 

difference (p < 0.05) according to the LSD (least significant difference) test. 

 

 

 

 

 

 

 

 

 



 

Spot 
No. a 

Protein name 
NCBI GI No. GO function 1-ANOVA 

b 

Average Normal. 
Volume c 

 
     0-d    21-d    42-d 

161 
Rubisco large subunit 

[Hordeum vulgare] 
gi|11587 

ribulose-bisphosphate 
carboxylase activity 

2.5x10-4 

 

117 

UTP--glucose-1-
phosphate 

uridylyltransferase 
[Hordeum vulgare] 

gi|6136111 

nucleotidyltransferase 
activity 6.1x10-3 

 

182 

Rubisco activase alpha 
form [Deschampsia 

antarctica] 
gi|32481061 

RuBisCO activase 
activity 5.2x10-6 

 

124 

Phosphoglycerate 
kinase, chloroplastic 
[Triticum aestivum] 

gi|129915 

phosphoglycerate 
kinase activity 

1.3x10-3 

 

119 

cytosolic malate 
dehydrogenase [Triticum 

aestivum] 
gi|37928995 

malate dehydrogenase 
activity 5.1x10-4 

 

122 
glutamine synthetase 
[Triticum aestivum] 

gi|71361902 

glutamate-ammonia 
ligase activity 2.4x10-5 

 

111 

pyruvate 
dehydrogenase, putative 

[Ricinus communis] 
gi|255543140 

pyruvate 
dehydrogenase (acetyl-

transferring) activity 
8.1x10-4 

 

142 

Os09g0277800 NADH-
dependent enoyl-ACP 

reductase [Oryza sativa 
Japonica Group] 

gi|115478314 

enoyl-[acyl-carrier-
protein] reductase 

(NADH) activity 
7.2x10-4 

 

152 
OEE1 [Triticum 

aestivum] 
gi|131388 

oxygen evolving activity 2.1x10-5 

 

78 

beta-1,3-glucanase 
precursor [Triticum 

aestivum] 
gi|4741846 

glucan 1,3-beta-
glucosidase activity 2.7x10-4 

 

148 
cp31BHv [Triticum 

aestivum] 
gi|226533870 

poly(U) binding 
RNA binding 3.7x10-5 

 

35 
OEE2 [Triticum 

aestivum] 
gi|131394 

oxygen evolving activity 5.2x10-4 

 

43 

adenosine diphosphate 
glucose 

pyrophosphatase 
[Triticum aestivum] 

gi|21322655 

adenosine diphosphate 
glucose 

pyrophosphatase 
activity 

6.2x10-6 

 



23 

50S ribosomal protein 
L12-1, chloroplastic 

[Secale cereale] 
gi|464517 

structural constituent of 
ribosome 3.1x10-5 

 

82 7.1x10-4 

 

86 

ferredoxin-nitrite 
reductase precursor 
[Triticum aestivum] 

gi|218963620 

ferredoxin-nitrate 
reductase activity 

6.5x10-4 

 

184 

chloroplast fructose-
bisphosphate aldolase 

[Triticum aestivum] 
gi|223018643 

fructose-bisphosphate 
aldolase activity 3.4x10-5 

 

177 

Glutamate-1-
semialdehyde 2,1-

aminomutase, 
chloroplastic [Hordeum 

vulgare] 
gi|1170029 

glutamate-1-
semialdehyde 2,1-

aminomutase activity 
9.1x10-5 

 

Phosphoribulokinase, 
chloroplastic [Triticum 

aestivum] 
gi|125580 

phosphoribulokinase 
activity 

121 Sedoheptulose-1,7-
bisphosphatase, 

chloroplastic [Triticum 
aestivum] 

gi|1173347 

sedoheptulose-
bisphosphatase activity 

6.1x10-4 

 

134 7.9x10-4 

 

138 

ATP synthase CF1 alpha 
subunit [Triticum 

aestivum] 
gi|14017569 

hydrogen ion 
transporting ATP 
synthase activity, 

rotational mechanism 
5.3x10-4 

 

46 

Translationally-controlled 
tumor protein homolog 

[Triticum aestivum] 
gi|75246527 

calcium binding and 
microtubule stabilization 6.9x10-5 

 

135 
ATPase beta subunit 

[Arabidopsis thaliana]  
gi|14017579 

 8.8x10-4 

 

27  

chlorophyll a/b-binding 
protein WCAB precursor 

[Triticum aestivum] 
gi|1657859 

 7.7x10-4 

 
 

Table 5.  Protein spots identified during short-term cold acclimation (0, 21 and 42 days). Spot shown in Fig.5 

were not included. 

 

 

 



Peptides identified by MS/MS 
Spot 
No.a 

Mr, kDa 
theor/ 
exper b 

pI 
theor/ 
exper b Protein name 

NCBI GI Number m/z charge 
state 

start-end 
c 

sequence 

Mascot 
Ion 

Score 

90 18.3/23.2 5.0/4.7 

580.82 
808.93 
582.32 
669.80 
612.96 
790.41 
541.27 
546.96 
555.30 
957.43 
670.80 

2+ 
2+ 
3+ 
2+ 
3+ 
2+ 
2+ 
3+ 
3+ 
2+ 
2+ 

9 - 19 
9 - 24 
9 - 25 

26 - 37 
26 - 42 
38 - 52 
43 - 52 
43 - 58 
53 - 69 

146 - 164 
165 - 177 

SGEVVDVTQVK 
SGEVVDVTQVKAGEAK 

SGEVVDVTQVKAGEAKK 
MASETGQSIQDR+Oxid (M) 

MASETGQSIQDRAVEAK +Oxid 
(M) 

AVEAKDQTGSFLGEK 
DQTGSFLGEK 

DQTGSFLGEKSAAVTK 
SAAVTKAASETTEAAKK 

ENVFQQAGGNMMGAATGAK 
+2Oxid(M) 

DAVMNTLGMGGDK +2Oxid (M) 

41 
81 
48 

104 
45 

101 
63 
62 
49 
37 
62 

55 22.9/18.3 4.5/5.0 

group3 late 
embryogenesis 

abundant 
protein 

(wrab17) 
[Triticum 
aestivum] 

gi|157073742 580.81 
539.63 
582.33 
661.81 
527.28 
541.27 
670.80 

2+ 
3+ 
3+ 
2+ 
3+ 
2+ 
2+ 

9 - 19 
9 - 24 
9 - 25 

26 - 37 
38 - 52 
43 - 52 

165 - 177 

SGEVVDVTQVK 
SGEVVDVTQVKAGEAK 

SGEVVDVTQVKAGEAKK 
MASETGQSIQDR 

AVEAKDQTGSFLGEK 
DQTGSFLGEK 

DAVMNTLGMGGDK +2Oxid (M) 

39 
55 
30 
76 
74 
44 
59 

39 17.1/20.7 4.4/4.8 

622.64 
521.94 
545.54 
533.26 
560.96 
924.95 
962.45 

3+ 
3+ 
4+ 
2+ 
3+ 
2+ 
2+ 

9 - 26 
27 - 41 
27 - 47 
32 - 41 
32 - 47 

111 - 127 
135 - 153 

SGDATKTASETGQTIQDR 
AVEAKDQTGAFLGEK 

AVEAKDQTGAFLGEKSEAVTK 
DQTGAFLGEK 

DQTGAFLGEKSEAVTK 
STEAAQHVQDTAAQYTK 

ENVFQQAGGNMVGAATDAK 
+Oxid (M) 

53 
46 
51 
54 
66 
98 
75 

44 17.1/20.6 4.5/4.8 

cold-responsive 
LEA/RAB-

related COR 
protein 

(wrab17) 
[Triticum 
aestivum] 

gi|7716956 

622.64 
653.82 
521.94 
533.26 
560.95 
616.96 
670.80 

3+ 
2+ 
3+ 
2+ 
3+ 
3+ 
2+ 

9 - 26 
15 - 26 
27 - 41 
32 - 41 
32 - 47 

111 - 127 
154 - 166 

SGDATKTASETGQTIQDR 
TASETGQTIQDR 

AVEAKDQTGAFLGEK 
DQTGAFLGEK 

DQTGAFLGEKSEAVTK 
STEAAQHVQDTAAQYTK 

DAVMNTLGMGGDK +2Oxid (M) 

89 
81 
57 
51 
66 
61 
30 

47 20.6/17.8 4.7/4.9 

cold 
acclimation 

protein 
WCOR615 
[Triticum 
aestivum] 

gi|1657857 

569.30 
584.98 
574.78 
656.97 

2+ 
3+ 
2+ 
3+ 

32 - 41 
32 - 47 
67 - 77 

156 - 175 

DQTISFIGEK 
DQTISFIGEKSEAVTK 

AASDTADAAMKMGSDAMGK 
ASETGQAITDR 

DAVMNTLGMGGDKADVGSAK 
+2Oxid (M) 

56 
65 
70 
35 

32 22.6/17.8 4.7/4.8 547.78 
603.31 

2+ 
2+ 

23 - 32 
23 - 33 

QYTLEGQGAK 
QYTLEGQGAKK +Gln->pyro-

Glu (N-term Q) 

47 
39 

96 22.0/17.8 4.8/4.8 
457.78 
603.32 
758.39 

2+ 
2+ 
2+ 

23 - 32 
23 - 33 
50 - 63 

QYTLEGQGAK 
QYTLEGQGAKK +Gln->pyro-

Glu (N-term Q) 
SLAVVVQDVDADER 

53 
51 
84 

95 21.6/17.8 4.4/4.8 

cold regulated 
protein 

(wcor18) 
[Triticum 
aestivum] 

gi|26017213 547.78 
611.82 
758.38 

2+ 
2+ 
2+ 

23 - 32 
23 - 33 
50 - 63 

QYTLEGQGAK 
QYTLEGQGAKK 

SLAVVVQDVDADER 

56 
30 
64 

34 45.0/32.5 6.7/6.7 

VER2 
[Triticum 
aestivum] 

gi|16151819 

730.85 
757.00 

+2 
+2 

252 - 264 
287 - 300 

FVTNEGTYGPYGR 
ADDTQLIAFGVYTV 

73 
50 

a Spot numbers refer  to Figure 4 
b Theoretical Mr/pI was calculated with Mr/pI tool on the Expasy web site (http://expasy.org/tools/pi_tool.html) 
c Start-end positions of identified peptides were calculated against complete amino acid sequence of the protein 

 
Table 6 . Detailed MS/MS peptide sequence analysis of cold-related proteins which showed modulations in 

expression after 21 and 42 days of cold treatment



Biochemical measurements 

Since it is well known that cold-acclimation is accompanied by an increase in solutes with 

cryoprotective effects, such as proline and soluble carbohydrates, we measured the intracellular 

content of these osmoregulators during the vernalization period. Figure 10 show the time course of 

proline and sugar accumulation; a similar trend can be seen for both solutes with the majority of 

the accretion occurring within the first six weeks of exposure to acclimating conditions.  

 

 

 

Figure 10. Changes in proline (panel A) and soluble sugar (panel B) in leaves of CNN winter wheat at 4 °C 

(solid line) and 20 °C (dotted line). Bars represen t ± SE (n = 3). 

 

 



Gene expression at mRNA level 

In order to investigate the transcript level of the identified proteins in response to vernalization 

treatment, reverse transcriptase (RT) PCR assays were conducted (Figure 11). Among all the 

identified proteins, three gene products were selected to investigate the expression patterns of 

their mRNA levels after prolonged cold exposure: (i) LEA (wrab17, spots 39, 44, 90), wcor18 (spots 

32, 96) and RuBisCO small subunit (rbcS, spots 6, 62, 178). The first two proteins have long been 

recognised as typically cold-activated products and their accumulation contribute to promoting the 

development of freezing tolerance (Thomashow, 1999; Kobayashi et al., 2004). Conversely, little 

and controversial evidence has been accumulated on the regulation of rbcS genes by cold stress 

(He et al., 2002; Gulick et al, 2005), although its structural involvement in the adjustment of activity 

of the RuBisCO complexes under cold stress is apparent (Spreitzer, 2003). Interestingly, this 

protein exhibited diversified expression patterns in 2DE maps. As displayed in Figure 11, 

transcription profiles of selected genes resulted to be directly correlated with protein expression 

levels, showing a marked and time-dependent up-regulation of both wrab17 and wcor18 and a 

down-regulation of rbcS. Interestingly, plants grown under standard temperature conditions 

showed an almost constant steady-state level of the transcripts examined (data not shown). The 

maintenance of high expression level of Cor/Lea genes at 63 days confirmed the good ability of 

CNN cultivar to cold-acclimate even after vernalization fulfilment. 



 

 

Figure 11.  Semi-quantitative RT-PCR analysis of the LEA (wrab17; 300 bp), wcor18 (260 bp) and rbcS 

(RuBisCO small subunit; 271 bp) expression in control and cold-acclimated CNN leaves. Expression of 

tubulin (720 bp) is shown as an internal control. The densitometric quantification of the mRNA level of the 

individual genes is expressed as the fold change compared to tubulin. Data are presented as the mean ± SD 

from triplicate experiments, and similar results were seen in all replicates.  
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DISCUSSION 

During vernalization fullfilment, plants react dramatically, modulating their metabolism, shifting to 

a new equilibrium to guarantee not only overwintering, but also vitality during suboptimal growing 

conditions. In this context, sugars appear to play a crucial role in preserving both cell structural 

integrity and maintenance of homeostasis, in concert with several partially characterized proteins, 

involved in cellular protection. Moreover, membrane lipids, and corresponding proteins devoted to 

their biosynthesis/proteolysis/conversion, act synergistically to build up this machinery. All 

biological components undergo major variations in order to attain a new stable equilibrium, so it is 

of primary importance to explore this situation from a holistic point of view. The main factors 

potentially responsible for the protein modulations here observed are plant development, cold 

acclimation/vernalization and flowering processes. Since these are complex and interconnected 

phenomena, it is almost impossible to quantify their exact contribution to the final proteomic 

scenario. Nonetheless, the comparison here carried out greatly simplifies the network of these 

contributions. The most relevant modulations in protein expression are reported below; proteins 

are grouped according to the major physiological event they preside over.  

 

LT-induced proteins regulated by vernalization 

The characterization of many cold-responsive genes has been carried out in the past decade, 

leading to their classification into Dhn (dehydrins), Lt (LT responsive), Lea (late embryogenesis 

abundant), Rab [responsive to abscisic acid (ABA)] and Cor (cold-regulated). Finally, Thomashow 

(1999) coined the collective term Cor/Lea genes. Although many studies on this functional 

category have been conducted both at the transcript and protein level, the characterization of 

Cor/Lea products in cereals still remains incomplete. We identified spots 32, 95 and 96 as the 

products of the cold-regulated gene wcor18 (gi|26017213). The induction of wcor18 transcripts 

following cold-exposure in wheat has been revealed by Kobayashi et al. (2004) both in freezing-

tolerant and susceptible cultivars. Nonetheless, the wcor18 expression profile was only assessed 

during early stages of cold acclimation, thus no correlation has been possible with the 

vernalization process. For the first time, the present results demonstrated that the protein 



expression of wcor18 was sustained to 63-day cold acclimation. Moreover this protein was 

resolved into multiple spots on our 2DE gels (as shown in Figure 9) suggesting the occurrence of 

post-translational modifications. Interestingly, wcor18 protein belongs to the highly conserved 

phosphatidylethanolamine binding protein family, members of which are associated with control of 

flowering time in both dicots and monocots (Chardon and Damerval, 2005). Though further 

investigations are required, such a property, together with our observations, opens the possibility 

of an involvement of this protein in promoting the shift from vegetative to reproductive growth 

and/or floral transition in cereals.  

Among typically cold-activated polypeptides, we identified several spots as the wrab17 protein. 

Specifically, spots 39 and 44 resulted the products of the gene with accession number 

gi|7716956, whereas spots 55 and 90 at higher molecular weights were found to be the products 

of the wrab gene isoform with gi|157073742 (see Table 5). The two genes mainly differ for a small 

N-terminal segment which was successfully discriminated by our MS/MS analyses (residues 9-26; 

Table 6). On the other hand, the additional heterogeneity was probably due to the presence of 

post-translational modifications. Accordingly, the maize rab17 protein was found to be greatly 

phosphorylated in a serine-cluster region (Goday et al., 1994; Jensen et al., 1998). In principle, 

wrab17 is a dehydrin-like protein which was shown to be highly homologous (84% amino acid 

identity) to ES2A, a barley GA3 (gibberellic acid)-responsive protein (Tsuda et al., 2000). This 

could be an interesting feature, especially in the light of recent genome-wide transcriptomic 

analyses demonstrating an up-regulation of key GA biosynthetic genes during vernalization in 

wheat (Winfield et al., 2009). However, in spite of the high level of homology, no increase in 

expression of wrab17 was revealed after GA3 treatment (Tsuda et al., 2000). On the other hand, 

the temporal GA3-responsive expression of the ES2A transcript has been demonstrated only in a 

dwarf barley mutant (Speulman and Salamini, 1995). Thus, the role of these novel wheat group-3 

Lea/Rab-related Cor genes in the low temperature tolerance and vernalization process in wheat is 

far from being completely undisclosed. Nevertheless, our results may add another piece to the 

puzzle of cereal vernalization understanding. We observed a marked increase in wrab17 protein 

expression since 21-day cold treatment and its level remained elevated throughout the whole 



period of cold exposure (63 days). On the contrary, wcor615 (spot 47) accumulation reached its 

peak at day 42 and then sharply decreased to the basal levels detected in control samples.  

 

Vernalization-induced flowering 

Flowering is intimately connected to vernalization, in a delicate mechanism involving also 

photoperiod and gibberellic acid metabolism (Bernier and Périlleux, 2005; Kobayashi and Weigel, 

2007). In cereals, the initial steps of this event are subjected both to genetic and environmental 

control, which are responsible for the FLN produced by the main stem (Hay and Ellis, 1998). The 

gene regulatory network controlling flowering time represents an example of integration between 

multiple environmental signals, mediated through a diverse set of regulatory mechanisms, which 

ultimately affect protein expression and determine the proper timing of the most important event 

for a plant fitness, transition to the reproductive phase (Gasser and Dean, 2009). Two proteins 

detected in the present analysis resulted in being particularly interesting in connection with 

vernalization-induced flowering process: a glycine-rich RNA binding protein (GR-RBP, spot 68) 

and the VER2 protein (spot 34). The GR-RBP was found to be up-regulated in vernalized samples 

(4.5-fold the control level). It is known that the cellular level of transcripts for RNA binding proteins 

is significantly increased under various stress conditions, such as cold, drought or viral infections 

(Albà and Pagès, 1998; Sachetto-Martins et al., 2000). Interestingly, many RNA binding proteins 

function as repressor of the flowering locus C (FLC) in Arabidopsis (Quesada et al., 2005). In 

particular, a recent study elucidated the role of the small glycine-rich RNA binding protein AtGRP7 

in promoting floral transition (Streitner et al., 2008). In agreement, Cho et al. (2007) demonstrated 

a dramatic up-regulation of the same protein in vernalization-treated Arabidopsis plants. The GR-

RBP detected in our study possesses a high degree of homology with AtGRP7 (approx. 81%), 

suggesting that this protein could be involved in flowering-time regulation during vernalization 

response in wheat.  

Regarding carbohydrate-binding proteins, a marked up-regulation of a lectin protein (ricin B 

related protein, spot 67), has been revealed by proteomic analysis. This protein group was 

previously referred to as the family of “ribosome-inactivating proteins” (RIPs), capable of cleaving 



adenine residues from different polynucleotide substrates. Moreover, lectins have been reported 

to interact with proteins in the cell nucleus (Lannoo et al., 2006). The expression of 67%-84% of 

lectins is controlled by the jasmonate pathway, which is involved in plant growth, development 

and resistance to several stresses, especially during flowering and seeding. This is an important 

feature, since there is evidence of a relationship between vernalization and the signal transduction 

pathway mediated by jasmonate (Yong et al., 1999).  

VER2 is an important lectin protein containing a jacalin-like domain at the C-terminus and has 

been demonstrated to be induced by both vernalization and jasmonic acid in wheat (Yong et al., 

2000, 2003).Our data demonstrated that its synthesis increased up to the vernalization saturation 

point, followed by a sharp decline at day 63 of cold acclimation. In a recent work, the ver2 

expression pattern was monitored in wheat seedling shoots exposed to low temperatures (Bertini 

et al., 2009) and the maximum level of the transcript was reached after 28-day cold acclimation. 

Nonetheless, ver2 gene was shown to be significantly expressed also in control plants (5-day-

old), in contrast with other data reported in literature (Yong et al., 2003) where no signal was 

detected under normal temperature conditions. Moreover, in agreement with the transcriptional 

pattern, native VER2 protein was found to be constitutively expressed in control wheat seedlings 

by western blot analysis, as it appeared to be induced upon vernalization treatments (Bertini et al., 

2009). These findings led authors to hypothesize multiple roles for VER2 during the normal plant 

development, besides those directly linked to cold acclimation. Interestingly, our proteomic 

analysis revealed for the first time an increase in VER2 expression during plant growth at room 

temperature (see the expression trend of spot 34 in Figure 9); moreover, its levels at day 0 (14-

day-old plants) were already appreciable, in agreement with Bertini and colleagues (Bertini et al., 

2009). These results could be combined with the evidence that plant devernalization repressed 

ver2 expression (Bertini et al., 2009) as to suggest that, even if VER2 does not exert vital 

functions for seedling development, it could rather take part into those plant molecular 

mechanisms preparing for flowering and preceding effective switching to the reproductive phase. 

On the other hand, Xing and co-workers recently demonstrated that VER2 is involved, in a 

phosphorylation-modulated fashion, in O-GlcNAc signalling during vernalization (Xing et al., 



2009). Basing on these considerations, the down-regulation we observed at the 63rd day 

vernalization treatment may not be so surprising.  

 

Major metabolic modifications upon prolonged cold e xposure 

Cold acclimation leads to net sugar accumulation 

As previously hinted, sugars are involved in the process of cold acclimation, decreasing the 

osmotic potential of cell cytoplasm aimed at the compensation of the intracellular loss of water. 

Sucrose accumulation during plant exposure to low temperature, together with its corresponding 

effects on winter survival, has been extensively studied (Hurry et al., 1994). In the present study, 

in accordance with previous reports (Hurry et al., 1995), soluble sugar levels increased 

dramatically upon cold exposure (see Figure 10), reaching a maximum on the same day as the 

vernalization saturation point (42nd day at 4°C). Besides their known role in energetic  cellular 

processes, sugars, as hormone-like molecules, can act also as primary messengers and regulate 

signals that control the expression of various genes involved in sugar metabolism. The signalling 

role of these molecules has been elaborated by many authors, and dubbed the so called  “sugar 

sensing” mechanism, which refers to the interaction between a sugar molecule and a sensor 

protein that triggers signal transduction cascades and ultimately results in important cellular 

responses such as modulations of gene expression and enzymatic activities (Gupta and Kaur, 

2005). These important effects are exerted during all stages of plant growth, from seed 

germination to complete development. At the molecular level, two pathways for plant hexose 

sensing have been suggested, one hexokinase (HXK)-dependent and the other HXK-

independent, the former requiring the phosphorylation of sugars while the latter does not 

(Smeekens, 2000). Relating this to our proteomic results, we observed a variation in expression of 

a putative fructokinase (spot 113), belonging to the glycolytic pathway. Recently, fructokinase has 

been proposed as additional sensor that bypasses HXK phosphorylation in the sugar sensing 

mechanism (Pego and Smeekens, 2000), increasing scientific interest in this enzyme beyond its 

direct implication in sugar metabolism.  

Changes in fatty acid composition during cold hardening  



Alterations in the plasma membrane structure, viscosity and composition are among the most 

important modifications related to cold acclimation (Uemura et al., 1995). Several factors 

contribute to structural cell stabilization, among which are accumulation of sucrose, osmolytes 

and alteration in membrane lipid composition. 

The fact that temperature response implies important modifications in the fluidity of cell 

membranes is now generally accepted (Tasseva et al., 2004). In plants, de novo fatty acid 

biosynthesis takes place in the plastid, where acetate (C2) is elongated by the sequential addition 

of further C2 units while attached to a soluble acyl-carrier-protein (ACP) (Millar et al., 2000). In the 

present study, a marked down-regulation of acyl coenzyme A (acyl CoA) binding protein (spot 

127) and of chloroplastic ACP1 (acyl carrier protein 1, spot 69), both devoted to the elongation of 

fatty acid chains, was found in vernalized samples. It has been hypothesized that in chloroplasts, 

ACP-1 influences the ratio of fatty acids destined to either the prokaryotic (chloroplastic) or 

eukaryotic (cytosolic) pathways of lipid biosynthesis. In a study conducted in Arabidopsis, ACP-1 

transgenic overexpression was demonstrated to affect leaf fatty acid composition, causing an 

increase in linolenic acid (18:3) and a decrease in hexadecatrienoic acid (16:3) (Branen et al., 

2001). The authors have hypothesized that an increase in ACP-1 protein expression leads to an 

increase in the amount of fatty acids sent to the eukaryotic pathway, which produces 

phospholipids for extrachloroplast membranes. So, in an opposite way, the down-regulation of this 

protein observed in the present study could cause an increase in the formation of 16:3 chains in 

the prokaryotic pathway. Furthermore, spot 84, containing a 3 beta-hydroxysteroid 

dehydrogenase/5-ene-4-ene isomerase (3 beta-HSD protein, responsible for the formation of all 

classes of steroid hormones), was down-regulated in vernalized samples. In constrast to these 

findings, spot 79, which has been identified as a patatin-like protein, showed an increase in 

expression. This protein belongs to a group of potato (Solanum tuberosum) storage glycoproteins 

that show acyl hydrolase activity on membrane lipids (Andrews et al., 1988). Besides functioning 

as a storage protein, patatins exert lipolytic activity in defence against plant parasites (Strickland 

et al., 1995) and in plant signal transduction (Holk et al., 2002). Furthermore, it is interesting to 

note that a subgroup of this family, the most widely represented one, is normally tuber-specific, 



but can be induced in leaves by high concentrations of sucrose. Considering what has been said 

so far, the global behaviour of lipid metabolism from our proteomic point of view seems to be 

orientated towards fatty acid catabolism rather than anabolic pathways.  

Photosynthetic processes during cold acclimation  

Another crucial plant function that may be damaged during cold exposure is photosynthesis; a 

decrease in temperature, in fact, leads to a concomitant reduction in the irradiance required to 

saturate photosynthesis (Falk et al., 1992). Since photosynthesis couples temperature-

independent photochemical processes with temperature-dependent redox reactions involved in 

electron transport and carbon assimilation, cold acclimation will exert a unilateral effect, leading to 

an energy imbalance. In winter wheat, cold acclimation is known to induce an increase in 

tolerance to photoinhibition (Somersalo and Krause, 1990). This species grows and develops at 

low temperatures, this the plant must maintain active photosynthesis during winter (Huner et al., 

1998), in contrast to evergreen plants which have evolved by creating other survival strategies, 

such as cessation of growth during the cold season. This enhancement in plant tolerance appears 

to be the result of the ‘reprogramming’ of carbon metabolism. Upon cold exposure, quinone A 

(QA), which is the first quinone electron acceptor of the PSII reaction centers, will be mostly in the 

reduced state, since it is normally photochemical reduced under cold conditions, whereas 

oxidation via redox reactions of the electron transport chain will be affected by low temperatures. 

Current models concerning sucrose regulation of plant gene expression have revealed an 

inhibition of photosynthetic genes in the presence of elevated sugar concentrations, a situation 

which typically occurs during cold acclimation. Although this regulation was contested in other 

studies conducted on Arabidopsis (Strand et al., 1999), rye and wheat (Huner et al., 1993, 1998), 

our analysis revealed a decrease in expression of the major photosynthesis-related proteins. In 

particular, we observed a significant down-regulation of the main proteins responsible for electron 

transfer from H2O to NADP+: plastocyanin (spot 3), cytochrome b6f complex (spot 59), plastidic 

ATPase [spots 57, 33 and 109 (β subunit), 115 (B chain), 118 (D chain), 196 (ε subunit)], 

ferredoxin-NADP(H) oxidoreductase (spot 197).  



Although the biochemical significance of the decreased expression for photosynthesis-related 

gene products in winter wheat warrants further investigations, it is interesting to mention a partial 

overlapping between our results and a recent transcriptomic study where this tendency to a down-

regulation of photosynthetic genes by LT was described (Gulick et al., 2005). OEE1, OEE2 and 

RuBisCO-containing spots were also found to be down-regulated after prolonged cold exposure. 

Moreover, these spots were found to be scattered over a wide area of the gel: this is attributable 

both to protein fragmentation and to post-translational modifications, when we look at their shift in 

molecular weight and isoelectric point. We suggested that this fact could be due to active 

recycling of amino acids derived from proteolysis and their subsequent recruitment as substrates 

in other cellular pathways. This hypothesis has been reinforced by both the increase in expression 

of proteasome, and by the up-regulation of some TCA cycle enzymes (described below). 

Interestingly, RuBisCO activase showed an opposite modulation in expression with respect to 

RuBisCO in all spots examined (146, 159 and 182), being significantly up-regulated in vernalized 

plants in comparison to those grown at 20 °C for 63  days. The expression trend of RuBisCO 

activase appears to be related to its role in maintaining the active configuration of RuBisCO.  

Carbon fixation  

It is known that the exposure of fully expanded leaves of winter cereals to a short period of low 

temperature inhibits electron transport capacity and carbon assimilation, whereas low temperature 

growth exerts the opposite effect. In fact, in contrast to low-temperature stress, cold acclimation of 

cereals is associated with an increase in light-saturated carbon dioxide (CO2) assimilation rates, 

due to the increased capacity of the Calvin cycle enzymes (Huner et al., 1993, Hurry et al., 1995) 

and the differential capacity to adjust sucrose-phosphate synthase (SPS) activity (Hurry et al., 

1994, Strand et al., 1999). This enhanced photosynthetic capacity seems to reflect an increased 

flux of fixed carbon (through sucrose) in source tissues, as a consequence of two combined 

effects: the increased storage of carbohydrate as fructans in the vacuole of leaf mesophyll cells 

and an enhanced export of product to the crown due to its increased sink activity. In the present 

analysis, spots 30 and 184, identified as chloroplastic fructose-1,6-bisphosphate aldolase (FBA), 

were up-regulated in response to cold exposure. Another Calvin cycle enzyme that showed an 



increase in expression during cold exposure is phosphoglycerate kinase (PGK, spot 124). In 

contrast with the previous findings, spot 97, containing chloroplastic glyceraldehyde-3-phosphate 

dehydrogenase (GAPDH), showed a decrease in expression after prolonged cold treatment. 

Moreover, spot 121, containing both phosphoribulokinase (PRK) and sedoheptulose-1,7-

bisphosphatase, both dedicated to the regeneration of substrates for the renewal of the cycle, 

decreases in expression in vernalized plants.  

Furthermore, it has long been observed that plants exhibit enhanced rates of respiration during 

growth at low temperature: this physiological behaviour, besides preserving plant vitality under 

suboptimal growth temperatures, also reflects the availability of high sucrose levels in the plant 

(Huner et al., 1993). Our study also revealed an increase in expression of the mitochondrial 

enzymes of the TCA cycle, in particular isocitrate and malate dehydrogenases (spots 48 and 100, 

respectively). 

 

Protein metabolism  

Exposing plants to low temperatures causes them to modulate their amino acid balance, this can 

be observed in the accumulation of free amino acids involved in the synthesis of stress-related 

metabolites. The metabolic pathway of proline deserves particular attention, considering its 

impressive increase in concentration under various abiotic stresses, including cold exposure; its 

positive effect is exerted mainly through its oxidation to glutamate and 2-oxoglutarate. 

Physiological measurements of proline concentration in Cheyenne winter wheat confirmed that it 

does indeed increase significantly during cold exposure, reaching a maximum level at the 42nd 

day, after which a gradual decrease is observed. Again, as we observed for soluble sugar levels, 

the time of maximum accumulation overlaps with saturation of vernalization. Since the enzymes 

involved in proline degradation are located in the mitochondrion, this amino acid may also provide 

carbon to the TCA cycle in plants suffering osmotic stress (such as during prolonged cold 

exposure). The mitochondrial oxidation of proline produces reducing equivalents available for 

supporting the generation of ATP, whereas the proline biosynthetic pathway from glutamate 

involves a high rate of consumption of NADPH and ATP. These facts suggest that proline 



biosynthesis may be an important adaptive mechanism to ameliorate an imbalance between light 

energy absorbed through photochemistry and energy used in intersystem electron transport and 

carbon metabolism under conditions of stress. Since it is known that transcription of the catabolic 

genes is principally more sensitive to fluctuations in stress-associated signals than that of the 

biosynthetic genes (Less and Galili, 2008), probably the main contribution to the increase of free 

amino acids during cold is protein breakdown.  

Proteolysis  

In plants, as in all living organisms, regulated proteolysis presides over each major aspect of 

growth and development (photomorphogenesis, circadian clock, flowering), and is also a key step 

in hormone-dependent signal transduction. The gene regulatory network controlling flowering time 

represents an example of integration between multiple environmental signals, mediated through a 

diverse set of regulatory mechanisms (chromatin regulation, proteolytic pathways, etc), which 

ultimately affects protein expression and determines the proper timing of the most important event 

for a plant fitness, transition to the reproductive phase (Gasser and Dean, 2009). Thus, the crucial 

role of proteolytic enzymes during vernalization appears clear. A plastidial protease (spot 180), 

belonging to the ATP-dependent chloroplast-localized protease family, was seen to decrease in 

vernalized plants. A study involving silencing through antisense technology in Arabidopsis has 

previously demonstrated that the loss of chloroplast proteases, particularly ClpP6, was 

responsible for pleiotropic changes in plant metabolism (Sjögren et al., 2006). Further 

identification of stromal proteins accumulating in the Arabidopsis antisense lines, where 

expression of this protease was totally repressed, suggests that these proteins are natural ClpP6 

substrates, among which we spotted fructose bisphosphate aldolase and a putative RNA binding 

protein. In our analysis, fructose bisphosphate aldolase (spots 184 and 30) have shown an up-

regulation upon prolonged cold exposure, concurrent with a decrease in the expression of clp 

protease; these findings seem to be in accordance with previously reported data. In contrast to 

the decrease in expression of plastidial proteases, the expression of the proteasome complex 

(spot 112, alpha 2 chain), responsible for the ubiquitin-dependent protein catabolic process of 

misfolded/targeted proteins, was seen to increase in vernalized plants. The proteasome complex 



takes part in many developmental processes, cleaving positive or negative regulators of many 

genes and thus orientating signaling cascades (Casal et al., 2004). A possible relationship 

between the increase in expression of proteasome and the presence of protein fragments 

belonging to photosyntesis-related proteins and RuBisCO (previously described) could also be 

hypothesized. In fact, proteolysis of the most abundant leaf proteins for energetic purposes could 

be a realistic possibility during prolonged exposure to sub-optimal conditions. The progressive 

disappearance of these fragments in function of time corroborates the hypothesis of an active 

recycling of amino acids for their subsequent recruitment as substrates in other cellular pathways. 

Since Rubisco is mainly synthesized during leaf expansion and degraded rapidly during leaf 

senescence, its turnover is closely related to photosynthesis and nitrogen economy in plants, it 

being the most abundant protein in leaf cells. The majority of Rubisco is thought to be degraded 

into small nitrogenous molecules (oligopeptides and/or amino acids) within the chloroplasts at the 

early to middle stage of senescence, being conclusively degraded by vacuolar proteases in the 

last stage of senescence (Chiba et al., 2003).  

Glutamate as a ”trading currency” 

Two other important enzymes related to amino acid balance were differentially expressed in 

vernalized plants: glutamine synthetase (spots 153 and 156) and glutamate-1-semialdehyde 

aminomutase (GSAM, spot 177), both increasing in expression upon cold exposure. However, the 

expression pattern of glutamine synthetase is quite  controversial, since it also showed an 

opposite trend, with respect to the previous one, in spots 80 and 88; this result could be tributable 

to the simultaneous presence of various isoforms, differentially increased/repressed in expression 

during cold acclimation. GSAM synthesizes 5-aminolevulinate (ALA), which forms the building 

block for tetrapyrrols in cofactors like heme, chlorophyll, and carotenoids. The first substrate of 

this pathway comes from glutamate metabolism, a visible sign of the amino acidic catabolic way. 

Since interconversion of glutamate into glutamine and vice versa is an important switching point 

for glutamate availability, the up-regulation of these two enzymes appears to be related. Spot 165, 

found to be up-regulated in vernalized winter wheat, has been identified as S-adenosylmethionine 

synthase (SAMS1), an enzyme that catalyzes the conversion of ATP and L-methionine into S-



adenosyl-L-methionine (SAM). SAM is second to ATP as the most abundant cofactor in metabolic 

reactions, acting as a methyl group donor for numerous transmethylation reactions. SAM is 

cyclically synthesized in the so called "methyl cycle", whose rate is known to increase in response 

to stress (Boerjan et al., 1994). In plants, adenosylmethionine (AdoMet) is a precursor molecule in 

the biosynthesis of the phytohormone ethylene and is also involved in the biosynthesis of 

polyamines. Peptide methionine sulfoxide reductase (spot 193) was found to be greatly up-

regulated in vernalized plants with respect to RT-grown seedlings. A transcriptome profiling study 

aimed at the identification of cold-responsive genes in Arabidopsis, revealed 300 cold-responsive 

genes, among which was the unexpected find of a peptide known as methionine sulfoxide 

reductase (PMSR) (In et al., 2005). PMSR catalyzes the reduction of protein-bound methionine 

sulfoxide groups to methionine, preventing the inactivation and potential degradation of proteins 

oxidized by reactive oxygen species (such as superoxide, hydroxyl radicals and H2O2). Moreover, 

Gustavsson and coworkers (Gustavsson et al., 2002) demonstrated that a plastidic PMSR in 

Arabidopsis can efficiently prevent the oxidative inactivation of a chloroplast-localized chaperonin 

21, which has been shown to be up-regulated in the present analysis (spot 114).  

50S ribosomal protein L21 (spot 195) was also switched on upon vernalization; this protein 

belongs to the large ribosome subunit, helping to organise and stabilise the tertiary structure of 

the rRNA. On the contrary, we found an offset in expression of the 30S ribosomal protein S6 (spot 

36).  

 

Cold acclimation increases the expression of chaper on proteins  

Chaperonins, which are known to be involved in the maintenance of the functional protein 

configuration, showed a significant up-regulation in vernalized plants (spots 136 and 114, 

molecular chaperone DnaK and putative chaperonin 21, respectively). An interesting note to 

mention is that silencing experiments on chaperonin 21 promoted seed abortion in tobacco and 

tomato fruits (Hanania et al., 2007). Furthermore, subtractive hybridization assays made to isolate 

differentially regulated genes that participate in the seedlessness machinery, revealed that one of 

the gene differentially expressed between the seeded and seedless lines, was the chloroplast 



chaperonin 21 (ch-Cpn21). Thus, a possible role for this chaperone in reproductive development 

has been hypothesized. Protein disulfide isomerase (spot 194), which is involved in the formation, 

cleavage and isomerisation of disulfide bonds in nascent proteins, was also newly expressed in 

vernalized plants.  

 

Down-regulation of redox protein 

Regarding proteins involved in redox balance, a chloroplast-localized protein involved in defence 

against oxidation showed a marked down-regulation in winter wheat after cold treatment in the 

present analysis; in particular, spots 158 and 179, both identified as 2-Cys peroxiredoxin BAS1 (a 

chloroplastic thiol-specific antioxidant protein), decreased in expression in vernalized samples. A 

recently published proteomic study on the modulation of wheat proteomes in the presence of 

different nitrogen concentrations (Bahrman et al., 2004) demonstrated an up-regulation of the 

peroxiredoxin BAS1 in response to high nitrogen availability, and other data from the literature 

linked the increased expression of this enzyme to plant defence against environmental stressors, 

such as high levels of alkyl hydroperoxides occurring upon oxidative stress (Costa et al., 1998). 

Another proteomic study on the response to cold in Arabidopsis (Goulas et al., 2006) at the 

plastidial level, showed a dramatic modulation of the stroma and lumen subproteomes upon 

prolonged cold exposure (40 days at 5°C): in partic ular, two 2-Cys peroxiredoxins (2-Cys Prx A 

and B) were found to be reduced in abundance, in accordance with our findings.  
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PART II 

Proteomic analysis of a drought-resistant spring wh eat cultivar in response to prolonged 

cold stress 

 

Aim of the study 

This study addresses proteomic approach to delve into a quite challenging issue, that is plant 

cross-tolerance to different abiotic stresses. In particular, we focused on cold and drought 

stressors which cause the most fatal economic losses in agriculture due to their wide-spread 

occurrence. These stressors result in similar plant responses at the cellular and molecular level 

due to the fact that their impacts trigger similar strains and downstream signal transduction 

cascades. With the attempt to shed light into those metabolic modulations strictly related to 

exposure to low temperatures, we choose a drought-resistant spring wheat variety for our 

proteomic study so to minimize the dehydrative component of cold stress. Thus, we focused the 

attention on those proteins modulated in expression only upon prolonged cold exposure, coupling 

these findings to physiological measurements, in order to get a complete view of modulated 

pathways. We looked for cold-related protein modulations by cross-comparison of leaf proteomes 

from wheat plants grown for 14 (experimental zero point, control sample) and 42 days at optimal 

environmental parameters, as well as those subjected to prolonged cold exposure (42 days, 4 °C). 

In this way it was possible to distinguish them from those proteins normally expressed at the 42-

day-growth stage in this particular genotype. This sampling time has been chosen in order to 

analyze the mechanisms involved in plant response to prolonged abiotic stress, also because cold 

stress at plant reproductive stage has a more relevant agronomic impact in term of crop yield with 

respect to the vegetative stage.  

Considering the overlap between plant responses to various abiotic stressors and the other 

components influencing plant performance under adverse conditions - such as developmental 

stage, plant genotype, environmental factors causing the stress/experimental conditions of stress 

imposition, type of tissue under analysis and individual variability - it is impossible to unravel and 

outline the precise mechanism adopted by plants against a particular environmental constraint. 



Furthermore, the expression of a cellular product during stress does not imply its mandatory 

involvement in plant defensive mechanisms, as it can also be an effect of stress-induced damages, 

or could be simply unrelated to stress-triggered pathways. Finally, experimental findings obtained 

from a certain crop variety should not be generalized, since similar onsets in expression are known 

to be induced in desiccation tolerant as well as in less tolerant cultivars. Being aware of these 

limitations, in this study we tried to fill the gaps existing between the knowledge of the precocious 

plant response reactions to LT and the delineation of tolerance mechanisms during prolonged cold 

stress. We chose the drought-resistant spring wheat variety named Kohdasht to provide a starting 

point in developing a clearer picture, from a proteomic perspective on the molecular mechanisms 

which help a drought-resistant but cold sensitive variety to acclimate at suboptimal temperatures. 

The vast majority of the works performed so far have analysed the response of young seedlings to 

short-term cold stress. On the other hand, our study tried to shed light on the proteomic cold 

response in an advanced period of plant life, which is the reproductive stage. This allowed us to 

investigate on those long-term responses in protein expression which may play an important role in 

the adaptation to stressor events under field conditions. 

 

 

 



Background 

Perception of stress by plants 

Since plants are bound to places, they have to be considerably more adaptable to stressful 

environments and must acquire greater tolerance to multiple stresses than animals and humans. 

Examples at the cellular level include temporary modifications in gene expression to survive 

changing environments, as well as altering cellular structure and function to deal with more 

permanent adverse conditions. Some abiotic stresses, such as drought, salinity, extreme 

temperatures, chemical toxicity and oxidative stress are serious threats to agriculture and result in 

the deterioration of the environment. Thus, elucidating the various mechanisms of plant response 

to stress and their roles in acquired stress tolerance is of great practical and basic importance 

(Wang et al., 2004). Unfortunately, genome sequence information alone is insufficient to reveal the 

facts concerning gene function, developmental/regulatory biology, and the biochemical kinetics of 

plants to adapt under stresses and consequently to determine the exact responsive mechanism. 

To investigate these facts, more comprehensive approaches that include quantitative and 

qualitative analyses of gene expression products are necessary at the transcriptome, proteome, 

and metabolome levels.  

The concept of cross-protection 

Usually, an organism is subjected to several stress factors, e.g. lack of water and heat, or a 

secondary” stress factor follows a “primary” one (i.e. when the plant lacks water and closes its 

stomata, internal CO2 deficiency occurs when the plant is illuminated, and as a further 

consequence oxidative stress ensues). Combination of several stress factors is the normal case 

and is referred to as multiple stress. Furthermore, environmental stresses that result in cellular 

dehydration, such as freezing, salt and water stress, often lead to similar changes in plant gene 

expression and metabolism (Kaplan et al., 2004; Kreps et al., 2002; Rabbani et al., 2003; Seki et 

al., 2001), and there exists cross-talk in their signalling pathways (Chinnusamy et al., 2004; Knight 

and Knight , 2001). There is yet another facet to the question of specificity of stress reactions 

which is described by the term cross-protection. Previous drought stress or salt stress (osmotic 

stress) is known to harden plants against temperature stress, and particularly cold stress.  



Modification induced by stressors at the proteomic level 

Maintaining proteins in their functional conformations and preventing the aggregation of non native 

proteins are particularly important for cell survival under stress. In fact, as mentioned before, plants 

are sessile organisms and rely on proteomic plasticity to remodel themselves during periods of 

developmental change, to endure varying environmental conditions, and to respond to biotic and 

abiotic stresses. The latter are the primary cause of crop loss worldwide, reducing average yields 

for most major crop plants by more than 50%. Abiotic stresses usually cause protein dysfunction. 

Different families of proteins are known to be associated with a plant's response to stresses by 

being newly synthesized, accumulating or decreasing. Among other things, these proteins are 

involved in signalling, translation, host-defence mechanisms, carbohydrate metabolism and amino 

acid metabolism. Now it is a well known fact that proteins mediate these features by playing a role 

in directing the genome and ultimately physical features (such as in xerophytes) or encountering 

stressors directly (such as antioxidant enzymes and chaperonins) or indirectly (such as a key 

enzyme in osmolyte synthesis).  

On the other hand, mRNA and protein levels cannot be simply correlated due to inability of total 

mRNA to translate into protein; protein levels are not directly correlated with the number of 

transcripts in the cell, and post translational modification is not visible by examination of 

transcriptome, making proteomics the study of the real players in organisms. Moreover, the 

proteome is not a static entity, being it affected by multiple modifications such as cell cycle, 

changes of external conditions, kind of tissue examined, and particular physiological states. For 

these reasons, proteomics is becoming a powerful tool to analyse biochemical pathways and the 

complex response of plants to environmental stimuli. In particular, comparative proteomic 

investigations of plants before and after specific or interactive stresses allow us to obtain 

information on how defensive mechanisms are adopted from plants. Proteomics also provides an 

essential link between the transcriptome and metabolome, complementing genomics research. 

Only by grouping all this information together is it possible to achieve a comprehensive and 

exhaustive analysis of the strategies induced by the cells as response to stress. 

 



Cold stress in wheat 

Among cereals with agronomic value, both wheat and barley are considered to be relatively cold-

tolerant crops. As described in the first part of the thesis, common wheat (Triticum aestivum L.) 

cultivars can be divided into two subclasses on the basis of their different growth habits: spring 

wheat has a relatively short vegetative period, whereas winter wheat delays transition from 

vegetative growth to the reproductive stage until it has been exposed to a period of low but non-

freezing temperatures, a process called vernalization. The limited level of low temperature (LT) 

tolerance in spring wheat means that exposure to cold greatly impairs its vitality, even to the point 

of compromising survival. Cold-induced proteins have been well characterised and categorised as 

Lea (late embryogenesis abundant), Dhn (dehydrin), Rab (response to abscisic acid), Lt (LT 

responsive), Cor and many others (Jan et al., 2009). Numerous proteomic studies have been 

published during recent years dealing with cereal plants undergoing cold stress. To provide a few 

examples, Yan and colleagues analysed the response of 21 day-old rice seedlings (Oryza sativa L. 

cv. Nipponbare) to 6 or 24 h of exposure to 6 °C, a nd subsequent recovery, at the proteomic level 

(Yan et al., 2006). In this study, the Authors managed to identify 85 differentially expressed 

proteins; further protein classification revealed that the largest functional category of proteins 

affected by chilling stress was devoted to photosynthesis. In the same year, Yang et al. (2006) 

subjected a cold sensitive rice variety, named Liangyoupeijiu, to 4 °C cold treatment and 

performed 2D-E on the leaf proteome. MS analysis allowed the identification of many cold-

modulated proteins, among which some metabolism-associated proteins were found to be down-

regulated, whereas the up-regulated proteins included several stress-resistance polypeptides. One 

year later, Lee et al. (2007) used proteomic techniques to isolate cold-responsive low-abundant 

proteins in rice leaf tissues. They identified a total of 12 up-regulated protein spots, including 

several previously unreported proteins (i.e., cysteine proteinase, thioredoxin peroxidase, a RING 

zinc finger protein-like, drought-inducible LEA, and a fibrillin-like protein). More recently, Hashimoto 

and Komatsu conducted another study focusing on cold stress-induced changes in protein profiles 

of leaf blades, leaf sheaths and roots of two-week-old rice seedlings (Hashimoto and Komatsu, 

2007). 39 proteins were found to be differentially expressed after a brief (48 h) exposure to LT, 



indicating both organ-specific and general plant responses to cold stress. Nevertheless all these 

works were performed after relatively short periods of cold exposure and a gap still persists in 

literature about cold-responsiveness of plants during the reproductive stage. Thus, protein changes 

responding to longer periods of stress may not have been identified so far, even though they may 

be crucial to adaptation under field conditions. Similarly to cold, drought stress represents a big 

challenge for plant growth. It affects carbon metabolism and disturbs the relationship between sink 

and source organs: cellular responses include osmotic adjustment, regulation of water circulation 

(aquaporins), protection against oxidative stress and, at the protein level, a significant 

accumulation of heat-shock proteins (HSP) and late embryogenesis abundant (LEA) proteins. 

Proteomics has been recently coupled to pre-existing molecular techniques to delve into plant 

responses to drought (Ali and Komatsu, 2005; Caruso et al., 2009; Salekdeh et al., 2002; 

Hajheidari et al., 2005; Riccardi et al., 1998). Functional categories of modulated proteins 

demonstrated a broad involvement of pathways presiding the major plant vital functions, among 

which photosynthesis, lignification, cellular transport and storage. Many proteins are produced by 

the plant in order to prevent cellular damage (HSP) (Kiyosue et al., 1994), or to maintain the 

energetic cellular demand upon stress (enzymes belonging to glycolysis and S-adenosyl-

methionine synthase pathway) (Umeda et al., 1994; Chang et al., 1996). The analysis of the 

signaling pathways pointed out an extensive cross talk between drought and cold responses, a 

conclusion supported by the presence of common physiological components, such as cellular 

dehydration and accumulation of reactive oxidative species (ROS) (Apel and Hirt, 2004). As 

mentioned before, plants subjected to a single adverse condition are known to develop increased 

resistance to other stresses (cross-adaptation/protection). When this observation was tested on 

plants exposed to drought they were found to have enhanced cold tolerance, and vice versa; cold 

treatment improves drought resistance, making the use of desiccation a convenient strategy to 

adopt for increasing cold hardiness in plants (Cloutier and Siminovitch, 1982). However, the exact 

mechanism involved in drought-triggered cold resistance has not been completely clarified at the 

proteomic level; nonetheless, some physiological studies have recently demonstrated that drought-

resistant plants have a greater cold tolerance at intermediate levels of acclimation than the 



corresponding drought-sensitive clone (Costa et al., 2009), indicating an enhanced carbon 

metabolism in the drought-resistant variety, as well as a higher ability in adjusting osmotic 

potentials.  

Starting from these considerations, we used the proteomic approach to examine differences in leaf 

protein profiles in an Iranian drought-tolerant spring wheat cultivar subjected to prolonged cold 

stress. In fact, although drought resistance has been demonstrated not to favour crop yield 

potential (Blum, 1988), it becomes a crucial feature in inhospitable habitats, such as dry regions of 

the world. In these areas, programmed selection is made for the improvement of crop drought 

tolerance, through precise strategies of stress-testing. In Iran, drought stress represents a relevant 

agronomic problem, being 60% of the total wheat area under rainfed cultivation. Furthermore, the 

majority of such zones lacks a satisfactory and constant amount of rainfalls. Quite recently, the 

troubleshootings related to dry farming in Iran have found their institutionalization in the Dryland 

Agricultural Research Institute (DARI), whose major aim is to develop cereal cultivars perfectly 

fitting in every microenvironment. For the warm-winter areas (Gachsaran, Lorestan, Ilam, and 

Golestan), the improved cultivars Nicknajet, Gahar, Zagros, Kohdasht, and Seymareh have been 

released. Their introduction has led to a significant yield increase (from 10 to 30% with respect to 

the local cultivars), and even more relevant if associated with improved agronomic practices such 

as weed control and soil fertilization (Mosaad et al., 2005). The spring-habit pure line that we used 

is Kohdasht, the most drought-tolerant wheat line among the other previously cited (Mahfoozi et 

al., 2006). The cold sensitivity of Kohdasht variety made the effect of low temperature on 

metabolism of this plant more revealing, providing molecular information about the role of drought 

tolerance in adaptation to cold temperatures. 
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Materials and Methods 
 

Plant material, cold treatment and determination of  phenological development.  Wheat 

seedlings (Triticum aestivum cv Kohdasht) were grown in a controlled growth chamber at 20 °C for 

14 days with 12 h daylight period at 300 µmol m-2 s-1 photosynthetic photon flux density (PPFD). 

Afterwards, plants were transferred to a 4 °C for 4 2 days (cold treatment) or they were maintained 

at 20 °C. To determine the stage of phenological de velopment, two methods were used: (i) 

determination of final leaf number (FLN), and (ii) dissection of the plant crown to reveal the shoot 

apex development. For FLN determination, three plants were grown in each pot in three 

replications and were placed in both cold (4 °C) an d warm rooms (20 °C) at the same time as the 

pots for shoot apex analyses. Plants were sampled in 14-day establishment (experimental day 0), 

21- and 42-day cold treatments. At each sampling date two pots each with three plants in each 

replicate were moved into a glasshouse at 20 °C and  a 16 h day length (long-day flower induction 

conditions). Leaves on the main stem of each plant were numbered until the flag leaf emerged. 

The experimental design for the FLN trial was a 1 (genotype) x 3 (sampling date = 0, 21 and 42-d) 

factorial. Shoot apices of plants were dissected, recorded and photographed at each sampling date 

to determine the stage of development. The stage of phenological development was determined 

from changes in the morphology of the shoot apex and was expressed by decimal code (DC) 

according to Nátrová and Jokeš (1993). Shoot apices from five plants were dissected and the 

mean code was calculated.  

 

Proline content. Proline content was estimated at intervals of 0, 21 and 42 days following the 

method described by Bates (1973). 0.5 g (fresh weight) of spring wheat leaves were homogenized 

with 3% sulphosalicylic acid and centrifuged. The supernatant was treated with acetic acid and 

acid-ninhydrin and boiled for 1 h. The mixture was eluted in benzene and the absorbance was read 

at 520 nm using a Cary 4 Varian spectrophotometer.  



Soluble sugar extraction.  Total water soluble carbohydrate determination was based on the 

phenol sulphuric acid method of Dubois et al. (1956). Data were measured at 485 nm by a Cary 4 

Varian spectrophotometer. 

Chlorophyll content.  Chlorophyll a + b content (SPAD readings, dimensionless value) was 

determined by chlorophyll meter SPAD-502 (Minolta, Tokyo, Japan). 

Protein Extraction. 1 g of wheat leaves (2-4 leaves above the crown on main stem samples) was 

finely ground in liquid nitrogen and the protein extraction was performed according to Damerval et 

al. (1986), with some modifications. The resulting powder was suspended (1 g/10 ml) in chilled (- 

20 °C) 10% TCA in acetone containing 0.007% DTT and  1% plant protease inhibitor cocktail 

(P9599; Bio-Rad, Hercules, CA, USA). The mixture was incubated at - 20 °C for at least 1 h then 

centrifuged at 35000 g for 15 min. The pellet was washed three times (10 ml) with chilled (- 20 °C) 

acetone containing 0.007% DTT centrifuging at 12000 g at 4 °C for 15 min. The supernatant was 

removed and the pellet was lyophilized for 1 h. If dried powder was not to be solubilised 

immediately, it was stored at - 80 °C until use. 

 

Protein solubilisation and two-dimensional electrop horesis. The wheat leaf proteins in the 

dried powder were solubilised in 9 M urea, 4% CHAPS, 1% DTT, 1% pH 3-10 ampholytes (Bio-

lyte; Bio-Rad, Hercules, CA, USA), 35 mM Tris base via incubation at 37 °C for 1 h with continuous 

stirring. The mixture was centrifuged at 12000 g at room temperature for 15 min and a small 

aliquote was used to determine protein content by Bradford assay (Bradford, 1976). IEF was 

performed using Biorad Multiphore II and Dry Strip Kit (Bio-Rad-Protean-IEF-Cell-System). 

Seventeen centimeter IPG strips (Bio-Rad, Hercules, CA, USA) pH 4-7 were passively rehydrated 

overnight with 750 µg of protein in 300 µl of solubilisation solution containing 1% carrier ampholyte 

(Bio-lyte 4-7; Bio-Rad, Hercules, CA, USA). The total product time × voltage applied was 80 000 V 

h for each strip at 20 °C. Strips were subsequently  reduced (1% DTT, 15 min) and alkylated (2.5% 

IAA, 15 min) during the equilibration step (30 min in 50 mM Tris-HCl pH 8.8, 6 M urea, 30% 

glycerol v/v, 1% SDS, bromophenol blue). Equilibrated strips were then placed on SDS-



polyacrylamide gels, 16 cm × 20 cm, 13% acrylamide, and sealed with 0.5% agarose. SDS-PAGE 

was performed using the Protean II xi Cell, large gel format (Bio-Rad) at constant current (40 mA 

per gel) at 7 °C until the bromophenol blue trackin g dye was approximately 2–3 mm from the 

bottom of the gel. Protein spots were stained by Blue Silver (Candiano et al., 1996). 

 

Image Analysis. Two dimension gel images were digitised using a flatbed scanner (model 

ImageScanner-II, GE Healthcare, Uppsala, Sweden) with a resolution of 300 dpi and 16-bit 

greyscale pixel depth. Image analysis was carried out with Progenesis SameSpots software vers. 

2.0 (Nonlinear Dynamics), which allows spot detection, background subtraction, and protein spot 

OD intensity quantification (spot quantity definition). The gel image showing the highest number of 

spots and the best protein pattern was chosen as a reference template, and spots in a standard gel 

were then matched across all gels. Spot quantity values were normalised in each gel dividing the 

raw quantity of each spot by the total quantity of all the spots included in the standard gel. For each 

protein spot, the average spot quantity value and its variance coefficient in each group was 

determined. One-way analysis of variance (ANOVA) was carried out at p < 0.05 in order to assess 

for absolute protein changes among the different treatments; only 1.5-fold or higher quantitative 

variations were taken into consideration. The false discovery rate (FDR) was estimated by 

calculating q-values with a threshold of 0.05. The least significant difference (LSD) test was used 

to determine significant differences among group means. 

 

Functional annotation. Gene Ontology (GO) lists were downloaded from the TAIR website 

(http://www.arabidopsis.org/tools/bulk/go/index.jsp): each protein was classified with respect to its 

cellular component, biological process, and molecular function using GO annotation. When no GO 

annotation was available, proteins were annotated manually based on literature searches and 

closely related homologues. 

 

In-gel digestion. Protein spots were carefully cut out from Blue Silver stained gels and subjected 

to in-gel trypsin digestion according to Shevchenko et al. (1996) with minor modifications. The gel 



pieces were swollen in a digestion buffer containing 50 mM NH4HCO3 and 12.5 ng/µL of trypsin 

(modified porcine trypsin, sequencing grade, Promega, Madison, WI) in an ice bath. After 30 min 

the supernatant was removed and discarded, 20 µL of 50 mM NH4HCO3 were added to the gel 

pieces and digestion allowed to proceed at 37° C ov ernight. The supernatant containing tryptic 

peptides was dried by vacuum centrifugation. Prior to mass spectrometric analysis, the peptide 

mixtures were redissolved in 10 µL of 5% FA (Formic Acid).  

 

Protein identification by MS/MS. Peptide mixtures were separated using a nanoflow-HPLC 

system (Ultimate; Switchos; Famos; LC Packings, Amsterdam, The Netherlands). A sample volume 

of 10 µL was loaded by the autosampler onto a homemade 2 cm fused silica precolumn (75 µm 

I.D.; 375 µm O.D.; Reprosil C18-AQ, 3 µm, Dr. Maisch GmbH, Ammerbuch-Entringen, Germany) at 

a flow rate of 2 µL/min. Sequential elution of peptides was accomplished using a flow rate of 200 

nL/min and a linear gradient from Solution A (2% acetonitrile; 0.1% formic acid) to 50% of Solution 

B (98% acetonitrile; 0.1% formic acid) in 40 minutes over the precolumn in-line with a homemade 

10-15 cm resolving column (75 µm I.D.; 375 µm O.D.; Reprosil C18-AQ, 3 µm, Dr. Maisch GmbH, 

Ammerbuch-Entringen, Germany). Peptides were eluted directly into a High Capacity ion Trap 

(model HCTplus, Bruker-Daltonik, Germany). Capillary voltage was 1.5-2 kV and a dry gas flow rate 

of 10 L/min was used with a temperature of 230 °C. The scan range used was from 300 to 1800 

m/z. Protein identification was achieved by searching the National Center for Biotechnology 

Information non-redundant database (NCBInr, version 20081128, www.ncbi.nlm.nih.gov) using the 

Mascot program (in-house version 2.2, Matrix Science, London, UK). The following parameters 

were adopted for database searches: complete carbamidomethylation of cysteines and partial 

oxidation of methionines, peptide Mass Tolerance ± 1.2 Da, Fragment Mass Tolerance ± 0.9 Da, 

missed cleavages 2. For positive identification, the score of the result of (- 10 x Log(P)) had to be 

over the significance threshold level (P < 0.05). Even though high MASCOT scores are obtained 

with values greater than 60, when proteins were identified with only one peptide a combination of 

automated database search and manual interpretation of peptide fragmentation spectra was used 

to validate protein assignments. In this manual verification, the mass error, the presence of 



fragment ion series, and the expected prevalence of C-terminus containing ions (Y-type) in the high 

mass range, were all taken into account. Moreover, replicate measurements have confirmed the 

identity of these protein hits. 

 

RNA extraction, cDNA synthesis and PCR. Semi quantitative RT-PCR was carried out following 

extraction of total leaf RNA by applying RNXplus (Fermentas) from the pulverized plant leaves, 

followed by phenol/chloroform/extraction, isopropanol precipitation and ethanol wash. The 

extracted RNA was reverse transcribed using the Roche cDNA synthesis kit, as per manufacturer’s 

instructions. The synthesised cDNA was used in the subsequent PCR by applying specific primers 

designed for tubulin as an internal control housekeeping gene and three other genes whose 

expression was subjected to change in response to cold stress (wcor18, protein spot No. 1; 

wrab17, protein spot No. 22; rbcS, protein spots No. 19, 64, 72). The primer pairs used for 

amplification are listed in Table 1. PCR conditions were identical except for the annealing 

temperature which was adjusted for each gene as required. Specifically, 60 °C and 35 cycles were 

used for tubulin, rbcS and wrab17 genes, while a two step annealing procedure was used for 

wcor18 amplification so that a primary gradient amplification for 16 cycles starting from 52 °C and 

terminating at 60 °C was used to enhance amplificat ion of wcor18 followed by 30 cycles of 

annealing at 60 °C. Apart from annealing, all other  conditions of PCR were the same so that initial 

denaturation was at 94 °C for 4 min followed by den aturation at 94 °C 1 min, annealing 1 min 

according to the above description, 72 °C extension  for 1 min and final extension for 5 min. 



 

Gene Forward 5'-3' Reverse 5'-3' 
tubulin TGATGCTTTCAACACCTTCTTCAG GGGGCGTAGGAGGAAAGCA 

Wcor18 TACACGCTGGAGGGGCAGGGC CCGGGCTGCTTCCAGTCGTTGAC 
Wrab17 GGCTGTCACGAAGGCTGCCTC CCTGCTGGAAGACGTTTTCCTTGG 

rbcS GAGGGCATCAAGAAGTTCGAGACC TCAGGGTACTCCTTCTTGACCTCC 
 

Table 1 . Primer sequences used for RT-PCR assays. 
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Results 

Effects of low temperature on phenological developm ent 

Figure 1 shows morphological changes induced by cold exposure of Kohdasht seedlings. 42-day 

cold acclimated wheat plants reduced their growth with respect to non-acclimated plants, 

particularly at the level of elongation which is strongly impaired. Shoot apex dissection, which is 

commonly recognized as a good indicator of wheat developmental stage (Hay and Ellis, 1998; 

McMaster, 1997), was performed and expressed by decimal code (DC) according to Nátrová and 

Jokeš (1993). In the present study, Kohdasht spring wheat reached the single ridge stage (DC of 

about 19) within 14 establishment days (0-d cold treatment) (Figure 2A), which was shortly after 

planting. This early rapid advancement to the beginning of reproductive stage is a characteristic of 

spring habit cultivars. The phenological development of 42-d cold acclimated plants was found to 

be relatively similar to the 14-d establishment plants, because low-temperature conditions in cold 

conditioned chambers did not allow plant developmental progress, thus shoot apex of 42-d cold 

acclimated plants stopped just at formation of double ridge DR-1 stage (DC = 20) (Figure 2B). 

Shoot apex elongation and initiation of double ridges are the physical manifestation that the signal 

for transition to the reproductive stage has occurred, and the results of present study are in 

agreement with previous observations obtained under field conditions (Mahfoozi et al., 2006). On 

the other hand, along with dissection of the plant crown to expose the shoot apex, transition from 

the vegetative to the reproductive phase can also be determined by recording the final leaf number 

(FLN). As expected, Kohdasht reached its minimum leaf number very shortly after planting (Figure 

2, lower panel). Globally, these observations assured that plants with similar developmental stages 

were compared for proteomic cold acclimation studies. The 42-day plants grown at RT were able 

to reach the heading stage, thus allowing us to discriminate cold-responsive proteins from ones 

involved in development. 



 

 

Figure 1. Response of Kohdasht wheat cultivar to prolonged cold stress.  

 

 

Figure 2. Phenological development stage of Kohdasht spring wheat cultivar grown at 4 °C as estimated 

from shoot apex developmental morphology and final leaf number (FLN). Comparative phenological 

advancement to double ridge formation is illustrated in the upper panel. A, Shoot apex elongation and single 

ridge stage of 14-d establishment Kohdasht; B, Double ridge stage of 42-d cold acclimated Kohdasht. Lower 

panel shows changes in FLN. Bars represent ± SE (n = 3). 

 



Proteomic analysis of differentially expressed prot eins under cold treatment 

To assess changes related to cold acclimation at the molecular level, we initially conducted a 

comparative proteomic study by analysing qualitative changes in leaf polypeptide composition 

between three different experimental stages: (i) at day 0 (plants grown at room temperature (RT) 

for 14 days), (ii) after 21 or (iii) 42 days of cold acclimation. Small 2DE maps (13 cm, pI 4-7) of leaf 

soluble protein extracts were performed in three replicates and the results are shown in Figure 3. 

As can be seen, major accumulation of total proteins, quantified as total spot number, was 

detected after 21 days of cold treatment (about 30% increase compared with control), then a slight 

decrease was observed after 42 days (Figure 3B-C).  

 

 

 

 

 

 

 

 

Figure 3.  Comparison of Kohdasht spring wheat leaf proteomes by small 2-DE (IPGs 13 cm length, pI 4-7). 

Maps refer to different stages of leaf development and treatment: A, 14 days at room temperature (zero 

point); B, after 21 days of cold acclimation at 4 °C; C, after 42 days of cold acclimation at 4 °C. To tal spot 

number was determined and the arithmetic mean ± standard deviation (SD) was considered. Values refer to 

spots matching across all the gel replicates. Total protein sample load: 400 µg 

 

Recent research has shown that transition to the reproductive phase, which is determined by 

clusters of co-adapted flowering genes, is the critical switch that initiates down-regulation of LT-

induced genes (Fowler et al., 1996). Thus, the gradual decrease in the total protein content 

between 21 and 42 days of cold acclimation confirmed at the protein level that the transition to the 

reproductive phase occurred during that time, in agreement, on the other hand, with phenological 

observations. As mentioned before, reproductive development is the most water-sensitive phase in 

cereals, thus we decided to make an in-depth study on the effects of a long-term cold exposure 



(i.e., 42 days at 4 °C) using quantitative differen tial proteomics. The experimental procedure 

involved large 2D gel electrophoresis (17 cm, pI 4-7) conducted on total leaf protein extracts from 

plants grown in controlled environment conditions at 20 °C for 14 (experimental day 0) and 42 

days, and from 42 days cold-acclimated plants. Four biological and technical replicates per 

condition were performed and cross-compared by image software analysis Progenesis SameSpot 

(NonLinear Dynamics, Newcastle, UK) which generated the final master map shown in Figure 4.  

 

 

Figure 4. Master map obtained comparing 2-DE of leaf tissues from zero point (14 d, RT), 42 days at room 

temperature and 42 days at 4 °C. Numbers of signifi cantly different spots derive from computerized image 

analysis of 2-D gels using Progenesis SameSpots software.  

 

 

 

 

 



We found 598 spots that were common to all the gels, among these were 93 spots with 

significantly different expression levels (absolute variation of at least 1.5-fold). Figure 5 shows 

three representative maps for the samples (i) 14-d, RT (zero point, control sample), (ii) 42-d, RT 

and (iii) 42-d, 4 °C. Some gel regions are zoomed a nd displayed in order to appreciate quantitative 

changes (newly induced or totally repressed, up- or down-regulated spots) caused by development 

and/or cold treatment.  

 

 

 

 

Figure 5. Comparison of 2-DE maps of leaf tissues from zero point (14 d, RT), 42 days at room temperature 

and 42 days at 4 °C. Boxed areas (A-E) in the princ ipal image indicate zoomed regions displayed in the 

lower panel (examples of spots repressed, induced, and negatively or positively modulated). Numbers of 

spots indicated by the arrows refer to the master map shown in Figure 3. Linear IPGs pH 4-7, 17 cm length. 

 

 

 

 

 

 



Histograms resulting from quantitative analysis obtained by Progenesis SameSpot software 

(NonLinear Dynamics, Newcastle, UK) are shown in Figure 6.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6 . Histograms representing the mean of the spot normalized volumes for each treatment (14 d RT; 42 

d RT; 42 d 4 °C). 

 

 



 

Differentially expressed spots (indicated with numbers in Figure 4) were excised from the gels, 

digested by trypsin and peptide mixtures were then analysed by LC-ESI-MS/MS for protein 

identification. The successfully identified proteins are listed in Table 2, together with the protein 

spot number, the identification parameters, and the indication of their GO (gene ontology) 

annotations (cellular component, biological process, and molecular function). An additional table 

listing peptide sequences of identified proteins is provided in the final section of the thesis 

“Supporting Information”. Taking into account the result of the LSD (least significant difference) 

test, quantitative data of spots with inter-group statistical significance were loaded into the 

PageMan software (Usadel et al., 2006) which generated a false-color heat map to directly 

compare growth and cold effects on wheat leaves (Figure 7). Differentially expressed proteins were 

automatically included in functional categories (BINs) and spots with similar expression trends 

were also clustered (Figure 7). Data points which fell within the same BIN were automatically 

averaged by the software and the average value was used for creating the corresponding colour 

bar. Four primary clusters were defined: cluster 1 represented proteins slightly down-regulated by 

development, but strongly enhanced by cold; cluster 2 included proteins with a low or absent 

modulation by development, but up-regulated by low-temperature; clusters 3 and 4 were 

characterized by proteins that displayed relatively stable levels of abundance throughout the 

development, but with a more or less strong down-regulation by cold. This approach helped us to 

focus on the most interesting spots, which would hopefully provide direct evidence of proteins 

positively or negatively related to cold-acclimation.  



Spot 
No.a Protein name Mr, kDa 

theor/exper b 
pI 

theor/exper b 

NCBI 
accession 

No. 

Homologue 
At c 

No. of 
peptides 

Mascot 
Score  1-ANOVAd 

Fold of variation  
(42 dd 20 °C/42 dd 

4°C) e 
GO comp GO funct GO process 

22 
group3 late embryogenesis 

abundant protein (wrab17) [Triticum 
aestivum] 

18.3/21.8 5.0/4.5 gi|157073742 At3g15670 4 239 1.0x10-2 - 0.0895/+ 0.8318 nucleus unknown 

embryonic 
development 
ending in seed 
dormancy 

48 Glycine-rich RNA-binding protein 
[Triticum aestivum] 

16.0/16.5 6.3/5.1 gi|114145394 At2g21660 3 134 3.0x10-3 - 0.0702/+ 0.4665 chloroplast 
ss/ds DNA 
and RNA 
binding 

response to cold 

1 cold regulated protein (wcor18) 
[Triticum aestivum] 17.7/20.9 4.8/4.5 gi|26017213 At5g01300 7 519 1.0x10-3 - 0.6601/+ 0.8396 - 

phosphatidyl-
ethanolamine 
binding 

- 

116 53.4/21.5 6.2/5.3 4 321 9.0x10-3 + 0.0353/- 0.4700 
27 53.4/21.0 6.2/5.0 3 242 4.4x10-5 - 0.2830/- 0.8234 
114 53.4/36.0 6.2/6.5 14 721 2.0x10-3 - 0.0033/- 0.4098 
30 53.4/35.9 6.2/6.6 13 687 1.7x10-4 - 0.1337/- 0.7518 
35 

ribulose-1,5-bisphosphate 
carboxylase/oxygenase large 
subunit [Triticum aestivum] 

53.4/31.9 6.2/6.5 

gi|14017580 AtCg00490 

3 176 9.6x10-7 - 0.1049/- 0.7130 

chloroplast 

64 19.4/14.5 8.5/5.4 9 394 1.2x10-4 - 0.0897/- 0.5323 
19 19.4/15.1 8.5/6.0 8 369 6.0x10-9 + 0.0401/- 0.9466 
72 19.4/15.0 8.5/5.6  6 250 1.5x10-5 + 0.0530/- 0.4663 
55 19.4/18.0 8.5/5.6 4 189     4.4x10-9 - 0.3090/+ 0.2573 
23 19.4/14.1 8.5/6.1 9 420 3.7x10-5 - 0.1046/- 0.9675 
24 19.4/15.7 8.5/5.1 2 73 4.0x10-3 - 0.1859/+ 0.6459 
40 19.4/18.2 8.5/5.7 8 390 1.0x10-3 - 0.2080/+ 0.4983 
171 

ribulose-1.5-bisphosphate 
carboxylase/oxygenase small 

subunit [Triticum aestivum]  

19.4/15.9 8.5/5.6 

gi|170771 At1g67090 

8 362 1.5x10-5 - 0.2598/+ 0.0443 

chloroplast  

RuBisCO 
activity 
 

carbon fixation 

122 

Os03g0129300 [Oryza sativa 
(japonica cultivar-group)] 

glyceraldehyde-3-phosphate 
dehydrogenase  

47.5/54.8 6.2/5.9 gi|115450493 At1g12900 12 735 5.0x10-3 + 0.1825/- 0.1924 chloroplast GAPDH 
activity 

glucose 
metabolic 
process 

75 
Os06g0608700 [Oryza sativa 

(japonica cultivar-group)] Fructose-
bisphosphate aldolase 

37.9/41.0 7.5/5.2 gi|115468886 At2g21330 6 369 9.0x10-5 - 0.0757/- 0.4916 chloroplast FBP aldolase 
activity 

pentose-
phosphate shunt 

128 

Ribulose bisphosphate 
carboxylase/oxygenase activase, 

chloroplastic [Oryza sativa Japonica 
Group] 

51.7/58.0 5.4/5.2 gi|109940135 At2g39730 21 1275 1.7x10-7 + 0.0282/+ 0.3779 

121 51.3/ 53.4 5.9/5.5 18 1022 5.0x10-3 + 0.3801/+ 0.3807 

165 51.3/47.0 5.9/ 6.1 10  635 7.6x10-6 - 0.1624/+ 0.1501 

147 51.3/53.4 5.9/5.3 9 491   3.0x10-6 + 0.1970/+ 0.3454 

175 

Rubisco activase alpha form 
precursor 

[Deschampsia antarctica] 
51.3/ 52.5 5.9/5.2 

gi|32481061 At2g39730 

  11  629 2.1x10-6 + 0.2101/+ 0.2897 

chloroplast 

 
ADP binding 
RuBisCO / 
oxygenase 
activase 
activity 
 
enzyme 
regulator 
activity 

response to cold 

187 69.4/33.0 5.4/5.3 2 104 1.3x10-2 + 0.0974/- 0.1858 

178 

putative transketolase 1 
[Oryza sativa (japonica cultivar-

group)] 69.4/58.0 5.4/5.6 
gi|55296168 At2g45290 

5 291 2.0x10-3 - 0.0664/- 0.2812 
chloroplast transketolase 

activity 
- 

136 
Os01g0654500 NADP-isocitrate 

dehydrogenase [Oryza sativa 
(japonica cultivar-group)] 

46.3/58.5 6.3/6.2 gi|115438939 At1g54340 11 763 1.2x10-2 - 0.0164/- 0.3814 
peroxisome 

plasma 
membrane 

isocitrate 
dehydrogenase 
(NADP+) 
activity 

isocitrate 
metabolic 
process 



145 61.0/75.8 5.2/5.6 5 317 5.8x10-5 - 0.0818/+ 0.2595 

189 

Os05g0482700 phosphoglycerate  
mutase [Oryza sativa (japonica 

 cultivar-group)] 61.0/75.8 5.2/5.5 
gi|115464537 At1g09780 

9 438 4.5x10-4 - 0.1546/+ 0.1183 
cytosol iPGAM 

activity 
response to cold 

95 fructose 1,6-bisphosphate aldolase 
precursor [Avena sativa] 

42.1/42.2 9.0/5.5 gi|8272480 At4g38970 11 644 1.2x10-5 - 0.1843/+ 0.2537 cytosol  FBP aldolase 
activity 

pentose-
phosphate shunt 

99 
Os02g0774300 [Oryza sativa 

(japonica cultivar-group)] molecular 
chaperone DnaK 

73.0/ 81.5 5.4/ 5.3 gi|115448989 At5g09590 11 731 2.1x10-4 + 0.0486/+ 0.4406 
plasma 

membrane 
chloroplast 

ATP binding 

94 HSP70 [Hordeum vulgare subsp. 
vulgare] 67.1/90.0 5.7/5.1 gi|476003 At5g28540 14 939 1.1x10-4 - 0.0557/+ 0.3756 

108 74.2/90.1 5.1/4.7 21 1357 2.1x10-4 - 0.1109/+ 0.3035 

103 

Os12g0244100 [Oryza sativa 
(japonica cultivar-group)] Heat 

shock 70 protein 74.2/90.1 5.1/4.7 
gi|115487998 At5g28540 

8 522 5.0x10-3 - 0.4196/+ 0.0165 

vacuole 
chloroplast ATP binding 

4 53.7/21.3 4.8/4.3 20 1278 4.0x10-3 - 0.7904/+ 0.9204 

56 

RuBisCO large subunit-binding 
protein subunit beta, chloroplastic 
[Secale cereale] (CPN60, GroEl 

like) 
53.7/73.2 4.8/5.1 

gi|2493650 At3g13470 
19 1301 3.9x10-6 - 0.2887/+ 0.2743 

57 

RuBisCO large subunit-binding 
protein 

 subunit alpha, chloroplastic  
(60 kDa chaperonin subunit alpha) 

[Triticum aestivum] 

57.6/73.8 4.8/4.8 gi|134102 At3g13470 29 2006 1.1x10-4 - 0.4410/+ 0.1244 

chloroplast 

protein 
binding 
 
ATP binding 

54 

Os09g0438700 [Oryza sativa 
(japonica cultivar-group)] 

Chaperonin 10 Kd subunit 
 (cpn10 or GroES) 

25.4/29.5 5.9/4.8 gi|115479353 At1g14980 3 173 1.1x10-4 - 0.0631/+ 0.4945 mitochondrion chaperone 
binding 

protein folding 

81 
Os02g0634900 [Oryza sativa 

(japonica cultivar-group)] 
proteasome alpha type 2 

25.8/31.1 5.3/5.3 gi|115447473 At1g16470 6 375 2.0x10-3 - 0.0337/+ 0.4164 cytosol peptidase 
activity 

ubiquitin-
dependent 

protein catabolic 
process 

53 Plastid glutamine synthetase GS2c 
 [Triticum aestivum] 

47.0/56.0 5.7/5.0 gi|71362640 At1g66200 11 703 8.3x10-7 + 0.2502/+ 0.5775 chloroplast 
glutamate-
ammonia 
ligase activity 

nitrate 
assimilation 

184 unknown [Zea mays] Aspartate 
aminotransferase family 

50.0/56.4 6.5/5.9 gi|195634861 At1g77670 6 320 3.0x10-4 - 0.1497/- 0.2835 - transaminase 
activity 

aspartate 
transamidation 

52 Protein disulfide-isomerase 
[Triticum aestivum] 56.7/84.5 4.9/4.8 gi|1709620 At3g54960 25 1443 1.2x10-5 - 0.0615/+ 0.5224 

plasma 
membrane 
chloroplast 

- - 

32 
Os09g0279500 [Oryza sativa 

(japonica cultivar-group)] Plastid-
specific 30S ribosomal protein 2 

26.5/27.9 6.2/5.0 gi|115478330 At1g64510 3 125 9.5x10-4 - 0.1107+ 0.6204 chloroplast 
structural 
constituent of 
ribosome 

ribosome 
biogenesis 

142 triticain alpha [Triticum aestivum] 
 cysteine proteinase 

51.5/53.6 5.0/4.5 gi|111073715  At1g47128 3 205 3.4x10-7 - 0.0331/+ 0.3263 vacuole 
chloroplast 

cysteine-type 
peptidase 
activity 

response to 
stress 

67 

S-adenosylmethionine:2-
demethylmenaquinone 

methyltransferase-like [Oryza sativa 
Japonica Group] 

18.3/20.2 5.3/5.4 gi|18461241 At5g16450 3 159 4.3x10-5 + 0.1952/+ 0.5272 - 
ribonuclease 
inhibitor 
 activity 

regulation of 
RNA metabolic 

process 

78 43.2/58.2 5.6/5.8 6 400 1.4x10-4 + 0.1591/+ 0.4944 
111 

S-adenosylmethionine synthetase 1 
[Triticum monococcum] 43.2/57.7 5.6/5.7 

gi|115589744 At4g01850 
14 998 4.1x10-6 + 0.1627/+ 0.4109 

nucleolus 
cell wall 

Methionine 
adenosyl-

SAM 
biosynthetic 



transferase 
activity 

process 

85 
 Glutamate-1-semialdehyde 2,1-

aminomutase, chloroplast precursor 
[Hordeum vulgare] 

49.6/54.8 6.3/5.7 gi|1170029 At5g63570 6 352 1.8x10-5 + 0.0576/+ 0.4742 chloroplast GSAM activity 
porphyrin 

biosynthetic 
process 

168 unknown [Zea mays], peptidyl-prolyl 
cis-trans isomerase (cyclophilin) 

  46.6/53.4 5.9/4.5 gi|195650293 At3G01480 6 405 1.8x10-2 - 0.1102/+ 0.3188 - 

peptidyl-prolyl 
cis-trans 
isomerase 
activity 

photosystem II 
assembly and 
stabilization 

21 31.8/33.3 4.5/4.2 2 131 5.0x10-3 - 0.2823/+ 0.7283 
2 

Ps16 protein [Triticum aestivum] 
31.8/31.8 4.5/4.2 

gi|2443390 At4g24770 
3 134 8.2x10-4 - 1.1219/+ 0.4404 

28 30.6/32.1 4.7/4.3 2 114 5.8x10-6 - 0.3249/+ 0.4682 
154 

Cp31BHv [Hordeum vulgare subsp. 
vulgare] nucleic acid-binding protein 30.6/28.3 4.7/4.4 

gi|3550483 At4g24770 
6 389 1.0x10-2 - 0.3404/- 0.1222 

chloroplast 
poly(U) 
binding 
RNA binding 

RNA binding 

110 
Malate dehydrogenase, 

mitochondrial precursor [Triticum 
aestivum] 

36.4/42.0 8.8/6.3 gi|126896 At5g09660 3 190 6.0x10-3 + 0.1275/- 0.2852 mitochondrion 
malate 
dehydrogenase 
activity 

regulation of 
fatty acid beta-

oxidation 

162 
Nucleoside diphosphate 
kinase [Lolium perenne] 16.4/16.7 6.3/6.5 gi|9652119 At4g09320 3 239 4.2x10-5 - 0.1875/+ 0.1333 

plasma 
membrane 
chloroplast 

vacuole 

ATP binding 
 
nucleoside 
diphosphate 
kinase activity 

response to 
stress  

150 chloroplast lipocalin [Hordeum 
vulgare] fatty-acid binding protein 36.8/36.0 4.8/4.8 gi|77744909 At3g47860 3 127 1.1x10-2 + 0.2397/- 0.0938 chloroplast 

transporter 
activity 
binding 

response to 
oxidative stress 

156 
    Phosphoglycerate kinase 

chloroplastic 
[Triticum aestivum] 

49.9/55.0 6.5/5.3 gi|129915 At1g56190 7 392 2.0x10-3 + 0.2336/+ 0.3125 chloroplast PGK activity metabolic 
processes 

93 
Cytochrome b6-f complex iron-

sulfur subunit, chloroplast precursor 
[Triticum aestivum] 

24.1/19.5 8.4/5.3 gi|68566191 At4g03280 2 100 3.0x10-3 - 0.2976/- 0.4923 chloroplast electron 
transporter 

photosynthetic 
electron 

transport in 
cytochrome b6/f 

80 ferredoxin-NADP(H) oxidoreductase 
[Triticum aestivum] 39.1/42.0 8.3/6.0 gi|20302471 At5g66190 10 631 1.0x10-3 + 0.0548/- 0.4145 chloroplast  electron 

transporter  
oxidation 
reduction 

38 
Os03g0278900 [Oryza sativa 
(japonica cultivar-group)] ATP 

synthase B/B' CF(0) 
22.7/17.1 5.8/4.6 gi|115452259 At4g32260 3 170 8.0x10-3 - 0.4052/- 0.6705 chloroplast hydrolase 

activity 
transmembrane 

ion transport 

120 53.8/64.9 5.6/5.0 23 1417 4.8x10-4 - 0.0683/+ 0.3273 
112 53.8/40.0 5.6/4.7 9 590 3.0x10-3 + 0.1988/ - 0.1913 
115 

ATP synthase CF1 beta subunit  
[Triticum aestivum] 

53.8/23.5 5.6/4.5 
gi|14017579 AtCg00480 

3 186 1.1x10-2 - 0.2751/- 0.4639 

130 ATP synthase CF1 epsilon subunit 
 [Triticum aestivum] 

15.2/16.1 5.2/5.4 gi|14017578 AtCg00470 10 543 4.8x10-4 + 0.0088/- 0.3594 

chloroplast 

hydrogen ion 
transmembrane 
transporter 
activity 

ATP synthesis 
coupled proton 

transport 

25 27.4/25.3 8.8/6.3 11 713 8.0x10-7 + 0.0861/- 0.7507 
26 27.4/24.0 8.8/5.8 5 339 2.5x10-5 - 0.0781/- 0.8498 
33 

Oxygen-evolving enhancer protein 
2, chloroplast precursor (OEE2)  

[Triticum aestivum] 27.4/11.9 8.8/5.4 
gi|131394 At1g06680 

4 243 1.6x10-5 + 0.0721/- 0.6883 

poly(U) 
binding 

31 34.7/21.4 6.0/5.2 5 297 2.3 x10-5 + 0.2583/- 0.5096 
63 34.7/21.4 6.0/5.5 7 349 4.8x10-6 + 0.2009/- 0.3232 

173 

chloroplast oxygen-evolving  
enhancer protein 1(OEE1) [Leymus 

chinensis] 34.7/21.0 6.0/5.5 
gi|147945622 At5g66570 

6 292 2.8x10-4 + 0.2987/+ 0.0896 

chloroplast poly(U) 
binding 
oxygen 
evolving 
activity 

photosynthesis, 
light reaction 

183 ascorbate peroxidase [Hordeum 27.9/32.8 5.1/5.0      At1g07890  6 328 2.1x10-4 - 0.1188/+ 0.1606 mitochondrion L-ascorbate response to 



vulgare] gi|15808779 peroxidase 
activity 

reactive oxygen 
species 

51 dehydroascorbate reductase 
[Triticum aestivum] 

23.3/32.8 5.2/6.1 gi|28192421 At1g19570 10 622 2.4x10-7 - 0.2757/+ 0.2969  
mitochondrion 

glutathione 
dehydrogenase 
(ascorbate) 
activity 

response to 
jasmonic acid 

stimulus 
a Spot number represents the number on the master gel  
b Theoretical Mr/pI was calculated with Mr/pI tool on the Expasy web site (http://expasy.org/tools/pi_tool.html) 
c TAIR Accession no. of the closest homologue in Arabidopsis thaliana 
d p-value of one-way ANOVA analysis 
e Fold of protein variation is calculated by standardizing the mean of the normalized spot volumes of samples at 42 days 20 °C and at 42 days of cold trea tment with the mean of the normalized spot 
volumes of the sample at day 0. 
 

Table 2 . List of differentially expressed proteins identified by LC-MS/MS. 



 

 

 

Figure 7. Growth and cold-induced changes in proteins, organized at the level of functional categories using 

the PageMan software (http://mapman.mpimp-golm.mpg.de/pageman/). For each protein, the difference 

between the expression level at the given data points (42 d, 20 °C; 42 d, 4 °C) and the control (day 0 ) was 

calculated and converted to a false color scale (increasing red and blue indicate an up- and down-regulation, 

respectively). Values are shown as log normalized volumes. The average change for all proteins in a 

functional category is presented. Four primary clusters were defined using Euclidian distance and graphs 

showing the empirical mean of the expression levels for proteins included in each cluster are presented. 

 



Biochemical parameters 

Since cold-acclimation affects the regulation of both sugar and amino acid metabolism, we firstly 

measured the intracellular content of proline and soluble carbohydrates during cold-acclimation 

period (Figure 8A-B). A concomitant increase of both solutes was detected after cold-exposure of 

wheat leaves with the maximum accumulation value reached after 21 days of treatment. This level 

was maintained until day 42. Bearing in mind that proteomic analyses showed a substantive down-

regulation of the photosynthetic machinery, on-site chlorophyll content measurements were also 

performed in RT-grown and cold acclimated plants. As shown in Figure 8C, the amount of 

chlorophyll decreases over time confirming photooxidative stress induced by growing Kohdasht 

spring wheat at low temperature.  

 

 

 

Figure 8. Changes in proline (panel A), soluble sugar (panel B) and chlorophyll content (panel C) in leaves 

of Kohdasht spring wheat at 4 °C (solid line) and 2 0 °C (dotted line). Bars represent ± SE (n = 3). 

 

 



Cold-modulated expression at mRNA level 

Semi-quantitative RT-PCR assays were conducted in order to determine whether some of the 

changes observed at the protein level could be confirmed as well at the transcription level. The 

abundance of particular proteins in the cells, in fact, can depend not only on the up (down)-

regulation of transcription but also on the further steps in gene expression, such as mRNA stability, 

its transport from the nucleus to cytoplasm, efficiency of translation, protein stability, and the level 

of proteolysis. We chose to monitor the expression of LEA (wrab17), wcor18 and rbcS (RuBisCO 

small subunit) genes for two main reasons: (i) the first two products have long been recognised, 

respectively, as typically drought and cold-enhanced proteins (Thomashow, 1999; Tsuda et al., 

2000; Kobayashi et al., 2004; Ried and Walker-Simmons, 1993; Figueras et al., 2004), although 

their expression profiles were so far assessed only during early stages of seedling growth 

(Kobayashi et al., 2006); (ii) in spite of its key role in plant photosynthesis, being primarily involved 

in RuBisCO catalytic efficiency and specificity (Spreitzer, 2003), little information is currently 

available about the regulation of rbcS genes by environmental stresses (Hahn  and Walbot, 1989; 

He et al., 2002; Hayano-Kanashiro et al., 2009; Naidu et al., 2003). In agreement with previous 

reports (Gao et al., 2009), the small subunit of RuBisCO displayed a heterogeneous change 

pattern in our 2DE maps, although a preferential down-regulation was detected. As displayed in 

Figure 9, wrab17 and wcor18 transcripts markedly increased after 42 days of cold-treatment, 

whereas rbcS showed only a slight decrease. These results clearly suggested that typically cold-

related proteins, such as LEA (wrab17; protein spot No. 22) and Cor (wcor18; spot No. 1) 

polypeptides, that we identified on 2D-PAGE as de novo induced after cold treatment, were up-

regulated at the transcription level. Conversely, in the case of RuBisCO small subunit, where a 

general down-regulation was observed at the protein level (spots No. 19, 64, 72), we detected only 

a tiny decrease of the corresponding RT-PCR product. Although quantitative reverse PCR would 

provide a more accurate evaluation of the transcripts, it cannot be ruled out that modulation of 

protein turnover may also play a role in the changes observed at the protein level. 



 

 

 

Figure 9. Semi-quantitative RT-PCR analysis of the LEA (wrab17; 300 bp), wcor18 (260 bp) and rbcS 

(RuBisCO small subunit; 271 bp) expression in control and cold-acclimated (42 days, 4 °C) Kohdasht lea ves. 

Expression of tubulin (720 bp) is shown as an internal control. The densitometric quantification of the mRNA 

level of the individual genes is expressed as the fold change compared to tubulin. Data are presented as the 

mean ± SD from triplicate experiments, and similar results were seen in all replicates. Statistical comparisons 

were made using Student’s t-test. 

* p < 0.05, ** p < 0.01. 
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Discussion 

Proteomic and transcriptional data were combined with morphological and physiological 

information to provide some insights into the mechanism underneath prolonged cold stress 

response in a drought-tolerant spring wheat cultivar (Triticum aestivum cv Kohdasht). This work 

complements previous studies focusing on proteomic changes in wheat during short-time cold 

exposures (14 days) (Yan et al., 2006; Yang et al., 2006; Lee et al., 2007). Identification of 

differentially expressed spots through MS/MS analysis revealed significant modulations of many 

enzymes involved in almost all cellular metabolic pathways; the most important features regarding 

these alterations and their effects on cellular energetic balance are discussed below. First, protein 

modulations positively or negatively regulated by development and enhanced by cold stress are 

summarized. Afterwards, a more detailed description of changes in protein expression typically 

related to LT exposure is provided.  

 

Wide molecular remodeling during growth at optimal/ suboptimal temperatures  

Through the observation of differentially regulated proteins both in cold-treated and in 42-day-old 

plants compared to the 14-day-old control plants, it was possible to delve into protein modulations 

involved both in phenological development and in responses to LT prolonged exposure. It is 

interesting to note that the increase/decrease in protein expression occurring during growth at 

optimal temperatures is always intensified in cold stressed samples.  

ROS- and sugar-mediated fragmentation of RuBisCO 

One of the first visible features of two-dimensional gel maps from cold-treated samples is the 

presence of spots containing protein fragments of ribulose 1,5-bisphosphate carboxylase 

(RuBisCO) scattered over a wide area of the gel. Furthermore, modulation in expression is 

different from one spot to another. The synthesis of RuBisCO is known to be impaired by different 

environmental stressors, especially low temperature. To this regard, Hahn and Walbot (1989) 

demonstrated that the synthesis of both large and small subunits of RuBisCO drastically decreased 

in 7-day-cold-treated rice leaves, with a more severe reduction in cold-sensitive cultivars. 

Moreover, suppression was greater for the small subunit (over 90%) than for the large subunit 



(80%), indicating a partial loss of coordination in their synthesis. On the other hand, it is also 

known that reactive oxygen species deeply increase in concentration upon plant cold exposure, 

representing the first candidates responsible for RuBisCO fragmentation. In fact, the ROS-

triggered cleavage of the large subunit of RuBisCO has been proposed as an alternative non-

enzymatic way of fragmentation (Feller et al., 2008). Another factor potentially responsible for 

RuBisCO proteolysis during cold stress is accumulation of sugars. Physiological measurements of 

soluble sugar content in Kohdasht wheat leaves confirmed a marked accumulation of 

carbohydrates during cold exposure (see Figure 8). Apart from their known role in osmotic 

adjustments during abiotic stresses, soluble sugars are also known to take part in ROS-mediated 

signalling, influencing both ROS-producing and ROS-scavenging pathways (mitochondrial 

respiration, photosynthesis and oxidative-pentose-phosphate pathway) (Couée et al., 2006). 

Amino acid and prosthetic group metabolism 

The proteomic analysis here performed revealed a differential increase in expression of several 

enzymes devoted to amino acid and prosthetic group metabolism, both in normally-grown and 

cold- treated samples. As an example, glutamine synthetase (GS, spot 53) was up-regulated after 

42 days of plant growth both at optimal and suboptimal temperatures, although its increase was 

most dramatic in cold stressed plants. In wheat, GS activity (both GS2 and GS1) has been proven 

to correlate positively with grain and stem nitrogen content (Habash et al., 2007). The same 

expression pattern has also been found for S-adenosyl-methionine synthase (SAMS1, spots 78 

and 111), which catalyses the conversion of ATP and L-methionine into S-adenosyl-L-methionine 

(SAM). SAM is second to ATP as the most abundant cofactor in metabolic reactions: it acts as a 

methyl group donor for numerous transmethylation reactions, being cyclically synthesised in the so 

called "methyl cycle", whose rate is known to increase in response to osmotic stress (Bohnert et 

al., 1996). Interestingly, the up-regulation of demethylmenaquinone methyltransferase (DMKT, spot 

67), an enzyme involved in the biosynthesis of menaquinone, followed the same pattern. It is worth 

noting that methyl groups used by DMKT during this reaction derive from S-adenosylmethionine, 

thereby providing a connection between the up-regulations of SAMS1 and DMKT. Previous 

transcriptional studies have revealed that the gene encoding demethylmenaquinone 



methyltransferase (DMKT) is inducible by low temperatures (Lee et al., 2004). The up-regulation of 

these enzymes may represent a constitutive feature of the drought-resistant wheat variety.  

 

Characterization of proteins exclusively modulated upon cold exposure  

We move on to elucidating in more depth those changes in protein expression that were restricted 

to long-lasting cold exposure of plants.  

Proteins encoded by genes with stress-related cis-regulatory elements 

In the present analysis, we found an up-regulation of a group 3 LEA protein (Wrab 17, spot 22), a 

cold regulated protein (Wcor18, spot 1) and a glycine-rich RNA-binding protein (GRP2, spot 48) 

only in wheat leaves subjected to prolonged cold stress. All these proteins share a common 

feature, which is the presence of cis-regulatory elements in the upstream sequences of their 

genes. Interestingly, C-repeat/DRE (dehydration responsive elements) motifs were demonstrated 

to be cold and drought responsive (Haake et al., 2002; Kizis et al., 2002) and were identified in 

both cor18 and rab17 promoter. Rab17 is an ABA-inducible protein and its expression in vegetative 

tissues was correlated with enhanced osmotic stress tolerance (Figueras et al., 2006). Being 

Kohdasht a drought-tolerant wheat variety, the monitoring of rab17 gene expression resulted of 

extreme interest in order to investigate its eventual constitutive synthesis. Our analysis indicated 

an onset in expression both at the transcript and protein level only after prolonged cold-treatment, 

alerting protective cellular and biochemical changes related to cold-associated osmotic 

adjustments. Accordingly, the increased carbohydrate and proline contents may be viewed as a 

consequence of the osmotic tolerance. However, the low temperature responsiveness of wrab17 in 

spring wheat cultivars was also documented (Tsuda et al., 2000; Kobayashi  et al., 2004), although 

after short-term exposures. Our results demonstrated for the first time that its expression was 

sustained to 42-day cold acclimation with confirmation at the protein level. Similarly, we observed a 

marked accumulation of both wcor18 transcript and the corresponding protein product following 42-

day cold stress suggesting a possible role of these genes in long-term adaptation processes. 

Analogously to Cor/Lea gene family, also glycine-rich RNA-binding proteins (GRPs) are known to 

be drought and cold responsive (Sachetto-Martins et al., 2000). Our findings showed the onset in 



expression of GRP2 protein under low temperature growth conditions in Kohdasht variety. 

Interestingly, the same protein (TaGRP2) was found to specifically accumulate during 14 days of 

cold exposure in a winter wheat cultivar, whereas its levels remained unchanged in response to 

drought stress (Christov et al., 2007). This behaviour induced researchers to hypothesize a role of 

TaGRP2 in plant cold acclimation responses which might not be directly tied to its dehydrative 

component.  

Impairment of photosynthesis and carbon fixation: possible mechanisms of recovery 

At the level of photosynthetic enzymes, we found a general down-regulation in leaf proteomes from 

plants kept at 4°C (OEE1, spots 173, 31 and 63; OEE 2, spots 25, 33; ferredoxin NADPH 

oxidoreductase, spot 80), strongly attributable to cold-induced damages of chloroplasts. Our 

results also revealed that CO2 fixation was affected in our variety as we observed a marked down-

regulation of the Calvin cycle enzymes upon prolonged cold exposure (GAPDH, spot 122; 

transketolase, spots 187 and 178; FBP aldolase, spot 75). Furthermore, the expression of two 

pivotal Krebs cycle enzymes, isocitrate dehydrogenase (spot 136) and malate dehydrogenase 

(spot 110) decreased notably upon cold exposure. However, it should be considered that the 

gravity of the observed processes might also be related to the exact physiological stage of this 

wheat variety. Indeed, it might be possible to explain the deep deterioration of the photosynthetic 

machinery in the light of the post-flowering leaf senescence. Upon the passage from vegetative 

growth to the reproductive phase, about 30-40% of the plant's photosynthesis takes place in the 

spike; consequently, leaf photosynthetic activity is known to sharply decrease after heading 

(Patterson and Moss, 1979). Despite the generalised cellular distress observed during cold stress, 

other results of our proteomic analysis seem to indicate that cold-stressed plants attempt to 

recover from photoinhibition. First, we found that RuBisCO activase expression increased to a 

great extent in cold-stressed plants. Several groups have reported the up-regulation of RuBisCO 

activase under abiotic stress (Luo et al., 2002), probably related to both the reactivation of 

RuBisCO for CO2 fixation and to its chaperone activity. Second, the up-regulation of glutamate 

semialdehyde aminomutase (spot 85), involved in the synthesis of tetrapyrrols in cofactors like 

heme, chlorophyll and carotenoids, appears to be related to the regeneration of damaged 



chlorophylls (Thoenen et al., 2007), and particularly to the PSII repair cycle. The first substrate in 

this pathway comes from glutamate metabolism, a visible sign of an amino acid catabolic pathway. 

Third, several enzymes dedicated to recycling ascorbate, which is known to be involved in the 

detoxification of reactive oxygen species, were found to be up-regulated upon prolonged cold 

exposure (dehydroascorbate reductase, spot 51; ascorbate peroxidase, spot 183). This finding 

demonstrates that the plant mounts a response to the increase in ROS that occurs following cold 

injury. Finally, a general up-regulation of chaperonins has been revealed as well (DnaK, spots 103, 

99; cpn10, spot 54; Hsp70, spots 94, 108; the enzyme-like chaperonin disulphide isomerase, spot 

52), probably attributable to the accumulation of reactive oxygen species which are known to 

induce their synthesis. 

Cold-induced enhancement in proteolysis 

Among proteins involved in protein processing which are highly expressed in cold stressed plants, 

we could identify the proteasome subunit alpha type 2 (spot 81) and the cysteine proteinase 

triticain alpha (spot 142). In plants, proteasome-dependent protein degradation is known to control 

plant development and responses to the environment (Smalle and Vierstra, 2004): in particular, 

this process is exacerbated in case of oxidative stress to replace misfolded and damaged proteins 

with newly formed ones, mostly involved in the plant stress response. Regarding cysteine 

proteinases, their expression at the genetic level has been shown to respond to cold, heat and 

water deficiency. Studies conducted with cultivars of differing drought-resistance have revealed 

that the induction of cysteine proteinases is negatively related to their drought-resistance and 

positively correlated with extravacuolar ATP-dependent proteolysis (Wiœniewski and Zagdañska, 

2001). Furthermore, a similar set of experiments carried out on winter wheat confirmed the same 

correlation between the level of cysteine proteinases and frost tolerance (Grudkowska and 

Zagdañska, 2004). In our case, levels of cysteine proteinases did not increase in control plants 

after 42 days of growth at optimal temperature, whereas they showed a sharp enhancement in the 

expression during cold treatment; this observation is in agreement with both previously mentioned 

studies, regarding drought tolerance and low frost tolerance, respectively.  
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PART III 

 

Platelet storage temperature and new perspectives t hrough proteomics 

 

In the last year of my PhD, my activity shifted from plants to samples of clinical interest; in fact, I 

joined a project concerning platelet quality assessment through proteomic approach. The 

commonality of such different topics was double. First, proteomic approach was applied almost in 

the same manner (with proper but minor modifications of the extraction protocols); second, here 

again, the main attempt was to achieve a greater understanding of a process influenced by 

temperature through its monitoring over time.    

Thus, prior to performe this last work, I tried to delve into this topic, searching in literature for all the 

available information about the influence of temperature in platelet storage. After that, I made use 

of proteomic approach to study the modulations occurring in platelet concentrates routinary used in 

transfusion centers. The experiment (discussed at the end of this section) was conducted at 22°C: 

the choice of this temperature was mandatory, as will be clearer after reading the first part of this 

section.  

I will first summarize the current knowledge about the influence of temperature on storage of 

platelet concentrates, describing the main processes occurring at refrigerating/non refrigerating 

temperatures in a sample with a such fragile homeostasis.  

 

 

 



Background 

Platelets represent a key cellular blood component under physiological conditions, due to their 

implications in the maintenance of vascular integrity and prevention of haemorrhagic phenomena 

(Josefsson et al., 2007). Dysfunctions associated with thrombocytopenia constitute a significant 

threat to patients' health. So far, administration of platelet concentrates (PCs) from healthy donors 

is the only known strategy for medical care of patients with active bleeding, thrombocytopenia 

caused by bone marrow dysfunctions or due to chemotherapy for treatments of malignancies, or 

upon preliminary treatments prior to stem cell transplantation. Qualitative and quantitative changes 

in platelets could also occur following coronary artery bypass surgery and trauma, and may 

represent a key indicator of likely thrombotic complications (von Ruecker et al., 1989). Platelets are 

basically collected from donors in two ways: extraction from whole blood throughout centrifugation 

(buffy-coat) or through apheresis. Both methods are currently employed and have bright sides and 

disadvantages. Analogously to other blood components, techniques to improve the shelf life of 

platelets (currently, only five days), while maintaining their safety and effectiveness, are under 

constant investigation worldwide.  

Platelet storage temperature 

- 22°C 

Since 1960's, platelets are stored at 22-24 °C as P Cs, a methodology that had significantly 

improved their availability. PCs are stored under continuous gentle agitation in plasticized 

polyvinylchloride bags with di-(2-ethylhexyl) phthalate (DEHP), which are permeable to oxygen, in 

order to promote aerobic metabolism instead of glycolysis. This prevents pH drop which would 

render PCs acidic. However, their shelf life stops at the fifth day of storage because of the risk of 

bacterial and viral contamination, on the one hand, and the occurrence of structural lesions, on the 

other. As far as contamination is concerned, a series of studies have been conducted in the USA 

as to quantify the risk of bacterial contamination associated with platelet transfusion, which 

resulted to be limited to 

one over 1000-3000 platelet/unit (Sullivan and Wallace, 2005). Although rare, this event has 

elevated probability to cause sepsis in recipients (Bethesda, 2004). In parallel, stored platelets 



undergo a series of shape and functional modifications, which are commonly referred to as platelet 

storage lesions (PSLs). This term indicates the progressive decrease of functionality that 

accompanies storage of platelet at 22 °C, and in pa rticular represents the final detrimental effect 

caused by a series of events happening during storage. PSLs include morphological changes with 

loss of the quiescencerelated discoidal shape, release of granule contents, exocytosis of cytosolic 

proteins, increase of procoagulant properties, modification of glycoprotein patterns (Thon et al., 

2008). Notably enough, these features are also typical of platelet activation as well, suggesting for 

shared molecular pathways between PSLs and activation itself. In conclusion, basic clinical goals 

to be fulfilled include both the enhancement of platelet shelf life and the development of cheap, fast 

and reliable pathogen inactivation procedures, which are currently under evaluation.  

- 4°C 

Storage at refrigerating temperatures would prevent many unwanted processes which take place 

at room temperature, exerting a bacteriostatic effect and thus decreasing the potential for sepsis. 

Moreover, protocols involving storage of PCs at 4 °C may allow extension of the storage limit 

beyond 5 days, prolonging platelet shelf life and thus solving current shortages in transfusion 

services. Finally, refrigeration could also inhibit accumulation of contaminating white cell products, 

such as cytokines, and contribute alleviating cytokine-associated febrile transfusion reactions 

(Ferrer et al., 2001). Unfortunately, hypothermic (4°C) storage conditions causes deep 

modifications in platelet shape and functionality. Platelets stored at temperatures below 15 °C 

perform very poorly in vivo, mainly due to an elevated percentage of cold stored platelet being 

rapidly cleared from the bloodstream of the recipients (Hoffmeister et al., 2003a). Galactosylation 

has been proposed to tackle this issue in cold-stored mouse platelets, although it only showed 

relevant results in vitro (Hoffmeister et al., 2003b), while yielding poor survival in in vivo studies on 

human counterparts (Wandall et al., 2008; Hornsey et al., 2008). Removal of refrigerated platelets 

from the circulation appears to be partly mediated by recognition of clustered beta-N-

acetylglucosamine on platelet surface glycoproteins by the alphaMbeta2 hepatic lectin receptor. 

Capping the exposed beta-N-acetylglucosamine residues by enzymatic galactosylation restored 

the circulation of short-term chilled murine platelets, introducing a novel method that allows for cold 



storage of platelet (Sørensen et al., 2008). Nonetheless, galactosylation is not sufficient to restore 

circulation of long-term refrigerated platelets. Additional data indicate that differential carbohydrate-

mediated mechanisms may exist for clearance of short-term and long-term cold-stored platelets 

(Wandall et al., 2008; Hornsey et al., 2008). These are relevant issues which compromise viability 

of cold stored platelets, as they exert their physiological role through their ability to change shape 

and activate under various conditions.  

Low temperature appears to be a triggering factor for activation as well, thus yielding yet activated 

platelets as unviable blood product at the end of the storage. However, although lowering 

temperature would prevent occurrence of several PSLs, cold storage seems to trigger different 

lesions, which end up impairing platelet integrity and functionality. 

Cold-induced storage lesions 

The sum of untoward effects occurring upon platelet storage in the cold are generally termed cold-

induced storage lesions. One of the first visible effects of platelet impairment is the irreversible loss 

of the discoid morphology towards a spherical shape, and the appearance of spiny projections on 

the surface due to calcium dependent gelsolin activation and phosphoinositide-mediated actin 

polymerization (Shrivastava, 2009). The morphological changes induced in platelets by low 

temperatures have been observed from 1950's; when platelets are exposed to temperature lower 

than 20 °C, they undergo fast modifications in shap e (White and Krivit, 1967), notably increase 

intracellular calcium levels (Oliver et al., 1999) and actin polymerization degree. Moreover, stored 

platelets secrete alpha granule and lysosomal contents (Pribluda and Rotman, 1982), and 

reorganize the microtubule coil lying under the plasma membrane through depolymerization 

processes (White and Krivit, 1967). 

Cold activation 

Storage of whole blood at 4 °C for 6 h has been dem onstrated to induce platelet activation similar 

to that of patients with cardiovascular diseases (Ayukawa et al., 2009). The molecular basis 

underlying platelet activation during storage at 4 °C have been extensively studied, but not yet fully  

characterized. Cold-stored platelets have been demonstrated to be more sensitive to agonist-

induced aggregation with respect to platelets stored at room temperature, although low 



temperature does not cause an increase of glycoprotein (GpIb, GpIIb/IIIa) and platelet activation 

markers (CD62p and CD63) upon comparison with storage at 22 °C (Sandgren et al., 2007). This 

feature has been validated through the analysis of platelet response to signal transduction 

inhibitors on fibrinogen binding, aggregation, the activation state of GP IIb-IIIa, and cytosolic 

calcium levels. Moreover, cold-stored platelets show a higher aggregation response (in response 

to ADP and epinephrine) and a major resistance to disaggregating agents (promethazine, 

prostaglandin D2, yohimbine, and echistatin) when compared to their counterparts stored at room 

temperature (Mondoro and Vostal, 2002). Differences between aggregation and disaggregation 

responses of cold- and room temperature-stored platelets suggest that cold-stored platelets may 

have different mechanisms to stabilize platelet aggregates during their formation, as it has been 

extensively documented (Hoffmeister et al., 2003a,b; Wandall et al., 2008; Hornsey et al., 2008). 
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New proteomic applications to study platelet storag e 

Due to the great importance of the matter and its direct implication on medical practices, many 

scientific approaches have tried to delve into platelet modifications occurring during storage. Any 

improvement in platelet storage able to partly solve problems related to storage of PCs at room 

temperature (RT) is in fact strongly augurable. So far, experimental approaches to analyze platelet 

modifications upon storage are based on in vitro assays of platelet functionality and metabolism, 

animal testing for studies of thrombocytopenia, platelet counts in thrombocytopenic patients and 

monitoring of radiolabeled autologous platelets in healthy volunteers. However, a gap still persists 

between in vitro assays and the current knowledge of mechanisms presiding over platelet recovery 

in vivo (Cardigan and Williamson, 2003). Proteomics allows a comprehensive study of protein 

modifications, and offers capabilities both for qualitative/quantitative analysis and for high-

throughput protein identification, thus potentially enabling a global assessment of processing, 

inactivation and storage methods of blood-derived therapeutics. This is particularly true in the case 

of platelets which lack nucleus, thus forbidding most of the genetic approaches refined in classic 

molecular biology. In this case, proteomics may be used to identify potential storage lesions 

biomarkers to be used as fingerprints of deterioration processes in platelet concentrates (Thon et 

al., 2008; Thiele et al., 2007). On this line, Glenister and coworkers recently applied proteomics to 

the analysis of storage-associated alterations in buffy-coat PCs (Glenister et al., 2008) and 18 

proteins resulted to be modified. This protein number cannot clearly represent the totality of protein 

changes. The reason of this finding relies on the difficulty of proteomics in detecting proteins 

deeply differing in concentrations in a given sample (Pedersen et al., 2003). This is particularly true 

in the case of buffy-coat PC supernatants, where the analysis is hampered by the enormous 

dynamic range of proteins present in the plasma (Thadikkaran et al., 2005). To provide an 

example, albumin in plasma represents the 90% of the total plasma proteome (Anderson and 

Anderson, 1977), thus prevailing on and masking most other interesting proteins, such as soluble 

products which could be taken into account as biomarkers of PC quality. For these reasons, 

proteomic strategies aimed at increasing the visibility of low-abundance proteins are continuously 

tweaked, among which equalization technology commercially known as ProteoMinerTM (Righetti et 



al., 2006, 2007; Boschetti et al., 2007a,b). The intrinsic originality of this approach with respect to 

other techniques, such as pre-fractionation or immunodepletion, lies in the preservation of the 

whole proteome present in a given sample, just giving to all proteins the same chance to be 

revealed. Thus, while most of these methods are aimed at depleting protein mixtures from highly 

represented products, ProteoMiner technology “equalizes” protein populations, by sharply reducing 

the concentration of the most abundant components, while simultaneously enhancing the 

concentration of the most dilute species. Another benefit in using ProteoMinerTM lies in its ability 

to retain quantitative information on medium-to-low abundance proteins, while reducing high-

abundance ones (Boschetti and Righetti, 2009).  
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Proteomic analysis of plasma derived from platelet buffy coats during storage at room 

temperature. An application of ProteoMinerTM techno logy. 

 

Aim of the study 

As mentioned in the first part of this section, in the last year of my PhD, I joined a project 

concerning platelet quality assessment through proteomic approach. The aim of my work was to 

analyze proteomic changes occurring in platelet concentrates (PCs), which are the current medical 

product usually providen to patients suffering plateletpenia, in function of time. As will be explained 

in the section below, the main limit of PCs conservation prior to transfusion is temperature; these 

blood components are stored at 22°C in continous ag itation to avoid activation and aggregation 

processes which are demonstrated to occur at refrigerating temperatures (4°C) (this topic will be 

discussed in the next paragraph). 

We used proteomic approach to detect changes in PC supernatants (obtained after brief 

centrifugation of PCs) after 0, 4 and 7 days of storage at 22°C. To achieve a more complete 

overview of the protein pool accumulating/dissapearing in this sub-proteome, we made use of 

ProteoMinerTM technology to enrich our final proteome for the low-abundance species, often 

hidden by high abundant ones (in our case mainly plasma albumin).   

Although the bright sides and disadvantages of ProteoMiner technology are still under debate, the 

introduction of the ProteoMiner enrichment prior to protein separation by 2D E greatly improved the 

detection of protein species in the supernatants. Several storage-induced protein alterations were 

identified including changes of major plasma proteins. In particular, a precursor of the secretory 

form of clusterin was shown to accumulate during storage of PC supernatants, together with 

platelet-derived tropomyosin, suggesting a progressive loss of platelet integrity. Platelet-released 

proteins following activation have also been detected (alpha-1-B-glycoprotein, kininogen-1, serpin 

proteinase inhibitor 8). Moreover, specific protein fragments (vitronectin, plakoglobin, hornerin, 

apolipoprotein A-IV) were found to be modulated upon storage, likely indicating a time-dependent 

buffy-coat PC deterioration. Globally, our findings provided the disclosure of unique proteins in PC 

supernatants with respect to previous studies conducted in similar experimental conditions, 



suggesting ProteoMinerTM enrichment technology to be a possible complementary tool in the 

identification of diagnostically relevant proteins as age/quality biomarkers of therapeutic products. 

 

Materials and Methods 

Sample preparation and storage of platelet concentr ates 

All buffy-coat PCs were prepared according to standard procedures (Hardwick, 2008). Briefly, units 

of whole blood (500 mL) were collected from healthy donors into top-and-bottom bags (Optipac, 

CPD-SAGM, Baxter Healthcare). The bags were centrifuged within 6 h after collection at 3100 × g 

for 12 minutes. After centrifugation, plasma, red cells, and the buffy coat (BC) were separated on 

an automated extractor system (Optipress, Baxter). BCs (hematocrit, 54 ± 3%; volume, 55 ± 5 mL) 

were retained in the collection bag and stored for 1-2 hours at room temperature without agitation. 

For preparation of PCs, five BCs from randomly selected ABO-identical donors were pooled under 

sterile conditions in a 600-mL transfer pack container (Baxter) and diluted with 270 mL of plasma. 

Pooled units were centrifuged  at 700 × g for 6 min at room temperature and the platelet-rich 

plasma supernatant (250 mL) was gently pressed off into a satellite bag (Baxter) until the red cells 

entered the tube of the transfer bag. A Pall PL-50 filter was used to reduce the leukocytes in the 

platelet concentrates. Four PCs thus obtained (biological replicates) were stored in 1-L polyolefin 

bags (Baxter) for 7 days at 22 °C on a horizontal a gitator (Helmer, USA) in continuous agitation. 

Finally, the supernatant was sampled aseptically on days 0, 4, 7 after soft spin centrifugation (1000 

× g, 10 min) to remove cellular fraction and stored at -80 °C. At each sampling time, blood cell 

counts were performed: the mean platelet count was 2.0 ± 0.3 × 1011 per unit with a leukocyte 

contamination of less than 1 × 106 per unit. 

 

ProteoMiner enrichment 

Before proteomic analysis, half of the supernatant sampled after 0, 4, 7 days of storage was pre-

fractioned using the ProteoMinerTM kit (Bio-Rad Laboratories, Hercules, CA, USA) according to 

the manufacturer's protocol. The equalized samples (protein concentration of 50 mg/mL) were 

stored at -80 °C until use together with correspond ing non equalized controls.  



Two-dimensional gel electrophoresis  

The protein concentration of each sample was determined according to Bradford (1976) using BSA 

as a standard curve. The protein concentration was estimed on whole supernatant before and after 

ProteoMiner treatment. A volume of each sample containing 600 µg of proteins was solubilized in 8 

M urea, 4% (w/v) CHAPS, 0.5% (w/v) pH 4-7 carrier ampholyte (Bio-lyte; Bio-Rad, Hercules, CA, 

USA) and 40 mM Tris base with continuous stirring. Proteins were subsequently reduced (10 mM 

tributylphosphine, 1 h) and alkylated (40 mM IAA, 1 h). To prevent over-alkylation, iodoacetamide 

(IAA) excess was neutralized by adding 10 mM DTE. IEF was performed using Biorad Multiphore II 

and Dry Strip Kit (Bio-Rad-Protean-IEF-Cell-System). Eighteen centimeter IPG strips (Bio-Rad, 

Hercules, CA, USA) pH 4-7 were rehydrated overnight with 345 µL of rehydratation solution 

containing 8 M urea, 4% (w/v) CHAPS, 0.5% (w/v) pH 4-7 carrier ampholyte (Bio-lyte; Bio-Rad, 

Hercules, CA, USA), 10 mM DTE and 100µl of sample was loaded using the cup-loading method. 

The total product time × voltage applied was 80 000 V h for each strip at 20 °C. For the second 

dimension, IPG strips were incubated in the equilibration solution [6 M urea, 50 mM Tris-HCl (pH 

6.8), 30% (v/v) glycerol, 3% (w/v) SDS, 0.002% (w/v) bromophenol blue] for 30 min with gentle 

agitation. Equilibrated strips were then placed on SDS-polyacrylamide gels, 16 cm × 20 cm, 11-

18% acrylamide, and sealed with 0.5% (w/v) agarose. SDS-PAGE was performed using the 

Protean II xi Cell, large gel format (Bio-Rad) at constant current (35 mA per gel) at 7 °C until the 

bromophenol blue tracking dye was approximately 2–3 mm from the bottom of the gel. Protein 

spots were stained by sensitive Coomassie Brilliant Blue G-250 stain (Candiano et al., 2004). To 

ensure protein pattern reproducibility, four technical replicates were done. 

 

Image analysis 

Two dimension gel images were digitized using a flatbed scanner (model ImageScanner-II, GE 

Healthcare, Uppsala, Sweden) with a resolution of 300 dpi and 16-bit greyscale pixel depth. Image 

analysis was carried out with Progenesis SameSpots software vers. 2.0 (Nonlinear Dynamics), 

which allows spot detection, background subtraction, and protein spot OD intensity quantification 

(spot quantity definition). The gel image showing the highest number of spots and the best protein 



pattern was chosen as a reference template, and spots in a standard gel were then matched 

across all gels. Spot quantity values were normalised in each gel dividing the raw quantity of each 

spot by the total quantity of all the spots included in the standard gel. For each protein spot, the 

average spot quantity value and its variance coefficient in each group was determined. One-way 

analysis of variance (ANOVA) was carried out at p < 0.05 in order to assess for absolute protein 

changes among the different treatments; only 2-fold or higher quantitative variations were taken 

into consideration. 

 

Western Blotting 

10 µg of protein from each sample was resolved on 14% (w/v) SDS–PAGE. Following 

electrophoresis, proteins were transferred to a PVDF (polyvinylidene difluoride) membrane (Bio-

Rad, Hercules, CA, USA) which was then blocked in a solution composed of 5 % (w/v) non-fat 

dried milk in Tris-buffered saline (TBS) for 2 hours at room temperature to prevent nonspecific 

binding of antibodies. Incubation with primary antibodies directed against the proteins was 

performed overnight at 4 °C in TBS with 1% (w/v) BS A and 0.1% Tween 20. Anti-kininogen-1 and 

anti-angiotensin (serpin proteinase inhibitor 8) antibodies were from Santa Cruz Biotechnology 

(CA, USA). Membranes were then probed by incubation with the appropriate horseradish 

peroxidise-coniugated secondary antibodies. The protein bands were detected by enhanced 

chemiluminescence reagents and the images were captured by scanning using an Image Scanner 

II flatbed scanner  (GE Healthcare, Uppsala, Sweden). Human IgG protein was used as internal 

control to ensure equal sample loading. 

 

In-gel digestion 

Protein spots were carefully excised from Coomassie stained gels and subjected to in-gel trypsin 

digestion, according to Shevchenko and colleagues (Shevchenko et al., 2007), with minor 

modifications. Gel spots were first shrunk by dehydration in acetonitrile (20 min incubation), then 

the solvent was discarded  and the gel pieces were dried in a vacuum centrifuge. A volume of 10 

mM DTT in 100 mM NH4HCO3 was added and the proteins were reduced for 45 min at 56 °C. After 



cooling to room temperature, the DTT solution was replaced with roughly the same volume of 55 

mM iodoacetamide in 100 mM NH4HCO3 and incubated 30 min at room temperature in the dark. 

The gel pieces were finally swollen in a digestion buffer containing 50 mM NH4HCO3 and 12.5 

ng/µL of trypsin (modified porcine trypsin, sequencing grade, Promega, Madison, WI) in an ice 

bath. After 30 minutes the supernatant was removed and discarded, 20 µL of 50 mM NH4HCO3 

were added to the gel pieces and digestion allowed to proceed at 37 °C overnight. The 

supernatant containing tryptic peptides was dried by vacuum centrifugation. Prior to mass 

spectrometric analysis, the peptide mixtures were redissolved in 10 µL of 5% FA (formic acid).  

 

Peptide sequencing by nano RP-HPLC-ESI-MS/MS  

Nanoflow LC-MS/MS was performed by coupling an Ultimate 3000 series LC system (Dionex 

Corporation, Sunnyvale, CA, USA) to a quadrupole time-of-flight (Q-TOF) micro hybrid mass 

spectrometer (model microTOF-Q, Bruker-Daltonik). A home-built vented column system, 

consisting of a 20 mm Aqua C18 (Phenomenex, Torrance, CA, USA) trapping column (packed in-

house; i.d., 100 µm; particle size, 5 µm) and a 200 mm ReproSil-Pur C18-AQ (Dr. Maisch, GmbH, 

Ammerbuch, Germany) analytical column (packed in-house; i.d., 50 µm; resin, 3 µm) was used for 

online desalting and separation of the peptides as described in (Meiring et al., 2002; Licklider et al., 

2002). Trapping was performed at 5 µL/min for 10 min in solvent A (0.5% acetic acid in water), and 

elution was achieved with a gradient of 5-50% B (0.6% acetic acid in 98% acetonitrile/2% water) in 

60 min in a total analysis time of 80 min. The flow rate was passively split to 120 nL/min when 

performing the elution analysis. Nanospray was achieved using a distally coated fused-silica 

emitter (o.d., 360 µm; i.d., 20 µm; tip i.d., 10 µm; New Objective, Cambridge, MA) biased to 1.7 kV. 

The temperature of the heated sample source was 160 °C. The mass spectrometer was operated 

in the data-dependent mode to automatically switch between MS and MS/MS. The three most 

intense precursor ions at a threshold above 2000 were selected in each full scan with a 60 sec 

dynamic exclusion window. Collision energies were set automatically as a function of the mass and 

charge state (1+, 2+ and 3+) of the peptides chosen for fragmentation. The collision gas was 

argon. External mass calibration in quadratic regression mode using an ES Tuning Mix solution 



(Agilent Technologies, Santa Clara, CA, USA) resulted in mass errors of typically 1 ppm. Data was 

searched against the National Center for Biotechnology Information non-redundant database 

(NCBI nr, version 20100320, 10606545 sequences) using the Mascot software (in-house version 

2.2, Matrix Science, London, UK) with the following constraints: taxonomy = human; enzyme = 

trypsin; missed cleavage = 2; peptide mass tolerance = ± 0.05 Da; fragment mass tolerance = ± 

0.05 Da; fixed modifications = carbamidomethyl (Cys); variable modifications = oxidation (Met). For 

positive identification, the score of the result of (- 10 x Log(P)) had to be over the significance 

threshold level (P < 0.05). In auto-MS/MS files, only peptides with Mascot scores > 30 and a delta 

mass < 0.1 Da were considered. Peptide fragmentation spectra were also manually verified. In this 

manual verification, the presence of fragment ion series, and the expected prevalence of C-

terminus containing (y-type ions) in the high mass range, were all taken into account. All 2-DE 

spots required a minimum of two verified peptides to be identified. Moreover, replicate 

measurements (n = 3) have confirmed the identity of these protein hits. The stringency of the 

filtering criteria applied for the identification allowed to consider only the Mascot top hit as true 

positive. 
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Results 

Figure 1 shows representative 2-DE maps of PC supernatants after 0, 4 and 7 days of storage 

obtained with (lower panel) and without (upper panel) ProteoMiner enrichment step. We chose a 

narrow pH interval of 4-7 to perform two-dimensional maps as the best range for plasma protein 

resolution (Cho et al., 2008). As expected, the analysis of proteomic maps of equalized samples 

revealed many spots not detectable in the untreated counterpart, increasing the spot count by 

20%. The decrease in abundance of over-represented species was evident at first glance looking 

at the gel region of serum albumin at about 70 kDa before and after the equalization step (Figure 

1).  

 

 

 

 

Figure 1. Comparison of 2-DE maps of PC supernatants after 0, 4 and 7 days of storage obtained with 

(lower panel) and without (upper panel) ProteoMiner enrichment step. For each time-point of non-equalized 

and equalized fraction, a total of 16 maps (4 biological × 4 technical replicates) was done. Numbered spots 

indicated by the arrows refer to the results of quantitative analyses reported in Tables I-III. 

 



In this study, three parallel comparisons were conducted by Progenesis SameSpots software 

(Nonlinear Dynamics): i) analysis of PC supernatants subjected to ProteoMiner equalization 

compared to their non equalized counterpart harvested at day 0 (P0 vs 0); ii) analysis of non-

equalized samples harvested at day 0, 4 and 7 of storage (0, 4, 7); iii) analysis of samples 

processed with ProteoMiner after 0, 4 and 7 days of storage (P0, P4, P7). Figure 2 displays some 

zoomed gel areas showing examples of quantitative changes (newly induced or totally repressed, 

up- or down-regulated spots) in protein expression for each of the analyses performed. 

 

 

 

 

Figure 2. Close-up views of some 2D-gel regions showing examples of the observed variations in protein 

spot intensity for the three analyses performed. Numbers refer to Tables I-III. 



Ability of ProteoMiner to improve spot resolution i n PC supernatant two-dimensional maps 

To evaluate the efficacy of ProteoMiner in ameliorating the visibility of low-abundance proteins, a 

first comparison between 2D gels of equalized (P0) and unprocessed samples (0) was carried out 

at day 0. Image alignment of equalized vs non-equalized sample was quite difficult due to the great 

diversity of 2D maps (Figure 1). However, the presence of well defined protein trains which 

functioned as landmarks (e.g. haptoglobin, apolipoproteins, fibrinogen), along with automatic 

alignment processing, helped in the overlapping procedure. Only newly-detected spots in 2D maps 

of equalized sample were cut out of the gels and identified by means of mass spectrometry after 

tryptic in-gel digestion. Moreover, in the case of charge train patterns typically resulting from the 

same protein with different post-translational modifications (Anderson and Anderson, 1977), we 

decided to analyze only the most intense spot as representative of the others. A list of the protein 

identifications is provided in Table I. Interestingly, several products of specific protein 

fragmentation were identified (e.g. spot 16, apolipoprotein A1; spot 13, complement component 

4A).  

 

Time-monitoring of stored buffy-coat PCs not subjec ted to ProteoMiner equalization 

The second analysis was performed on 2D maps of non equalized platelet supernatants harvested 

after 0, 4 and 7 days of storage at room temperature. As stated before, the great abundance of 

plasma proteins such as serum albumin and apolipoproteins partly impaired the observation of 

some gel areas, however approximately 570 spots were reproducibly matched across all the gels 

and included in the statistical analysis. Differentially expressed proteins (p < 0.05, absolute 

variation of at least 2-fold) identified upon storage are listed in Table II. Among them, it is 

worthwhile to mention alpha-1-B-glycoprotein (A1BG; spot 197), kininogen-1 (KNG1) and serpin 

proteinase inhibitor 8 (SERPINA8; spot 240). The proteomic findings for co-migrating KNG1 and 

SERPINA8 proteins were validated by western blotting analysis which confirmed an increase in 

expression in either case, especially evident after 7 days of storage (Figure 3). 



 

Spot No.  Gene Protein name 
Mr, kDa 

theor/exp
er  

pI 
theor/expe

r  

NCBI 
GI No. 

No. of 
peptides 

Mascot 
Score  

251 71.5/79.5 5.6/5.3 27 1849 
242 

F2 prothrombin preproprotein 
71.5/79.5 5.6/5.1 

gi|4503635 
23 1431 

498 50.1/49.8 5.6/6.2 12 632 
500 

FGG fibrinogen gamma chain 
50.1/53.0 5.6/6.2 

gi|182439 
15 840 

640 49.3/37.1 6.3/5.3 10 548 
626 49.3/39.6 6.3/5.5 5 299 
603 

CLU apolipoprotein J (fragments) 
49.3/40.5 6.3/4.8 

gi|178855 
6 404 

20 APOA2 Apolipoprotein A-II 11.3/9.9 6.6/5.0 gi|671882 2 84 
652 36.2/36.0 5.8/5.7 15 956 
653 

APOE apolipoprotein E 
36.2/36.0 5.8/6.3 

gi|178849 
17 1187 

790 10.2/11.2 4.6/4.6 3 122 
15 10.2/9.1 4.6/4.8 4 212 
795 

APOC2 Apolipoprotein C-II 
10.2/10.3 4.6/4.6 

gi|178741 
4 236 

734 28.1/22.4 5.3/5.3 17 915 

731 

Chain A, Crystal Structure Of 
Lipid-Free Human 
Apolipoprotein A-I 28.1/22.5 5.3/5.3 

gi|90108664 
24 1496 

1 28.9/21.0 5.4/5.9 9 374 
16 

APOA1 

proapolipoprotein 
28.9/16.7 5.4/5.2 

gi|178775 
3 102 

8 45.3/15.9 5.3/5.2 3 200 
12 

APOA4 apolipoprotein A-IV (fragments) 
45.3/32.0 5.3/5.3 

gi|178757 
6 306 

791 8.7/13.7 4.7/4.5 4 286 

799 
APOC3 

Chain A, Structure And 
Dynamics Of Human 
Apolipoprotein C-Iii 8.7/9.5 4.7/4.7 

gi|186972736 
3 153 

346 55.1/65.0 5.5/5.0 12 590 
265 

VTN Vitronectin 
55.1/75.5 5.5/5.1 

gi|13477169 
12 572 

2 C1QC 
complement component 1, q 

subcomponent, C chain 
26.1/27.0 8.6/6.0 gi|33150626 2 108 

13 C4A 
complement component 4A 

(fragment) 
194.3/28.

9 
6.6/5.4 gi|179674 2 128 

3 GPXP3 plasma glutathione peroxidase  16.8/24.0 8.9/6.1 gi|404108 5 248 

11 AMBP 
complex-forming glycoprotein 

HC  
20.6/33.0 5.8/5.3 gi|223373 5 234 

 

Table I. List of LC-MS/MS identified proteins in ProteoMiner treated (P0) vs untreated (0) samples at 0-day 

storage 



Spot No.  Gene Protein name 
Mr, kDa 

theor/exper  
pI 

theor/exper  
NCBI 
GI No. 

No. of peptides 
Mascot 
Score 

Average Normal. Vol. a 
          0-d  4-d  7-d 

337 46.8/52.5 5.5/5.7 17 837 

 

321 46.8/55.0 5.5/5.4 16 888 

 

340 46.8/52.1 5.5/5.9 15 708 

 

331 50.1/53.0 5.6/6.0 5 360 

 

311 50.1/57.3 5.6/5.3 12 571 

 

332 

FGG fibrinogen gamma 

50.1/54.0 5.7/5.9 

gi|182439 

14 983 

 

197 A1BG alpha-1-B-glycoprotein 52.5/78.3 5.6/5.5 gi|69990 7 401 

 

KNG1 kininogen-1  48.9/69.7 6.3/5.1 gi|4504893 3 104 
240 

SERPINA8 serpin proteinase inhibitor 8  53.4/69.7   5.9/5.1 gi|15079348 2 77 
 

297 GC 
vitamin D-binding protein/group specific 

component 
54.5/56.0 5.3/5.7 gi|455970 14 651 

 

367 ALB albumin-like 53.4/47.5 5.7/5.7 gi|763431 2 122 

 

264 SERPINC1 Chain I Antithrombin-Iii 49.4/69.0 5.9/5.6 gi|8569385 19 979 

 

447 APOA1 proapolipoprotein 29.0/25.0 5.4/5.8 gi|178775 4 413 

 



a Histograms represent the variation of the spot normalized volumes (affected by SD). The same letters above the bars indicate no statistically significant difference, whereas different letters indicate a 
statistically significant difference (p < 0.05) according to the LSD (least significant difference) test. 
 
Table II. List of differentially expressed proteins identified by LC-MS/MS in non-equalized samples at 0, 4 and 7 days of storage. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Figure 3. Western blot identification of kininogen-1 (KNG1) and serpin proteinase inhibitor 8 (SERPINA8) 

proteins in buffy-coat PCs during storage. Representative gels of four biological replicates are shown. 

Human IgG was used as internal loading control (one membrane out of the other four with similar results is 

presented). 

 

 

Analysis of storage-dependent protein changes in sa mples treated by ProteoMiner  

The last step of our analysis was the disclosure of protein modifications in 2D maps of platelet 

supernatants processed with ProteoMiner after 0, 4 and 7 days of storage at room temperature. 

The total number of spots counted by Progenesis software was 717. Storage-modulated proteins 

detected in equalized samples are listed in Table III. PLT-derived proteins identified by this 

analysis included: beta tropomyosin (TPM4; spot 415), clusterin (CLU; spots 603, 626, 640, 228), 

vitronectin (VTN; spot 326). A number of proteins were present as train spots with incremental 

shifts in pI. Several of these protein trains displayed appreciable time-dependent changes, often 

characterized by one member of the train increasing in intensity, while others decreasing. As an 

example, fibrinogen gamma (FGG)-containing spots showed conflicting trends (i.e. positive or 

negative regulation, see Table III). Moreover, distinctive protein fragments (e.g., plakoglobin, 

hornerin, apolipoprotein A-IV) were subjected to storage modulations and this finding ties in with 



recent beliefs that fragmentation patterns may be predictive of a certain pathological status or 

represent markers of age/quality of therapeutic products (Geho et al., 2006). Of extreme interest 

was the case of vitronectin (Figure 4) where MS peptide mapping analysis allowed to exclude its 

plasma-derived origin (see below). When all combined data from untreated and equalized sample 

were listed, our analysis revealed some proteins in common to the work of Glenister et al. (2008) 

(such as proapoliprotein, clusterin, fibrinogen γ) and others previously undetected. Table IV 

summarizes these unique species which were missing from the list of proteins changed during 

storage of pooled buffy-coat PC supernatants. 



Spot No. Gene Protein name 
Mr, kDa 

theor/exper 
pI 

theor/exper 
NCBI 
GI No. 

No. of peptides 
Mascot 
Score 

Average Normal. Vol. a 
 

           0-d  4-d  7-d 

422 HRNR hornerin (fragment) 283.1/27.6 10.0/5.8 gi|57864582 2 67 

 

415 TPM4 Platelet beta tropomyosin alpha 4 chain 28.6/32.5 4.6/4.6 gi|20178270 19 1005 
 

228 49.3/55.2 6.3/4.6 2 84 
 

603 49.3/42.1 6.3/4.6 5 329 

 

640 49.3/36.0 6.3/5.3 7 443 

 

626 

CLU apolipoprotein J (clusterin) 

49.3/38.2 6.3/5.3 

gi|178855 

5 347 

 

236 SERPINA1 alpha-1-antitrypsin 46.8/56.1 5.4/5.1 gi|177827 4 296 

 

413 AHSG Alpha-2-HS-glycoprotein 40.1/54.9 5.4/4.7 gi|112910 8 502 

 

483 transthyretin precursor 16.0/15.1 5.5/5.9 gi|4507725 10 753 

 

482 

TTR 

Chain A, Transthyretin-V122I 14.0/14.9 5.3/5.5 gi|1827569 4 220 

 

245 50.0/55.0 5.6/5.6 5 211 

 

253 

FGG fibrinogen gamma chain 

50.0/53.9 5.6/5.1 

gi|182439 

11 500 

 



256 50.0/53.8 5.6/5.3 15 755 

 

254 50.1/54.6 5.6/5.3 14 738 

 

274 50.1/50.0 5.6/5.1 10 428 

 

260 50.1/52.5 5.6/5.0 2 100 

 

469 50.1/52.0 5.6/6.3 12 653 

 

506 50.1/50.1 5.7/6.0 20 1127 

 

496 50.1/53.6 5.7/6.0 22 1100 

 

511 50.1/48.7 5.7/5.9 24 1495 

 

490 50.1/53.0 5.7/5.7 24 1408 

 

491 50.1/53.6 5.7/5.9 23 1673 

 

281 46.8/50.1 5.5/5.2 13 697 

 

255 46.8/54.0 5.5/5.3 15 766 

 

314 

fibrinogen gamma 

46.8/46.5 5.5/6.0 

gi|223170 

10 515 

 



287 fibrinogen gamma-A precursor 50.1/50.0 5.7/5.6 gi|70906437 5 394 

 

297 FGB beta-fibrinogen precursor 55.5/49.7 8.3/6.3 gi|182430 2 112 

 

326 55.1/45.0 5.5/4.6 5 257 

 

346 55.1/65.0 5.5/5.0 12 590 

 

195 

VTN Vitronectin  

55.1/64.9 5.5/5.0 

gi|13477169 

11 566 

 

440 Chain A, Apolipoprotein A-I  28.1/23.9 5.3/5.2 gi|90108664 14 862 
 

451 

APOA1 

proapolipoprotein 29.0/23.5 5.4/5.8 gi|178775 5 357 

 

406 APOA4 
apolipoprotein A-IV precursor  

(probable fragment) 
 45.3/36.0 5.3/5.5 gi|178757 6 276 

 

519 APOA2 apolipoprotein A-II, isoform CRA_c 9.1/8.6 6.1/5.1 gi|119573006 7 269 
 

400 APOE apolipoprotein E 36.3/36.1 5.6/5.7 gi|178849  15 971 

 

427 APCS pre-serum amyloid P component 25.5/25.0 6.1/5.8 gi|337758 9 504 

 

450 JUP Plakoglobin (fragment) 82.4/22.1 5.9/5.3 gi|762885 7 317 

 

424 C4B complement component 4B (fragments) 48.0/26.5 5.8/5.9 gi|40737343 4 276 

 



425 48.0/26.4 5.8/5.8 4 221 

 

470 C4A complement component 4A  194.3/18.7 6.6/4.5 gi|179674 3 157 

 

349 40.2/43.5 4.8/5.1 22 1248 

 

342 55.1/44.8 5.5/4.8 16 890 

 

345 

C3 Chain C, Human Complement Component C3c 

40.2/43.7 4.8/4.8 

gi|78101271 

10 720 
 

a Histograms represent the variation of the spot normalized volumes (affected by SD). The same letters above the bars indicate no statistically significant difference, whereas different letters 
indicate a statistically significant difference (p < 0.05) according to the LSD (least significant difference) test. 

 
Table III. List of differentially expressed proteins identified by LC-MS/MS in ProteoMiner treated samples at 0, 4 and 7 days of storage. 
 

 

 

 

 

 

 

 

 

 



Gene Spot No.  
NCBI 

GI No. 
Protein name Description 

F2 242, 251 gi|4503635 
prothrombin 

preproprotein  
Functions in blood homeostasis, 
inflammation and wound healing 

20 gi|671882 apolipoprotein 
APOA2 

519 gi|119573006 apolipoprotein A-II 
stabilization HDL structure, HDL metabolism 

APOE 652, 653, 400 gi|178849 apolipoprotein E 
Role in binding, internalization, and catabolism of 

lipoprotein particles 

APOC2 790, 795, 15 gi|178741 Apolipoprotein C-II 
Component of VLDL, activator of several triacylglycerol 

lipases 

APOA4 8, 12, 406 gi|178757 apolipoprotein A-IV precursor  
Role in chylomicrons and VLDL secretion and catabolism, 

helps ApoC-I-mediated activation of lipoprotein lipase 

791, 799 gi|186972736 Chain A, Apolipoprotein C-III 
APOC3 

18, 19 gi|521205 apolipoprotein C-III 

Inhibits lipoprotein lipase and hepatic lipase, decreases the 
uptake of lymph chylomicrons by hepatic cells 

VTN  346, 265, 195, 326 gi|13477169 Vitronectin Cell adhesion and spreading factor 

C1QC 2 gi|33150626 
complement component 1, q 

subcomponent, C chain 

C4A 13, 470  gi|179674 complement component 4A 

C3 345, 349 gi|78101271 
Chain C, Complement Component 

C3c 
C4B 424, 425 gi|40737343 complement component 4B 

component of the serum complement system 

GPXP3 3 gi|404108 plasma glutathione peroxidase Protects cells and enzymes from oxidative damage 
AMBP 11 gi|223373 complex-forming glycoprotein HC Inter-alpha-trypsin inhibitor 
HRNR 422 gi|57864582 hornerin Role in cornification 

TPM4 415 gi|20178270 
Platelet beta tropomyosin alpha 4 

chain 
Binds to actin filaments in muscle and non-muscle cells 

APCS 427 gi|337758 pre-serum amyloid P component 
Interacts with DNA and histones, scavenger of nuclear 

material released from damaged circulating cells 
JUP 450 gi|762885 Plakoglobin (fragment) Junctional plaque protein 

SERPI
NC1 

264 gi|8569385 Chain I, Antithrombin-Iii Serine-type endopeptidase inhibitor activity 

A1BG 197 gi|69990 alpha-1-B-glycoprotein Cell surface proteins 

KNG1 gi|4504893 Kininogen-1 
Inhibitors of thiol proteases, role in blood coagulation, 

inhibits the aggregation of thrombocytes 
SERPI
NA8 

240 
gi|15079348 serpin proteinase inhibitor 8 Role in the regulation of mRNA stability 

 Table IV. Summary of newly identified proteins in PC supernatants upon storage 
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Discussion 

Biomarker discovery currently represents the major tendency in clinical science. In fact, the 

analysis of modulation of plasmatic proteins under different conditions may lead to the 

development of new, non-invasive diagnostic tests and become a therapeutic tool with prognostic 

power (Good et al., 2007). This holds true in the diagnosis and monitoring of pathologies, but also 

in quality assessment of therapeutic products and their deterioration, such as PCs. Hereby, the use 

of PC supernatants entirely suspended in plasma did not facilitate the proteomic analysis since the 

presence of high-abundance proteins hampered the detection of low-abundance protein 

populations in which potential biomarkers for the so-called “PLT-storage lesions” (Seghatchian and 

Krailadsiri, 1997) are thought to reside. However, such a recalcitrant system still represents a kind 

of product which is actually prepared in many hospitals, thus our profiling of stored PC releasates 

will mainly target to the real modifications occurring therein.  

Without using ProteoMinerTM protein enrichment technology, we found several interesting protein 

changes not previously reported. Among these, a spot containing platelet alpha-1-B-glycoprotein 

(spot 197) has been identified in two-dimensional maps of samples not subjected to equalization 

step. This is the principal receptor for von Willebrand factor and thrombin, thus playing a major role 

in platelet signaling during activation, whose presence in platelet releasate after thrombin 

stimulation has been recently noticed (Piersma et al., 2009). In the present analysis, this protein 

spot sharply increased in abundance at the 7th sampling day. Moreover, two interesting co-

migrating proteins were revealed to increase in expression after 7 days of storage in non-equalized 

PC supernatants (spot 240). The first one is kininogen-1. High molecular weight kininogen 

(HMWK) plays a crucial role in blood coagulation, being both the substrate and cofactor of the 

contact phase (Colman and Schmaier, 1986). This protein has been demonstrated, through 

immunochemical assays, to be present in and secreted by platelets upon stimulation, participating 

in the early phase of blood coagulation (Schmaier et al., 1983). The second one is a serpin 

proteinase inhibitor 8 (PI8 serpin). This protein has been proved to be synthesized by 

megakaryocytes, subsequently stored in platelets and released upon stimulation to limit the 

lifespan of serine proteases and thus be involved in anticoagulation systems (Leblond et al., 2006).  



By applying the ProteoMiner equalization procedure to the supernatants of stored buffy-coat PCs, 

we looked at the low-abundance proteins (either plasmatic or derived from platelets) which may 

represent the potential biomarker-rich population to be considered in the storage-related changes 

of this therapeutic blood component. One of these proteins is clusterin (also named apolipoprotein 

J), which has been proven to be a complement lysis inhibitor able to block the terminal 

complement reaction. The main product of the clusterin gene is a ~60 kDa pre-secretory form (pre-

sCLU), which is a heterodimer of two chains (α and β subunits) linked together by disulphide 

bonds. This precursor protein is directed to the Golgi apparatus where it is heavily glycosylated 

(reaching a molecular weight of 70-80 kDa) and cleaved into α and β subunits. The mature protein 

(sCLU) is stored in platelet granules and is released into extracellular fluid upon platelet activation 

(Witte et al., 1993). The mature sCLU appears as a smear at 37-40 kDa on a reducing SDS-PAGE 

(Rodriguez-Pineiro et al., 2006). In analysis 1 (P0 vs 0), clusterin was detected in three new spots 

representing either α- or β-CLU isoforms (spots 603, 640, 626) in equalized samples. Moreover, 

the same spots were found to be progressively down-regulated up to 7-day storage. Conversely, 

one clusterin-containing spot (228) showed an up-regulation during platelet storage. Its molecular 

weight position (about 55 kDa) is higher with respect to the other spots previously mentioned, but 

not enough to be considered as the full glycosylated uncleaved precursor. On the other hand, this 

molecular weight well correlates with the precursor of the secretory form (pre-sCLU, 60 kDa). One 

of the advanced hypotheses to explain this finding is the release of clusterin from platelets 

following storage-induced cell damage. Another platelet-derived protein appearing in proteomic 

maps of equalized samples at day 0 with respect to non-equalized counterparts (spots 265 and 

346) is vitronectin, a plasmatic glycoprotein currently stored in platelet alpha granules (Preissner et 

al., 1989). Vitronectin is known to exist in two forms: a single chain 75 kDa form (V75) and a 

clipped form composed of two chains (65 kDa and 10 kDa) (V65+V10) kept together by a disulfide 

bond (Dahlback and Podack, 1985). Its position in our two-dimensional maps (doublet at 78 and 65 

kDa) coincides with previous studies on electrophoretic mobility of plasma and platelet-derived 

vitronectin under reducing conditions (Seiffert and Schleef, 1996). Storage-dependent modulation 

of vitronectin was detected, especially for the V65 subunit (up-regulation of spots 346 and 195). 



Moreover, a vitronectin truncated form was found to increase over time (spot 326). Vitronectin is 

known to exist in mono- or multimeric forms, the latter associating in vitro upon particular 

treatments, or in vivo upon storage in platelet alpha granules (Stockmann et al., 1993). The 

differential proteolytic fragmentation pattern of vitronectin was extensively studied. In particular, 

defined fragments for monomeric and multimeric vitronectin were found to be induced by plasmin 

(Kost et al., 1996). Plasmatic monomeric vitronectin produced a 42/35 kDa truncated form whose 

N-terminal characterization suggested Gly-108 as the cleavage site. On the contrary, during 

plasmin proteolysis of multimeric PLT-derived vitronectin a different 40 kDa truncated form was 

produced showing identical N-terminus of the intact vitronectin. This result was the consequence of 

the altered conformational state of platelet vitronectin where the Gly-108 cleavage site was not 

accessible (Kost et al., 1996). The ESI-MS peptide mapping obtained for the spots 265, 346 and 

195 is consistent with the presence therein of the intact protein, whereas peptides from the 326 

vitronectin-containing spot, along with its molecular weight position, may suggest a platelet 

derivation of this vitronectin truncated form. In fact, finding of the N-terminal 28CTEGFNVDK37 

peptide excludes this fragment to be the plasmin-induced product of the monomeric vitronectin. 

However, further confirmation is required to establish the exact nature of this truncated form, 

especially because other mechanisms causing protein fragmentation (e.g., production of reactive 

oxygen species) (Freedman, 2008) may take part in storage lesions.  

 

 

 

 



 

 

Figure 4. Mass spectrometric peptide mapping of vitronectin-containing spots. Upper panel: schematic 

representation of the intact two-chain vitronectin (78/65 kDa doublet) corresponding to spots 265, 346 and 

195. Locations of the main protein domains are depicted along the vitronectin amino acid sequence. RGD, 

cell-attachment site. Lower panel: schematic representation of the 45 kDa fragment (spot 326) generated 

during plasmatic proteolysis of vitronectin. Peptides identified by MS/MS are shown in red. Underlined amino 

acids indicate the signal peptide (residues 1-19).  



Platelet beta tropomyosin (spot 415) sharply accumulated upon platelet storage; this protein is a 

structural member of platelet cytoskeleton and together with gelsolin and F-actin capping proteins 

plays an important role in the remodeling of actin filaments in response to different stimuli (Cohen 

and Cohen, 1972). Platelet beta tropomyosin has been identified in platelet dense granules 

(Hernández-Ruiz et al., 2007) and its recruitment to platelet membranes during activation has also 

been demonstrated (Kaiser et al., 2009). So far, the presence of tropomyosin in the platelet 

suspension medium after storage at room temperature has never been revealed. The 

accumulation of tropomyosin during storage in the surrounding medium could be related to platelet 

loss of integrity during aging. Finally, the equalization step allowed the detection of several protein 

fragments which have been monitored over time. Spot 450 has been identified as plakoglobin, a 

protein component of tight junctions, which accumulates after 7 days of PCs storage. On the 

contrary, a hornerin fragment (spot 422) decreases after 7 days of storage, though temporarily 

increasing at the fourth day of sampling, and the same holds true for fragmented complement 

component C4A (spot 470). A truncated form of apolipoprotein A-IV (spot 406) has been found to 

progressively decrease over time, whereas opposite trend has been found for C4B fragments 

(spots 424 and 425). 

To provide a graphical demonstration of the ability of ProteoMiner at unraveling interesting low-

abundant proteins, we used SNAVI to link our results together in a network including almost all 

proteins found in the present analysis. To make this tool more usable for the readers, we convert 

codes of our protein results into their corresponding genes. As can be seen from Figure 5, the use 

of ProteoMiner greatly broadened the scenario of interactions between products differentially 

expressed upon storage, helping at shedding light to the hidden proteome that often contains key 

proteins of central signalling networks.  

 

 

 

 

 



 

 

Figure 5 . Creation of networks using PathwayGenerator Application provided by SNAVI software. 

White circles indicate proteins detected without the use of ProteoMiner; yellow circles indicate proteins 

detected only after the use of ProteoMiner. Blue circles are intermediates nodes automatically introduced by 

the software to make a link between a source and a target protein. 
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Through the comprehensive analysis of low-abundance protein modulations, either derived from 

plasma or platelets, we provided new insights into the effects of storage on platelet concentrates. 

Notwithstanding all the advantages incidental to the introduction of the equalization step, some 

drawbacks still need to be climbed. Among the limitations of such an enrichment technology, it is 

worthwhile to mention the residual over-abundance of certain proteins, such as fibrinogen which 

can account for one third of the total spots obtained from 2D maps of ProteoMiner-treated plasma 

fractions (Bandow, 2010). Whether fibrinogen bound a variety of peptide hexamers very efficiently 

or the peptide hexamer(s)-binding fibrinogen was over-represented on the column remains to be 

clarified. Actually, recent findings seem to demonstrate that ProteoMiner beads interact with 

protein mixtures according to a general hydrophobic binding mechanism rather than the 

hexapeptide library coating the equalizer beads (Keidel et al., 2010). Combining the equalization 

approach with additional fractionation methods may further increase the number of detectable 

species. This is particularly true in relation to the loss of unique proteins noticed after library 

treatment with respect to the untreated control (e.g., A1BG, KNG1 and SERPINA8 in our case). 

For this reason, the use of both data analysis from initial and treated sample has been suggested 

(Boschetti and Righetti, 2009). Although no generalization can be made from a single instance, our 

study confirmed proteomics to be a tool offering the potential for new approaches and useful 

perspectives both to improve quality and safety of blood therapeutics and to set advanced quality 

requirements at the regulatory level. 
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Supporting Information 

Contains tables of peptides identified by means of mass spectrometry  

1) Cheyenne winter wheat (PART I) 

Peptides identified by MS/MS Spot 
No. 

m/z charge 
state 

start-end a 
 sequence 

Mascot  
Ion 

Score 

NCBI GI 
Number 

Protein ID 
 

90 

580.92 
734.08 
670.27 
790.68 
541.47 
937.91 
860.77 
957.44 
670.88 

2 + 
2 + 
2 + 
2 + 
2 + 
2 + 
3 + 
2 + 
2 + 

9-19 
25-37 
26-37 
38-52 
43-52 

122-138 
122-145 
146-164 
165-177 

SGEVVDVTQVK 
KMASETGQSIQDR 

MASETGQSIQDR + Oxid (M) 
AVEAKDQTGSFLGEK 

DQTGSFLGEK 
STEAAQYVQDTAAQYTK 

STEAAQYVQDTAAQYTKDPPVAPK 
ENVFQQAGGNMMGAATGAK + 2 Oxid (M) 

DAVMNTLGMGGDK + 2 Oxid (M) 

67 
49 
74 
68 
42 

104 
88 
70 
72 

gi|157073742 

group3 late 
embryogenesis 

abundant protein 
(wrab17) 

[Triticum aestivum] 

39 

782.96 
727.15 
533.50 
840.94 
924.93 
878.10 

2 + 
3 + 
2 + 
2 + 
2 + 
3 + 

27-41 
27-47 
32-41 
32-47 

111-127 
128-153 

AVEAKDQTGAFLGEK 
AVEAKDQTGAFLGEKSEAVTK 

DQTGAFLGEK 
DQTGAFLGEKSEAVTK 

STEAAQHVQDTAAQYTK 
DTPVAPKENVFQQAGGNMVGAATDAK + Oxid (M) 

55 
65 
51 
90 
54 
61 

44 924.96 
727.55 

2 + 
1 + 

122-138 
139-145 

STEAAQHVQDTAAEYTK 
DTPVAPK 

68 
30 

gi|7716956 

cold-responsive 
LEA/RAB-related COR 

protein (wrab17) 
[Triticum aestivum] 

194 

591.76 
576.13 
655.15 
622.93 
395.09 
769.21 
1023.63 
483.69 
704.51 
1052.63 
827.62 
558.17 
736.22 
776.68 
728.12 
1149.18 
584.15 
731.26 
610.20 
728.32 

2 + 
2 + 
2 + 
3 + 
3 + 
2 + 
1 + 
2 + 
2 + 
2 + 
2 + 
3 + 
2 + 
2 + 
2 + 
2 + 
2 + 
2 + 
2 + 
2 + 

111-120 
137-146 
158-169 
196-211 
212-222 
223-235 
236-244 
245-253 
294-306 
310-328 
329-343 
329-343 
348-360 
372-385 
386-398 
418-439 
476-485 
487-501 
489-501 
502-515 

YEVQGFPTLK 
EAEGIVEYLK 

APEDATYLEDGK 
SDYDFGHTVHANHLPR 

GDAAVERPLVR 
LFKPFDELVVDSK 

DFDVSALEK 
FIDASSTPK 

SAYYGAVEEFSGK 
FLIGDIEASQGAFQYFGLK 

EDQAPLILIQDSDSK +  Glu->pyro-Glu (N-term E) 
EDQAPLILIQDSDSK 
EQVEAGQIVAWLK 
KSEPIPEANNEPVK 
VVVADNIHDVVFK 

LAPILDEAAATLQSEEDVVIAK 
TADEIVDYIK 

NKETAGQAAAAATEK 
ETAGQAAAAATEK 
AAEPAATEPLKDEL 

48 
40 
76 
71 
32 
46 
45 
57 
83 
75 
79 
44 
79 
63 
94 
97 
61 
84 
62 
47 

gi|13925723 

protein disulfide 
isomerase 1 precursor 

[Triticum aestivum] 
 

46 
799.97 
532.54 
639.90 

2 + 
2 + 
2 + 

8-21 
67-75 

102-112 

LSGDELLSDSFPYR 
VVDIVDTFR 

LEGDDLDVFKK 

74 
52 
49 

gi|75246527 
 
 

Translationally-
controlled tumor protein 

homolog [Triticum 
aestivum] 

68 

449.14 
768.06 
767.92 
566.47 
778.46 

2 + 
2 + 
2 + 
2 + 
2 + 

29-36 
48-61 
62-75 
76-85 
87-106 

YGDVIDSK 
GFGFVTFASDEAMR 

QAIEAMNGQDLDGR + Oxid (M) 
NITVNEAQSR 

SGGGGGGGFGGGGGGYGGQR 

51 
81 
49 
53 
73 

gi|114145394 
 
 

glycine-rich RNA-binding 
protein  

[Triticum aestivum] 
 

66 

749.59 
655.82 
519.56 
826.40 

2 + 
2 + 
2 + 
2 + 

320-334 
340-350 
351-358 
464-477 

MSGGDHIHSGTVVGK + Oxid (M) 
EMTLGFVDLLR + Oxid (M) 

DDFIEKDR 
AIKFEFEPVDTIDE 

48 
57 
46 
61 

gi|1346964 
 

RuBisCO large chain 
[Avena sativa] 

62 

691.09 
369.97 
683.84 
571.06 
497.82 
491.71 

2 + 
2 + 
2 + 
2 + 
2 + 
2 + 

83-93 
94-99 

100-111 
138-146 
139-146 
147-154 

SKWVPCLEFSK 
VGFIFR 

EHNASPGYYDGR 
KEYPDAYVR 

EYPDAYVR + Glu->pyro-Glu (N-term E) 
IIGFDNMR + Oxid (M) 

34 
37 
57 
34 
47 
45 

6 

961.61 
683.34 
571.07 
497.88 
491.35 

2 + 
2 + 
2 + 
2 + 
2 + 

59-75 
100-111 
138-146 
139-146 
147-154 

FETLSYLPPLSTEALLK 
EHNASPGYYDGR 

KEYPDAYVR 
EYPDAYVR + Glu->pyro-Glu (N-term E) 

IIGFDNMR + Oxid (M) 

33 
58 
40 
43 
47 

gi|11990893 
RuBisCO small subunit  

[Triticum aestivum] 
 



167 

641.56 
370.03 
683.47 
491.53 
756.83 

3 + 
2 + 
2 + 
2 + 
3 + 

59-75 
94-99 

100-111 
147-154 
155-174 

FETLSYLPPLSTEALLK 
VGFIFR 

EHNASPGYYDGR 
IIGFDNMR + Oxid (M) 

QVQCVSFIAFKPPGCEESGK 

45 
37 
70 
34 
39 

45 

608.35 
684.21 
641.57 
690.97 
683.40 
808.49 
571.06 
497.81 
483.37 
780.47 

2 + 
3 + 
3 + 
2 + 
2 + 
3 + 
2 + 
2 + 
2 + 
3 + 

48-57 
58-75 
59-75 
83-93 

100-111 
118-138 
138-146 
139-146 
147-154 
155-175 

MQVWPIEGIK + Oxid (M) 
KFETLSYLPPLSTEALLK 
FETLSYLPPLSTEALLK 

SKWVPCLEFSK 
EHNASPGYYDGR 

LPMFGCTDATQVINEVEEVKK + Oxid (M) 
KEYPDAYVR 

EYPDAYVR + Glu->pyro-Glu (N-term E) 
IIGFDNMR 

QVQCVSFIAFKPPGCEESGKA 

36 
47 
50 
32 
65 
77 
41 
45 
45 
44 

178 

1025.73 
454.11 
370.10 
808.97 
491.53 

2 + 
2 + 
2 + 
3 + 
2 + 

57-74 
75-81 
93-98 

117-137 
146-153 

KFETLSYLPPLSTEALLK 
QVDYLIR 
VGFIFR 

LPMFGCTDATQVLNEVEEVKK + Oxid (M) 
IIGFDNMR + Oxid (M) 

37 
48 
33 
65 
38 

gi|3914588 
 

RuBisCO small subunit 
(chloroplast precursor)  

[Triticum aestivum] 

184 

533.94 
694.42 
810.97 
579.11 
756.14 
437.45 
411.97 
655.12 
1026.55 
542.66 

2 + 
2 + 
3 + 
2 + 
2 + 
2 + 
2 + 
2 + 
2 + 
2 + 

38-47 
73-85 

140-162 
163-172 
178-192 
193-200 
229-235 
271-282 
338-356 
368-378 

ASAYADELVK 
LASIGLENTEANR 

GLVPLVGSNDESWCQGLDGLASR 
EAAYYQQGAR 

TVVSIPNGPSELAVK 
EAAWGLAR 
TFEVAQK 

ATPEEVASYTLK 
TWGGRPENVAAAQEALLLR 

YTSDGEAAAAK 

46 
86 
46 
66 
35 
49 
37 
69 
79 
66 

gi|8272480 
 
 

fructose 1 
6-bisphosphate aldolase 

precursor  
[Avena sativa] 

 

102 

351.40 
694.69 
797.10 
578.81 
437.38 
1016.80 
822.42 
474.33 
451.38 
571.50 

2 + 
2 + 
2 + 
2 + 
2 + 
3 + 
1 + 
2 + 
2 + 
2 + 

51-57 
73-85 

122-136 
163-172 
193-200 
201-228 
229-235 
330-337 
359-367 
368-378 

TIASPGR 
LASIGLENTEANR 
IVDILVEQGIVPGIK 

EAAYYQQGAR 
EAAWGLAR 

YAAISQDNGLVPIVEPEILLDGEHGIER 
TFEVAQK 

ALQNTCLK 
ANSLAQLGK 

YTSDGEAAEAK 

40 
85 
71 
68 
41 
69 
45 
41 
44 
73 

gi|195634659 
 

Fructose-1,6-
bisphosphate 
aldolase [Zea 

mays] 
 

30 

749.57   
666.96 
745.05 
382.44 
738.28 

1+ 
2 + 
2 + 
2 + 
3 + 

18-24 
25-38 
25-39 

205-211 
218-238 

YIATPGK 
GILAADESTGTIGK 

GILAADESTGTIGKR 
VLAAVYK 

VLLEGTLLKPNMVTPGSDSPK + Oxid (M) 

30 
86 
81 
38 
76 

gi|115468886 

Os06g0608700 
Fructose-1,6-

bisphosphate aldolase 
[Oryza sativa (japonica 

cultivar-group)] 

97 

866.19 
693.01 
519.59 
639.50 

3 + 
2 + 
2 + 
2 + 

114-138 
267-281 
282-291 
319-329 

YDSTLGIFDADVKPVGDNAISVDGK 
AAALNIVPTSTGAAK 

AVALVLPNLK 
TLAEEVNQAFR 

97 
42 
43 
56 

gi|115458768 
 
 

Os04g0459500  
glyceraldehyde-3-

phosphate 
dehydrogenase 

[Oryza sativa (japonica 
cultivar-group)] 

121 

477.43 
637.81 
529.50 
401.04 
745.11 
886.37 
860.17 
435.93 
711.27 
1206.15 
654.57 
680.72 
1087.61 
760.31 
625.73 
407.66 

3 + 
2 + 
2 + 
2 + 
2 + 
3 + 
2 + 
2 + 
2 + 
2 + 
3 + 
2 + 
2 + 
2 + 
2 + 
2 + 

77-90 
78-90 

122-131 
124-131 
132-143 
150-173 
174-187 
218-225 
232-243 
244-265 
334-350 
351-361 
362-382 
383-394 
385-394 
395-403 

RLTSVFGGAAEPPK 
LTSVFGGAAEPPK 

EKGVTALDPK 
GVTALDPK 

ANDFDLMYEQVK + Oxid (M) 
AIEKPIYNHVTGLLDPAELIQPPK 

IFVIEGLHPMYDER 
GHSLESIK 

KPDFDAFIDPQK 
QYADAVIEVLPTQLIPDDNEGK 

LDELIYVESHLSNLSTK 
FYGEVTQQMLK + Oxid (M) 

HADFPGSNNGTGLFQTIVGLK 
IRDLYEQIIAER 
DLYEQIIAER 
AGVPAEAAK 

55 
66 
42 
38 
75 
50 
53 
33 
58 
60 
67 
64 
34 
71 
60 
36 

gi|125580 
 

Phosphoribulokinase 
chloroplast precursor  

[Triticum 
aestivum] 

 



613.561 
439.988 
469.565 
593.464 
689.313 
825.584 
618.535 
795.173 
466.078 
427.624 
595.078 

2 + 
2 + 
2 + 
2 + 
3 + 
2 + 
2 + 
2 + 
2 + 
2 + 
2 + 

95-104 
222-229 
259-266 
267-276 
267-283 
290-304 
307-318 
323-336 
352-359 
360-367 
373-382 

LLICMGEAMR 
TTFVVALK 
MFSPGNLR 

ATFDNPDYDK 
ATFDNPDYDKLVNYYVK 

YTGGMVPDVNQIIVK 
GIFTNVTSPTAK 

LLFEVAPLGFLIEK 
VISVLDER 

TQVAYGSK 
FEETLYGSSR 

39 
47 
36 
41 
49 
68 
68 
69 
56 
46 
69 

gi|1173347 

Sedoheptulose-1,7-
bisphosphatase, 

chloroplast precursor 
[Triticum aestivum] 

124 
638.61 
711.11 
787.34 

2 + 
2 + 
2 + 

77-89 
250-262 
421-437 

SVGDLTAADLEGK 
ELDYLDGAVSNPK 

GVTTIIGGGDSVAAVEK 

77 
98 
70 

gi|129915 

Phosphoglycerate 
kinase, chloroplast 

precursor 
[Triticum aestivum] 

119 

688.55 
825.75 
472.70 
797.68 

2 + 
2 + 
2 + 
3 + 

27-38 
98-113 

143-151 
183-202 

MELIDAAFPLLK + Oxid (M) 
VLVVANPANTNALILK 

LGVQVSDVK 
ELVQDDEWLNGEFIATVQQR 

48 
56 
68 
58 

gi|37928995 
 

cytosolic malate 
dehydrogenase  

[Triticum aestivum] 

113 

725.07 
483.79 
496.54 
632.05 
717.15 
672.68 

2 + 
3 + 
2 + 
2 + 
2 + 
2 + 

118-133 
118-133 
175-183 
195-205 
243-255 
311-322 

KAPGGAPANVAVGIAR 
KAPGGAPANVAVGIAR 

TALAFVTLR 
NPSADMLLEEK + Oxid (M) 

DAGVLISYDPNLR 
LLLVTEGPEGCR 

85 
44 
64 
53 
63 
36 

gi|51535181 
 

putative fructokinase 
[Oryza sativa Japonica 

Group] 

177 

636.82 
667.13 
765.15 
812.22 
644.18 

2 + 
2 + 
2 + 
2 + 
2 + 

66-77 
81-93 

164-177 
206-223 
319-332 

ELMPGGVNSPVR + Oxid (M) 
SVGGQPIVFDSVK 

FVNSGTEACMGALR + Oxid (M) 
AGSGVATLGLPDSPGVPK 

IIGGGLPVGAYGGR 

46 
57 
85 
65 
55 

gi|115477483 
 

Os08g0532200  
glutamate-1-

semialdehyde 
aminotransferase 

[Oryza sativa (japonica 
cultivar-group)] 

34 730.98 
757.00 

2 + 
2 + 

252-264 
287-300 

FVTNEGTYGPYGR 
ADDTQLIAFGVYTV 

57 
37 gi|16151819 VER2  

[Triticum aestivum] 

79 

587.04 
350.09 
636.91 
603.37 
632.17 
719.43 

3 + 
3 + 
2 + 
2 + 
2 + 
2 + 

144-159 
160-168 
169-180 
237-247 
320-331 
358-369 

VHQALTEVAISSFDIK 
TNKPVIFTK 

SNLAKSPELDAK 
AEEDPAFASIR 

VQENALTGTTTK 
DSPETYEEALKR 

61 
40 
58 
66 
72 
64 

gi|122201873 Patatin-13 precursor 
[Solanum tuberosum] 

69 821.02 
757.12 

2 + 
2 + 

81-96 
82-96 

KQLAVPDGTPVTAESK 
QLAVPDGTPVTAESK 

36 
62 

gi|113165 
Acyl carrier protein 1 
chloroplast precursor  
[Hordeum vulgare] 

127 
701.81 
651.19 
537.58 

2 + 
2 + 
2 + 

67-78 
79-91 
81-91 

SKEEAMSDYITK 
VKQLLEEAAAAAS 

QLLEEAAAAAS 

46 
46 
41 

gi|115474931 
 

Os08g0162800  
Acyl-CoA-binding 

protein [Oryza sativa 
(japonica cultivar-group)] 

84 
905.49 
686.51 
915.98 

2 + 
2 + 
2 + 

198-213 
226-237 
226-241 

AEQYLADSGLPYTIIR 
ELLVGKDDEILK 

ELLVGKDDEILKTETK 

73 
68 
77 

gi|115461679 
 

Os05g0110300  
Similar to putative 3-
beta hydroxysteroid 

dehydrogenase/isomera
se protein 

[Oryza sativa (japonica 
cultivar-group)] 

136 

782.06 
437.31 
731.52 
783.99 
435.98 
862.60 
698.87 
813.28 
736.97 
701.24 
673.07 
658.52 
778.40 
605.04 
691.68 
576.91 
826.49 

2 + 
2 + 
2 + 
2 + 
2 + 
2 + 
2 + 
3 + 
2 + 
3 + 
2 + 
3 + 
2 + 
3 + 
2 + 
2 + 
2 + 

116-129 
160-167 
168-180 
197-210 
219-226 
227-242 
359-369 
477-499 
550-563 
550-568 
551-563 
551-568 
569-581 
569-583 
591-602 
606-616 
683-698 

QAVVNPENTFFSVK + Gln->pyro-Glu (N-term Q) 
LDCPAIGK 

QFAAEEISAQVLR 
AVVTVPAYFNDSQR 

IAGLEVLR 
IINEPTAASLAYGFEK 

FEELCSDLIDR 
SEVFSTAADGQTSVEINVLQGER 

KQDITITGASTLPK 
KQDITITGASTLPKDEVER 

QDITITGASTLPK 
QDITITGASTLPKDEVER 

MVEEADKFAQEDK 
MVEEADKFAQEDKEK + Oxid (M) 

NQADSVVYQTEK 
ELGDKVPAPVK 

GPNDGDVIDADFTDSN 

68 
52 
81 
33 
52 

106 
36 
89 
78 
83 
69 
53 
64 
46 
84 
47 
87 

gi|115487998 
 

Os12g0244100 
molecular chaperone 

DnaK  
[Oryza sativa (japonica 

cultivar-group)] 
 

193 
634.56 
570.59 
690.63 

2 + 
2 + 
2 + 

209-219 
210-219 
223-233 

KIVTEILPARK 
IVTEILPARK 

AEEYHQQYLAK 

46 
39 
59 

gi|29469000 
peptide methionine 
sulfoxide reductase 

[Gossypium 



barbadense] 

128 
502.05 
356.62 
512.41 

2 + 
2 + 
2 + 

165-172 
173-178 
181-189 

NLLFKPDR 
EAFFAK 

EVYEDIISG 

36 
35 
36 

gi|125575528 
 

hypothetical protein 
OsJ_031021  

[Oryza sativa (japonica 
cultivar-group)] 

180 746.69 
619.99 

3 + 
2 + 

190-211 
242-251 

VMIHQPSGGAQGQATDIAIQAK + Oxid (M) 
DLFMDPEEAR + Oxid (M) 

72 
39 gi|115447465 

Os02g0634500  
[Oryza sativa (japonica 

cultivar-group)] 

112 

779.37 
715.20 
723.23 
543.00 
479.02 
578.66 
1104.74 
981.62 
866.74 

2 + 
2 + 
3 + 
2 + 
2+ 
2 + 
2 + 
2 + 
2 + 

51-64 
52-64 
65-84 
92-99 
93-99 

103-112 
178-196 
197-214 
221-235 

KLPSILVDETSVQK 
LPSILVDETSVQK 

IQSLTPNIGVVYSGMGPDFR 
KQAQQYYR 
QAQQYYR 

ETIPVTQLVR 
YTEDMELDDAIHTAILTLK + Oxid (M) 

EGYEGQISANNIEIGVIR 
VLTPAEIKDFLEEVE 

79 
82 
74 
44 
33 
53 
82 
62 
46 

gi|115447473 
 
 

Os02g0634900 
Proteasome alpha type 

2 [Oryza sativa (japonica 
cultivar-group)] 

88 

908.72 
881.60 
770.62 
991.84 
630.88 
776.74 
475.12 
490.57 
791.45 
721.24 
469.64 

2 + 
2 + 
2 + 
3 + 
2 + 
3 + 
2 + 
2 + 
2 + 
3 + 
2 + 

66-80 
81-96 

101-114 
115-141 
170-180 
181-199 
232-239 
321-329 
339-352 
354-373 
387-394 

MQQLLDMDTTPFTDK +2 Oxid (M) 
IIAEYIWVGGSGIDLR 
TISKPVEDPSELPK 

WNYDGSSTGQAPGEDSEVILYPQAIFK 
HMAAQIFSDPK + Oxid (M) 

VTSQVPWFGIEQEYTLMQR + Oxid (M) 
DISDAHYK 

EDGGFDVIK 
HDLHIAAYGEGNER 

LTGLHETASISDFSWGVANR 
GKGYLEDR 

69 
74 
56 
51 
56 
62 
35 
51 
78 
73 
44 

80 

908.45 
881.52 
770.96 
991.82 
777.08 
490.61 
791.40 
721.21 
469.34 

2 + 
2 + 
2 + 
3 + 
3 + 
2 + 
2 + 
3 + 
2 + 

66-80 
81-96 

101-114 
115-141 
181-199 
321-329 
339-352 
354-373 
387-394 

MQQLLDMDTTPFTDK + 2 Oxid (M) 
IIAEYIWVGGSGIDLR 
TISKPVEDPSELPK 

WNYDGSSTGQAPGEDSEVILYPQAIFK 
VTSQVPWFGIEQEYTLMQR + Oxid (M) 

EDGGFDVIK 
HDLHIAAYGEGNER 

LTGLHETASISDFSWGVANR 
GKGYLEDR 

80 
79 
69 
70 
65 
50 
80 
66 
44 

gi|121340 
 

Glutamine 
synthetase  

chloroplast precursor 
[Hordeum vulgare]  

153 

900.41 
881.42 
770.51 
991.81 
490.59 
527.75 
721.20 
469.58 

2 + 
2 + 
2 + 
3 + 
2 + 
3 + 
3 + 
2 + 

59-73 
74-89 
94-107 

108-134 
314-322 
332-345 
347-366 
380-387 

MQQLLDMDTTPFTDK + Oxid (M) 
IIAEYIWVGGSGIDLR 
TISKPVEDPSELPK 

WNYDGSSTGQAPGEDSEVILYPQAIFK 
EDGGFDVIK 

HDLHIAAYGEGNER 
LTGLHETASISDFSWGVANR 

GKGYLEDR 

78 
65 
64 
60 
50 
72 
60 
44 

gi|71362640 
plastid glutamine 
synthetase GS2c  

[Triticum aestivum] 

156 631.08 
721.04 

2 + 
3 + 

163-173 
347-366 

HMAAQIFSDPK + Oxid (M) 
LTGLHETASISDFSWGVANR 

42 
65 gi|71362638 

plastid glutamine 
synthetase GS2b  
[Triticum aestivum] 

165 

751.34 
803.95 
727.46 
444.47 
478.57 
490.46 

2 + 
2 + 
2 + 
2 + 
2 + 
2 + 

50-62 
77-91 

240-254 
294-302 
330-337 
366-374 

TNMVMVFGEITTK + 2 Oxid (M) 
NIGFISDDVGLDADR 
FVIGGPHGDAGLTGR 

SIIASGLAR 
IPDKEILK 

TAAYGHFGR 

75 
107 
84 
48 
59 
45 

gi|115589744 
 
 

S-adenosylmethionine 
synthetase 1  

[Triticum monococcum] 
 

148 

813.41 
824.54 
821.85 
425.91 
412.77 
803.50 
522.84 
768.86 
380.76 

2 + 
2 + 
3 + 
2 + 
2 + 
2 + 
2 + 
3 + 
3 + 

107-120 
147-161 
147-168 
162-168 
194-200 
201-214 
241-250 
251-271 
272-281 

VYVGNLPYDVDSER 
GFGFVTMSTIEEADK 

GFGFVTMSTIEEADKAIETFNR 
AIETFNR 

QFASSFR + Gln->pyro-Glu (N-term Q) 
AYVGNLPWQAEDSR 

GFGFVTMASK 
EDLDSAISALDGQEMDGRPLR + Oxid (M) 

VNVAAERPQR 

70 
89 
73 
53 
32 
71 
60 
71 
33 

gi|3550483 
 

cp31BHv  
[Hordeum vulgare 

subsp. vulgare] 
 

36 544.72 
515.42 

2 + 
2 + 

154-163 
199-207 

GVIPLAYSIR 
LNADDDVIR 

40 
70 gi|115456525 

Os03g0843400  
30S ribosomal protein 

S6, chloroplast 
precursor 

[Oryza sativa (japonica 
cultivar-group)] 



195 705.74 
394.40 

2 + 
2 + 

93-105 
134-140 

DADIFAVVMIGSR + Oxid (M) 
VLLVSTR 

61 
37 

gi|115445399 
 

Os02g0259600 50S 
ribosomal protein L21, 
chloroplast precursor 

[Oryza sativa (japonica 
cultivar-group)] 

3 433.89 
844.20 

2 + 
3 + 

81-88 
89-112 

AGETITFK 
NNAGYPHNVVFDEDAVPSGVDVSK 

77 
44 gi|22705 plastocyanin precursor 

[Hordeum vulgare] 

59 661.92 
502.48 

2 + 
2 + 

129-140 
215-222 

GDPTYLVVESDK 
TGDNPWWK 

62 
46 

gi|68566191 
 

Cyt b6-f complex iron-
sulfur subunit 

chloroplastic 
[Triticum aestivum] 

197 816.18 
654.54 

2 + 
2 + 

143-158 
167-178 

LYSIASSALGDFGDSK 
LVYTNDAGEVVK 

108 
62 

gi|20302473 
 

ferredoxin-NADP(H) 
oxidoreductase  

[Triticum aestivum] 

57 
708.94 
523.68 
695.55 

2 + 
2 + 
2 + 

379-390 
487-495 
487-498 

IVGNEHYETAQR 
AITLEEENK 

AITLEEENKSQK 

71 
33 
58 

gi|11583 
 

ATPase beta subunit 
[Hordeum vulgare] 

33 

815.68 
905.12 
627.91 
1057.00 
596.69 
504.54 
523.63 
665.12 
706.75 
438.54 
809.78 
736.59 

2 + 
2 + 
2 + 
2 + 
2 + 
2 + 
2 + 
2 + 
3 + 
2 + 
2 + 
2 + 

3-18 
23-39 
76-87 
88-109 

135-145 
146-154 
155-163 
192-205 
208-225 
218-225 
232-246 
249-261 

TNPTTSPPGASTIEEK 
IDQIIGPVLDVTFPPGK 

AVAMSATDGLMR + 2 Oxid (M) 
GMEVIDTGAPLSVPVGGATLGR + Oxid (M) 

SAPAFIELDTK 
LSIFETGIK 

VVDLLAPYR 
AHGGVSVFGGVGER 

EGNDLYMEMKESGVINEK 
ESGVINEK 

VALVYGQMNEPPGAR + Oxid (M) 
VGLTALTMAEYFR 

65 
70 
90 
85 
63 
45 
48 
73 
35 
60 
83 
88 

109 

595.98 
488.36 
809.43 
736.66 
717.61 
1038.95 
709.01 
523.83 
695.52 

2 + 
2 + 
2 + 
2 + 
2 + 
2 + 
2 + 
2 + 
2 + 

135-145 
168-178 
232-246 
249-261 
278-291 
360-378 
379-390 
487-495 
487-498 

SAPAFIELDTK 
IGLFGGAGVGK 

VALVYGQMNEPPGAR + Oxid (M) 
VGLTALTMAEYFR 

FVQAGSEVSALLGR 
GIYPAVDPLDSTSTMLQPR + Oxid (M) 

IVGNEHYETAQR 
AITLEEENK 

AITLEEENKSQK 

57 
47 
73 
81 
78 
56 
59 
36 
54 

gi|14017579 
 

ATP synthase CF1 beta 
subunit 

[Triticum aestivum] 

196 

668.54 
595.35 
531.02 
610.23 
1048.62 
937.52 
579.51 
674.53 
755.22 
620.63 

2 + 
2 + 
2 + 
2 + 
3 + 
3 + 
2 + 
1 + 
2 + 
2 + 

1-11 
2-11 
3-11 

12-20 
21-50 
70-95 
96-106 

112-117 
125-137 
127-137 

MKLNLYVLTPK + Oxid (M) 
KLNLYVLTPK 
LNLYVLTPK 
RIIWDCEVK 

EIILSTNSGQIGVLPNHAPINTAVDMGPLR + Oxid (M) 
IVNNEIIILGNDAELGSDIDPEEAQK 

ALEIAEANLSK 
DLVEAK 

IRIEAVNWIPPSN 
IEAVNWIPPSN 

67 
61 
52 
40 
84 
39 
79 
44 
43 
45 

gi|14017578 
 

ATP synthase CF1 
epsilon subunit 

[Triticum aestivum] 

115 

337.542 
730.599 
805.587 
451.097 

2 + 
2 + 
1 + 
2 + 

114-120 
114-127 
121-127 
142-150 

AELGGVK 
AELGGVKDASEEVR 

DASEEVR 
AEIAAALNK 

36 
89 
45 
42 

gi|115452259 

Os03g0278900 ATP 
synthase B/B' CF(0) 

[Oryza sativa (japonica 
cultivar-group)] 

190 

608.20 
553.55 
703.01 
626.21 
731.61 
365.72 
660.11 
466.60 
625.02 
703.08 

2 + 
2 + 
3 + 
2 + 
3 + 
2 + 
2 + 
2 + 
2 + 
2 + 

35-46 
55-64 
68-86 

117-126 
129-147 
182-187 
188-198 
199-206 
207-217 
207-218 

EAAPVSGDDLLK 
KFETALGVLK 

ITIDPDDPTAVANYAQVMR + Oxid (M) 
TYLDTLQQLR 

SGLIDDMGIEDMMMEALEK + 4 Oxid (M) 
KEDLPK 

IEENLEMELAK 
AELTELKK 

EVVEAMEGQLK +Oxid (M) 
EVVEAMEGQLKR +Oxid (M) 

36 
59 
97 
58 
72 
45 
86 
39 
57 
55 

gi|47607439 
 

mitochondrial ATP 
synthase precursor 
[Triticum aestivum] 

118 
468.96 
730.55 
554.04 

2 + 
2 + 
2 + 

28-35 
44-55 

128-136 

MLVSDEAR + Oxid (M) 
TFEDVNHQLQTK 

ELAELQEMK + Oxid (M) 

52 
66 
32 

gi|115476908 
 

Os08g0478200  
ATP synthase D chain, 

mitochondrial  
[Oryza sativa (japonica 

cultivar-group)] 



103 

786.48 
849.01 
733.63 
889.59 
686.50 
335.03 

2 + 
2 + 
2 + 
1 + 
2 + 
3 + 

102-115 
118-132 
133-143 
168-175 
176-188 
189-197 

FYLQPLPPAEAAVR 
ESAQDILNLKPLIDK 

KQWPYVMNDLR + Oxid (M) 
DLKDLTGK 

LFATLDGLDHAAK 
IKSPTEAEK 

54 
34 
43 
42 
58 
53 

gi|134290407 
 
 

putative oxygen-evolving 
complex precursor 
[Triticum aestivum] 

35 

782.17 
717.89 
606.91 
748.08 
918.10 
613.98 
1042.48 
627.44 
663.90 
599.84 

2 + 
2 + 
2 + 
3 + 
3 + 
2 + 
2 + 
2 + 
2 + 
2 + 

87-100 
88-100 

112-121 
122-141 
170-197 
198-207 
208-228 
217-228 
246-258 
247-258 

KNTDFVAYSGEGFK 
NTDFVAYSGEGFK 

EREFPGQVLR + Glu->pyro-Glu (N-term E) 
YEDNFDATSNLSVIINPTTK 

TDSEGGFESDAVATANVLESSAPVVDGK 
QYYSITVLTR + Gln->pyro-Glu (N-term Q) 

TADGDEGGKHQLITATVADGK 
HQLITATVADGK 

KFVENAAGSFSVA 
FVENAAGSFSVA 

94 
94 
55 
57 
84 
61 
77 
82 
82 
66 

4 
781.92 
717.89 
1121.49 

2 + 
2 + 
2 + 

87-100 
88-100 

122-141 

KNTDFVAYSGEGFK 
NTDFVAYSGEGFK 

YEDNFDATSNLSVIINPTTK 

80 
83 
70 

gi|131394 
Oxygen-evolving 

enhancer protein 2 
[Triticum aestivum] 

160 

685.34 
547.49 
538.07 
742.75 
678.56 

2 + 
2 + 
3 + 
2 + 
2 + 

59-68 
61-68 

141-155 
142-155 
143-155 

FKESEIYHCR 
ESEIYHCR 

KKYPGGAFDPLGFSK 
KYPGGAFDPLGFSK 
YPGGAFDPLGFSK 

64 
64 
52 
65 
38 

gi|544700 
 

LHC I  
[Hordeum vulgare] 

 

104 

393.93 
779.35 
756.80 
881.03 
760.82 

2 + 
2 + 
3 + 
2 + 
3 + 

95-100 
141-154 
161-181 
186-202 
211-231 

TYMEVK 
AEGIQKNEPPAFQK 

LTYTLDEMEGPLEVGADGTLK + Oxid (M) 
DGIDYAAVTVQLPGGER 

QLVATGKPESFSGPFLVPSYR 

36 
54 
79 
86 
42 

58 

541.19 
778.97 
880.93 
475.94 

2 + 
2 + 
2 + 
2 + 

86-94 
141-154 
186-202 
203-210 

LTFDEIQSK 
AEGIQKNEPPAFQK 

DGIDYAAVTVQLPGGER 
VPFLFTVK 

55 
46 
51 
46 

gi|147945622 
 

oxygen-evolving 
enhancer protein 1  
[Leymus chinensis] 

 

169 

467.36 
799.03 
395.56 
652.19 
587.99 
831.09 
729.96 

2 + 
2 + 
2 + 
2 + 
2 + 
3 + 
2 + 

98-105 
109-122 
128-134 
270-279 
271-279 
280-304 
338-350 

YALPIDNK 
EVQKPLEDITDSLK + Glu->pyro-Glu (N-term E) 

ALDSVER 
KFYDGMEIQR + Oxid (M) 
FYDGMEIQR + Oxid (M) 

ADGFVVQTGDPEGPAEGFIDPSTGK 
LPFNAFGTMAMAR +2 Oxid (M) 

37 
63 
54 
38 
61 
72 
44 

gi|115476198 
 

Os08g0382400  
Cyclophilin TLP40 like 
[Oryza sativa Japonica 

Group] 

143 

599.92 
727.13 
829.04 
762.76 

2 + 
2 + 
3 + 
3 + 

101-109 
140-152 
218-240 
220-240 

FLEYLDKDR 
VQLPGLSQELLQK 

AKFQMEPNTGVTFDDVAGVDEAK + Oxid (M) 
FQMEPNTGVTFDDVAGVDEAK + Oxid (M) 

47 
45 
55 
68 

gi|4325041 
 

FtsH-like protein Pftf 
precursor  

[Nicotiana tabacum] 
 

100 
610.67 
695.42 
617.58 

2 + 
2 + 
2 + 

169-179 
233-245 
234-245 

LFGVTTLDVVR 
RTQDGGTEVVEAK 
TQDGGTEVVEAK 

64 
58 
72 

gi|115438875 
 

Os01g0649100  
Malate dehydrogenase 
[Oryza sativa (japonica 

cultivar-group)] 

114 

575.59 
781.12 
849.68 
495.02 
590.05 

2 + 
2 + 
3 + 
2 + 
2 + 

58-67 
144-157 
144-165 
158-165 
233-243 

YTSLKPLGDR 
EDDIIGVLETDDVK 

EDDIIGVLETDDVKDMKPLNDR + Oxid (M) 
DMKPLNDR 

GADGTNYIVLR 

50 
47 
41 
37 
71 

gi|51090748 
 

putative chaperonin 21 
precursor  

[Oryza sativa Japonica 
Group] 

158 

680.93 
671.29 
398.71 
626.27 
374.27 
874.99 
511.68 
743.46 
854.98 

2 + 
3 + 
2 + 
3 + 
2 + 
2 + 
2 + 
2 + 
2 + 

11-23 
24-41 
42-48 

105-122 
106-113 
106-122 
114-122 
127-140 
148-163 

AAAEYDLPLVGNK 
APDFAAEAVFDQEFINVK 

LSDYIGK 
KSGGLGDLKYPLVSDVTK 

SGGLGDLK 
SGGLGDLKYPLVSDVTK 

YPLVSDVTK 
SFGVLIPDQGIALR 

EGVIQHSTINNLGIGR 

63 
69 
35 
49 
42 
60 
47 
71 
44 

179 
681.02 
671.16 
743.70 

2 + 
3 + 
2 + 

11-23 
24-41 

127-140 

AAAEYDLPLVGNK 
APDFAAEAVFDQEFINVK 

SFGVLIPDQGIALR 

53 
52 
62 

gi|2829687 
 

 
2-Cys peroxiredoxin 

BAS1 
[Triticum 
aestivum] 

 



96 

539.44 
644.12 
901.52 
711.02 

2 + 
3 + 
2 + 
2 + 

23-32 
33-49 
34-49 

129-141 

QYTLEGQGAK + Gln->pyro-Glu (N-term Q) 
KDISPPLEWYGVPDGTR 
DISPPLEWYGVPDGTR 

LYALDDVLSLGNK 

57 
39 
62 
80 

32 

539.46 
901.53 
758.58 
530.16 

2 + 
2 + 
2 + 
2 + 

23-32 
34-49 
50-63 

115-124 

QYTLEGQGAK + Gln->pyro-Glu (N-term Q) 
DISPPLEWYGVPDGTR 

SLAVVVQDVDADER 
GPVPDSHGHR 

49 
67 
98 
61 

gi|26017213 
 

cold regulated protein 
(wcor18)  [Triticum 

aestivum] 

146 

855.78 
398.53 
615.07 
779.43 
548.86 
1038.06 
819.53 
942.10 
895.47 
559.56 
644.77 
844.05 
786.66 
380.43 

2 + 
2 + 
2 + 
3 + 
2 + 
2 + 
2 + 
2 + 
1 + 
2 + 
3 + 
3 + 
3 + 
2 + 

63-77 
131-137 
162-171 
172-194 
200-208 
268-286 
308-322 
323-339 
342-348 
368-377 
383-398 
399-421 
400-421 
422-428 

GLAYDISDDQQDITR 
LVVHLSK 

SFQCELVFAK 
MGINPIMMSAGELESGNAGEPAK +2 Oxid (M) 

YREAADMIK 
VPIVVTGNDFSTLYAPLIR 

GIFQTDNVSDESVVK 
IVDTFPGQSIDFFGALR 

VYDDEVR 
DGPVTFEQPK 

LLEYGHMLVQEQDNVK + Oxid (M) 
RVQLADTYMSQAALGDANQDAMK +2 Oxid (M) 

VQLADTYMSQAALGDANQDAMK + Oxid (M) 
TGSFYGK 

86 
38 
55 
76 
50 
75 
85 
68 
46 
49 
82 

102 
78 
45 

gi|12643756 
 

RuBisCO activase A 
[Hordeum vulgare] 

 

73 

855.42 
398.70 
583.90 
614.98 
785.08 
470.85 
819.46 
628.48 
895.36 
559.39 
958.38 
843.71 
786.49 

2 + 
2 + 
2 + 
2 + 
3 + 
2 + 
2 + 
3 + 
1 + 
2 + 
2 + 
3 + 
3 + 

64-78 
132-138 
148-158 
163-172 
173-195 
294-300 
309-323 
324-340 
343-349 
369-378 
384-399 
400-422 
401-422 

GLAYDISDDQQDITR 
LVVHLSK 

IPLILGIWGGK 
SFQCELVFAK 

MGINPIMMSAGELESGNAGEPAK +3 Oxid (M) 
FYWAPTR 

GIFQTDNVSDESVVK 
IVDTFPGQSIDFFGALR 

VYDDEVR 
DGPVTFEQPK 

LLEYGHMLVQEQDNVK 
RVQLADTYMSQAALGDANKDAMK 

VQLADTYMSQAALGDANKDAMK + Oxid (M) 

92 
38 
51 
54 
73 
33 
92 
86 
46 
48 
71 
82 
92 

159 

855.43 
788.46 
398.64 
583.80 
614.97 
785.06 
819.39 
628.29 
448.66 
559.42 
696.78 
843.72 

2 + 
3 + 
2 + 
2 + 
2 + 
3 + 
2 + 
3 + 
2 + 
2 + 
3 + 
3 + 

64-78 
112-131 
132-138 
148-158 
163-172 
173-195 
309-323 
324-340 
343-349 
369-378 
384-400 
400-422 

GLAYDISDDQQDITR 
KYDFDNTMGGFYIAPAFMDK +2 Oxid (M) 

LVVHLSK 
IPLILGIWGGK 
SFQCELVFAK 

MGINPIMMSAGELESGNAGEPAK +3 Oxid (M) 
GIFQTDNVSDESVVK 

IVDTFPGQSIDFFGALR 
VYDDEVR 

DGPVTFEQPK 
LLEYGHMLVQEQDNVKR + Oxid (M) 

RVQLADTYMSQAALGDANKDAMK +2 Oxid (M) 

85 
38 
42 
44 
44 
69 
81 
80 
37 
47 
64 
79 

182 

855.47 
777.93 
1102.05 
398.62 
539.68 
584.22 
615.03 
1153.07 
366.47 
380.46 
864.61 
940.51 
819.85 
942.29 
448.48 
559.56 
644.97 
843.85 

2 + 
3 + 
2 + 
2 + 
2 + 
2 + 
2 + 
2 + 
3 + 
2 + 
2 + 
1 + 
2 + 
2 + 
2 + 
2+ 
3 + 
3 + 

64-78 
112-131 
113-131 
132-138 
139-147 
148-158 
163-172 
173-195 
201-209 
203-209 
213-227 
294-300 
309-323 
324-340 
343-349 
369-378 
384-399 
400-422 

GLAYDISDDQQDITR 
KYDFDNTMGGFYIAPAFMDK 
YDFDNTMGGFYIAPAFMDK 

LVVHLSK 
NFMTLPNIK 

IPLILGIWGGK 
SFQCELVFAK 

MGINPIMMSAGELESGNAGEPAK 
YREAADMIK 

EAADMIK + Glu->pyro-Glu (N-term E) 
MCCLFINDLDAGAGR + Oxidation (M) 

FYWAPTR 
GIFQTDNVSDESVVK 

IVDTFPGQSIDFFGALR 
VYDDEVR 

DGPVTFEQPK 
LLEYGHMLVQEQDNVK + Oxid (M) 

RVQLADTYMSQAALGDANKDAMK + 2 Oxid (M) 

92 
33 
75 
39 
38 
50 
57 

118 
47 
44 
45 
34 
83 
78 
41 
46 
78 
64 

gi|32481061 
 

RuBisCO activase alpha 
form precursor 
[Deschampsia 

antarctica] 
 

48 

650.37 
854.86 
497.51 
805.46 
697.39 
626.42 
678.39 

3 + 
2 + 
2 + 
2 + 
2 + 
2 + 
2 + 

6-22 
8-22 

135-142 
239-251 
241-251 
252-262 
304-316 

IKVANPIVEMDGDEMTR +2 Oxid (M) 
VANPIVEMDGDEMTR +2 Oxid (M) 

HAFGDQYR 
SKYEAAGIWYEHR 

YEAAGIWYEHR 
LIDDMVAYALK 

TIEAEAAHGTVTR 

39 
60 
34 
67 
58 
58 
73 

gi|75267781 
 

cytosolic NADP+-
isocitrate 

dehydrogenase 
[Populus tremula x 

Populus alba] 
 



131 
596.96 
463.41 
631.49 

2 + 
2 + 
2 + 

94-103 
96-103 

329-338 

QRSEFQSSIK + Gln->pyro-Glu (N-term Q) 
SEFQSSIK 

INYEAYTYPK 

66 
40 
66 

gi|38344143 
 

OSJNBa0041A02.10 
Plant peroxidase  

[Oryza sativa (japonica 
cultivar-group)] 

18 430.89 
573.31 

2 + 
2 + 

64-71 
140-150 

AAQDAWAK 
STYNEITGSSS 

57 
39 

9 431.03 
573.50 

2 + 
2 + 

64-71 
140-150 

AAQDAWAK 
STYNEITGSSS 

56 
50 

gi|115472001 
 

Os07g0469100  
Thylakoid membrane 
phosphoprotein 14 kDa,                
[Oryza sativa (japonica 
cultivar-group)] 

38 457.57 
604.51 

2 + 
2 + 

154-162 
163-173 

AYAVGASFK 
GTDFTNAVIDR 

39 
98 

gi|115482792 

Os10g0502000 
Thylakoid lumenal 17.4 

kDa protein,  
[Oryza sativa (japonica 

cultivar-group)] 

67 840.67 
559.55 

2 + 
2 + 

163-177 
185-194 

VKDEEGYPAMALVNK + Oxid (M) 
HSIGQSHPVR 

32 
52 

gi|115434012 
 

Os01g0104400  
Ricin B-related lectin 
domain containing 

protein 
[Oryza sativa (japonica 

cultivar-group)] 

 

 

2) Kohdasht spring wheat (PART II) 

 

Peptides identified by MS/MS 
Spot 

No. 
m/z charge  

state  
start-end a 

 sequence 

Mascot
Ion 

Score  

NCBI 
Accession 

Number 

Protein ID 
 

22 

670.03 
541.72 
783.58 
671.02 

 2 + 
 2 + 
 2 + 
 2 + 

26-37 
43-52 
89-103 

165-177 

MASETGQSIQDR + Oxid (M) 
DQTGSFLGEK 

AVEGKDQTGGFLSEK 
DAVMNTLGMGGDK + 2 Oxid (M) 

92 
44 
37 
68 

gi|157073742 
group3 late embryogenesis 
abundant protein (Wrab17) 

[Triticum aestivum] 

48 
448.94 
767.39 
566.43 

 2 + 
 2 + 
 2 + 

29-36 
62-75 
76-85 

YGDVIDSK 
QAIEAMNGQDLDGR + Oxid (M) 

NITVNEAQSR 

41 
43 
50 

gi|114145394 
glycine-rich RNA-binding 

protein  
[Triticum aestivum] 

116 

704.80 
511.81 

1281.30 
733.52 

 2 + 
 2 + 
 3 + 
 2 + 

22-32 
33-41 
42-79 

147-159 

LTYYTPEYETK 
DTDILAAFR 

VSPQPGVPPEEAGAAVAAESSTGTWTTVWTDGLTSLDR 
TFQGPPHGNQVER 

46 
64 
40 
86 

27 
704.57 
511.62 
733.86 

 2 + 
 2 + 
 2 + 

22-32 
33-41 

147-159 

LTYYTPEYETK 
DTDILAAFR 

TFQGPPHGNQVER 

40 
64 
79 

114 

780.36   
704.77 
511.86 
329.35 
729.49 
726.57 
482.02 
457.21 
741.56 
655.80 
519.48 
774.12 
826.68 
670.71 

 1 + 
 2 + 
 2 + 
 3 + 
 3 + 
 2 + 
 2 + 
 2 + 
 2 + 
 2 + 
 2 + 
 2 + 
 2 + 
 2 + 

15-21 
22-32 
33-41 

132-139 
195-213 
202-213 
228-236 
296-303 
320-334 
340-350 
351-358 
451-463 
464-477 
467-477 

AGVKDYK 
LTYYTPEYETK 

DTDILAAFR 
ALRLEDLR 

GGLDFTKDDENVNSQPFMR + Oxid (M) 
DDENVNSQPFMR 

SQAETGEIK 
AMHAVIDR 

MSGGDHIHSGTVVGK 
EMTLGFVDLLR + Oxid (M) 

DDFIEKDR 
WSPELAAACEVWK 
AIKFEFEPVDTIDK 

FEFEPVDTIDK 

30 
46 
64 
55 
47 
57 
47 
39 
56 
50 
32 
76 
63 
44 

30 704.44 
511.34 
369.36 
726.49 
624.43 
481.80 
464.74 
494.93 
655.51 

 2 + 
 2 + 
 2 + 
 2 + 
 2 + 
 2 + 
 2 + 
 3 + 
 2 + 

22-32 
33-41 

195-201 
202-213 
218-227 
228-236 
296-303 
320-334 
340-350 

LTYYTPEYETK 
DTDILAAFR 
GGLDFTK 

DDENVNSQPFMR 
FVFCAEAIYK 
SQAETGEIK 

AMHAVIDR + Oxid (M) 
MSGGDHIHSGTVVGK 

EMTLGFVDLLR 

40 
59 
44 
68 
34 
40 
44 
67 
56 

gi|14017580 

ribulose-1,5-bisphosphate 
carboxylase/oxygenase 

large subunit  
[Triticum aestivum] 



519.43 
773.90 
826.47 
670.02 

 2 + 
 2 + 
 2 + 
 2 + 

351-358 
451-463 
464-477 
467-477 

DDFIEKDR 
WSPELAAACEVWK 
AIKFEFEPVDTIDK 

FEFEPVDTIDK 

49 
76 
53 
59 

35 
773.85 
826.57 
670.70 

 2 + 
 2 + 
 2 + 

451-463 
464-477 
467-477 

WSPELAAACEVWK 
AIKFEFEPVDTIDK 

FEFEPVDTIDK 

72 
43 
43 

64 

961.74 
691.05 
369.99 
674.57 
765.65 
808.50 
571.11 
497.90 
491.57 

 2 + 
 2 + 
 2 + 
 2 + 
 3 + 
 3 + 
 2 + 
 2 + 
 2 + 

59-75 
83-93 
94-99 

100-111 
118-137 
118-138 
138-146 
139-146 
147-154 

FETLSYLPPLSTEALLK 
SKWVPCLEFSK 

VGFIFR 
EHNASPGYYDGR + pyro-Glu (N-term E) 
LPMFGCTDATQVINEVEEVK + Oxid (M) 

LPMFGCTDATQVINEVEEVKK + Oxid (M) 
KEYPDAYVR 

EYPDAYVR + pyro-Glu (N-term E) 
IIGFDNMR + Oxid (M) 

33 
38 
33 
50 
37 
54 
40 
42 
42 

19 

684.27 
691.08 
370.01 
674.49 
808.65 
570.99 
497.90 
491.66 

 3 + 
 2 + 
 2 + 
 2 + 
 3 + 
 2 + 
 2 + 
 2 + 

58-75 
83-93 
94-99 

100-111 
118-138 
138-146 
139-146 
147-154 

KFETLSYLPPLSTEALLK 
SKWVPCLEFSK 

VGFIFR 
EHNASPGYYDGR + pyro-Glu (N-term E) 
LPMFGCTDATQVINEVEEVKK + Oxid (M) 

KEYPDAYVR 
EYPDAYVR + pyro-Glu (N-term E) 

IIGFDNMR + Oxid (M) 

51 
45 
33 
53 
70 
39 
39 
39 

72 

608.23 
369.99 
683.42 
571.14 
497.78 
483.84 

 2 + 
 2 + 
 2 + 
 2 + 
 2 + 
 2 + 

48-57 
94-99 

100-111 
138-146 
139-146 
147-154 

MQVWPIEGIK + Oxid (M) 
VGFIFR 

EHNASPGYYDGR 
KEYPDAYVR 

EYPDAYVR + pyro-Glu (N-term E) 
IIGFDNMR 

45 
36 
56 
34 
41 
38 

gi|170771 
ribulose-1,5-bisphosphate 
carboxylase/oxygenase  
[Triticum aestivum] 

55 

889.47 
808.58 
570.92 
484.28 

 1 + 
 3 + 
 2 + 
 2 + 

76-82 
118-138 
138-146 
147-154 

QVDYLIR 
LPMFGCTDATQVLNEVEEVKK + Oxid (M) 

KEYPDAYVR 
VIGFDNMR + Oxid (M) 

32 
60 
42 
55 

23 

684.42 
691.07 
370.05 
674.56 
765.68 
808.73 
571.09 
497.94 
483.66 

 3 + 
 2 + 
 2 + 
 2 + 
 3 + 
 3 + 
 2 + 
 2 + 
 2 + 

57-74 
82-92 
93-98 
99-110 

117-136 
117-137 
137-145 
138-145 
146-153 

KFETLSYLPPLSTEALLK 
SKWVPCLEFSK 

VGFIFR 
EHNASPGYYDGR + pyro-Glu (N-term E) 
LPMFGCTDATQVLNEVEEVK + Oxid (M) 

LPMFGCTDATQVLNEVEEVKK + Oxid (M) 
KEYPDAYVR 

EYPDAYVR + pyro-Glu (N-term E) 
IIGFDNMR + Oxid (M) 

35 
46 
33 
52 
52 
65 
43 
48 
46 

24 507.15   
491.56 

 2 + 
 2 + 

102-109 
110-117 

EYPDAYVR 
IIGFDNMR + Oxid (M) 

30 
42 

40 

641.42 
362.80 
690.85 
765.84 
808.66 
570.97 
497.78 
484.29 

 3 + 
 2 + 
 2 + 
 3 + 
 3 + 
 2 + 
 2 + 
 2 + 

59-75 
94-99 

100-111 
118-137 
118-138 
138-146 
139-146 
147-154 

FETLSYLPPLSTEALLK 
VGFVFR 

EHNSSPGYYDGR 
LPMFGCTDATQVLNEVEEVK + Oxid (M) 

LPMFGCTDATQVLNEVEEVKK + Oxid (M) 
KEYPDAYVR 

EYPDAYVR + pyro-Glu (N-term E) 
VIGFDNMR + Oxid (M) 

49 
37 
70 
44 
67 
38 
40 
45 

171 

684.29 
962.01 
363.01 
690.86 
766.16 
570.94 
497.91 
467.59 

 3 + 
 2 + 
 2 + 
 2 + 
 3 + 
 2 + 
 2 + 
 2 + 

58-75 
59-75 
94-99 

100-111 
118-137 
138-146 
139-146 
147-154 

KFETLSYLPPLSTEALLK 
FETLSYLPPLSTEALLK 

VGFVFR 
EHNSSPGYYDGR 

LPMFGCTDATQVLNEVEEVK + Oxid (M)  
KEYPDAYVR 

EYPDAYVR + pyro-Glu (N-term E) 
VIGFDNLR 

44 
45 
37 
75 
50 
32 
43 
39 

gi|170771 
ribulose-1,5-bisphosphate 
carboxylase/oxygenase  
[Triticum aestivum] 

122 

392.11 
531.58 
645.60 
471.38 
406.99 
786.73 
406.73 
693.23 
898.08 
676.22 
740.15 
887.07 

 2 + 
 2 + 
 2 + 
 2 + 
 2 + 
 2 + 
 2 + 
 2 + 
 2 + 
 2 + 
 2 + 
 2 + 

117-123 
124-132 
137-148 
194-202 
195-202 
252-265 
266-272 
279-293 
313-329 
330-342 
330-343 
389-402 

NASHLLK 
YDSMLGTFK 

IVDDQTISVDGK 
KVIITAPAK 
VIITAPAK 

GTMTTTHSYTGDQR + Oxid (M) 
LLDASHR 

AAALNIVPTSTGAAK 
VPTPNVSVVDLVINTVK 

TGITADDVNAAFR 
TGITADDVNAAFRK 

VVAWYDNEWGYSQR 

36 
45 
66 
46 
38 
68 
48 
75 
85 
70 
59 
80 

gi|115450493 

Os03g0129300 [Oryza 
sativa (japonica cultivar-

group)] glyceraldehyde-3-
phosphate dehydrogenase 



75 

375.65 
666.89 
745.09 
745.65 
382.46 
732.87 

 2 + 
 2 + 
 2 + 
 3 + 
 2 + 
 3 + 

18-24 
25-38 
25-39 

107-129 
205-211 
218-238 

YIATPGK 
GILAADESTGTIGK 

GILAADESTGTIGKR 
GTVDIAGTNGETTTQGLDSLGAR 

VLAAVYK 
VLLEGTLLKPNMVTPGSDSPK 

35 
82 
86 
67 
41 
62 

gi|115468886 

Os06g0608700 [Oryza 
sativa (japonica cultivar-

group)] Fructose-
bisphosphate aldolase 

136 

839.00 
789.09 
889.40 
566.53 
354.39 
497.53 
529.24 
626.68 
578.98 
678.69 
899.73 

 2 + 
 2 + 
 2 + 
 2 + 
 2 + 
 2 + 
 2 + 
 2 + 
 2 + 
 2 + 
 2 + 

8-22 
30-42 
52-68 
58-68 
69-74 

135-142 
143-153 
250-260 
261-270 
302-314 
322-338 

VANPIVEMDGDEMTR + Oxid (M) 
DKLIFPFLDLDIK 

DATDDKVTVEAAEATLK 
VTVEAAEATLK 

YNVAIK 
HAFGDQYR 

ATDAVLKGPGK 
LIDDMVAYALK 
SEGGYVWACK 

TIEAEAAHGTVTR 
GGETSTNSIASIFAWTR 

85 
46 
89 
69 
50 
46 
48 
66 
60 

112 
90 

gi|115438939 

Os01g0654500 NADP-
isocitrate dehydrogenase 
[Oryza sativa (japonica 

cultivar-group)] 

189 

462.89 
570.53 
704.45 
946.45 
750.71 
694.21 
610.64 
487.76 
728.15 

 2 + 
 2 + 
 2 + 
 2 + 
 2 + 
 2 + 
 3 + 
 2 + 
 3 + 

163-170 
214-222 
224-236 
253-269 
296-307 
315-326 
315-330 
374-381 
382-400 

LHILTDGR 
YENDWSVVK 

GWDAQVLGEAPHK 
ANDQYLPPFVIVDESGK 

ALEFPDFDKFDR 
YAGMLQYDGELK 

YAGMLQYDGELKLPSK + Oxid (M) 
SGYFDETR 

EEYVEIPSDSGITFNEQPK 

34 
36 
59 
40 
46 
67 
60 
49 
45 

145 

908.03 
704.53 
702.56 
449.11 
521.97 

 3 + 
 2 + 
 2 + 
 2 + 
 2 + 

65-92 
224-236 
315-326 
341-348 
353-361 

AHGTAVGLPSDDDMGNSEVGHNALGAGR + Oxid (M) 
GWDAQVLGEAPHK 

YAGMLQYDGELK + Oxid (M) 
TSGEYLVK 

TFACSETVK 

100 
73 
62 
44 
39 

gi|115464537 

Os05g0482700 [Oryza 
sativa (japonica cultivar-

group)] 
phosphoglycerate mutase 

95 

533.96 
734.00 
694.69 
810.93 
579.29 
437.46 
655.16 
685.09 
551.04 
451.54 
542.57 

 2 + 
 2 + 
 2 + 
 3 + 
 2 + 
 2 + 
 2 + 
 3 + 
 2 + 
 2 + 
 2 + 

38-47 
58-71 
73-85 

140-162 
163-172 
193-200 
271-282 
338-356 
357-367 
359-367 
368-378 

ASAYADELVK 
GILAMDESNATCGK  
LASIGLENTEANR 

GLVPLVGSNDESWCQGLDGLASR 
EAAYYQQGAR 

EAAWGLAR 
ATPEEVASYTLK 

TWGGRPENVAAAQEALLLR 
AKANSLAQLGK 

ANSLAQLGK 
YTSDGEAAAAK 

49 
91 
83 
52 
55 
38 
65 
67 
37 
41 
64 

gi|8272480 

fructose 1,6- 
bisphosphate aldolase 

precursor 
 [Avena sativa] 

94 

769.07 
733.18 
621.12 
631.91 
578.65 
830.69 
908.62 

1028.16 
762.58 
649.14 
755.67 
606.99 
495.65 
702.16 

 2 + 
 2 + 
 2 + 
 3 + 
 2 + 
 2 + 
 2 + 
 2 + 
 2 + 
 2 + 
 2 + 
 2 + 
 2 + 
 2 + 

52-65 
66-78 

157-167 
169-185 
190-201 
202-217 
202-218 
311-328 
329-340 
331-340 
358-371 
381-390 
539-546 
569-579 

NGHVEIIANDQGNR 
ITPSWVGFTDGER 

MKETAEAYLGK 
INDAVVTVPAYFNDAQR 

DAGVIAGLNVAR 
IINEPTAAAIAYGLDK 

IINEPTAAAIAYGLDKR 
VEIESLFDGTDFSEPLTR 

ARFEELNNDLFR 
FEELNNDLFR 

TQIHEIVLVGGSTR 
DYFDGKEPNK 

LSQEEIDR 
NQLETYVYNMK + Oxid (M) 

63 
77 
52 
52 
79 
87 
88 
59 
52 
72 
88 
40 
58 
70 

gi|476003 HSP70 [Hordeum vulgare 
subsp. vulgare] 

108 364.91 
790.70 
504.60 
731.67 
523.22 
436.02 
862.71 
798.93 
699.07 
907.39 
813.27 
737.14 
701.34 
673.13 
978.67 
770.54 
899.04 

 2 + 
 2 + 
 2 + 
 2 + 
 3 + 
 2 + 
 2 + 
 2 + 
 2 + 
 3 + 
 3 + 
 2 + 
 3 + 
 2 + 
 2 + 
 2 + 
 2 + 

108-114 
116-129 
136-144 
168-180 
197-210 
219-226 
227-242 
357-369 
359-369 
414-441 
477-499 
550-563 
550-568 
551-563 
551-568 
569-581 
569-583 

LVGQIAK 
QAVVNPENTFFSVK 

MAEVDDEAK 
QFAAEEISAQVLR 

AVVTVPAYFNDSQR 
IAGLEVLR 

IINEPTAASLAYGFEK 
AKFEELCSDLIDR 

FEELCSDLIDR 
DPNVTVNPDEVVSLGAAVQGGVLAGDVK 

SEVFSTAADGQTSVEINVLQGER 
KQDITITGASTLPK 

KQDITITGASTLPKDEVER 
K.QDITITGASTLPK 

QDITITGASTLPKDEVER + pyro-Glu (N-term Q) 
MVEEADKFAQEDK 

MVEEADKFAQEDKEK 

40 
72 
47 
89 
55 
58 

101 
107 
53 
36 
42 
82 
78 
76 
54 
75 
46 

gi|115487998 

Os12g0244100  
[Oryza sativa  

(japonica cultivar-group)] 
Heat shock 70 protein 



826.53  2 + 683-698 GPNDGDVIDADFTDSN 90 

103 

365.00 
782.15 
731.66 
784.06 
862.76 
701.26 
672.60 
691.52 

 2 + 
 2 + 
 2 + 
 2 + 
 2 + 
 3 + 
 2 + 
 2 + 

108-114 
116-129 
168-180 
197-210 
227-242 
550-568 
551-563 
591-602 

LVGQIAK 
QAVVNPENTFFSVK + pyro-Glu (N-term Q) 

QFAAEEISAQVLR 
AVVTVPAYFNDSQR 
IINEPTAASLAYGFEK 

KQDITITGASTLPKDEVER 
QDITITGASTLPK 
NQADSVVYQTEK 

41 
58 
93 
52 

102 
52 
51 
77 

99 

731.09 
770.17 
637.28 
783.46 
436.81 
889.28 
705.79 
717.64 
625.04 
970.16 
911.65 

 2 + 
 2 + 
 2 + 
 2 + 
 2 + 
 2 + 
 1 + 
 2 + 
 2 + 
 2 + 
 2 + 

146-159 
160-173 
174-184 
189-202 
211-218 
219-235 
371-377 
378-390 
394-404 
409-428 
468-484 

APNGDAWVETTDGK 
QYSPSQIGAFVLTK 

MKETAESYLGK + Oxid (M) 
AVITVPAYFNDAQR 

IAGLDVQR 
IINEPTAAALSYGTNNK 

DAGITTK 
EVDEVLLVGGMTR + Oxid (M) 

VQEIVSEIFGK 
GVNPDEAVAMGAAIQGGILR 

SQVFSTAADNQTQVGIR 

81 
75 
60 
54 
51 
74 
31 
83 
33 
99 
90 

gi|115448989 

Os02g0774300 [Oryza 
sativa (japonica cultivar-

group)] molecular 
chaperone DnaK 

4 

771.84 
1215.71 
655.82 
457.62 
544.57 
480.72 
959.60 
753.55 
415.31 
643.42 
367.60 
531.03 
891.14 
712.12 
840.90 
731.66 
679.65 
615.67 
468.92 
725.71 

 2 + 
 2 + 
 2 + 
 2 + 
 2 + 
 2 + 
 2 + 
 2 + 
 2 + 
 2 + 
 2 + 
 2 + 
 2 + 
 2 + 
 2 + 
 3 + 
 2 + 
 2 + 
 2 + 
 2 + 

13-26 
35-59 
60-72 
80-87 

125-134 
126-134 
135-150 
151-163 
173-179 
185-195 

231 - 237 
265-275 
281-297 
304-315 
304-317 
304-321 
346-357 
347-357 
424-431 
469-481 

EVELEDPVENIGAK 
TNDLAGDGTTTSVVLAQGLIAEGVK 

VIAAGANPVQITR 
ALVLELKK 

KGVVTLEEGR 
GVVTLEEGR 

SSENNLYVVEGMQFER + Oxid (M) 
GYISPYFVTDSEK 

LLLVDKK 
DLINVLEEAIR 

APGFGER 
ADNTVLGTAAK 

ESTTIVGDGSTQEEVTK 
NLIEAAEQDYEK 

NLIEAAEQDYEKEK 
NLIEAAEQDYEKEKLNER 

KLRVEDALNATK 
LRVEDALNATK 

VLSNDNFK 
TFLTSDVVVVEIK 

73 
98 
74 
46 
69 
54 
77 
70 
40 
86 
30 
70 
82 
70 
71 
69 
43 
57 
50 
52 

gi|2493650 

RuBisCO large subunit-
binding protein subunit 

beta, chloroplastic [Secale 
cereale] (CPN60, GroEl 

like) 

56 

771.72 
655.77 
544.40 
480.38 
959.44 
753.71 
642.97 
925.50 
495.45 
531.10 
882.02 
969.01 
840.83 
850.96 
809.69 
372.28 
468.91 
816.02 
939.98 

 2 + 
 2 + 
 2 + 
 2 + 
 2 + 
 2 + 
 2 + 
 2 + 
 2 + 
 2 + 
 2 + 
 2 + 
 2 + 
 2 + 
 2 + 
 2 + 
 2 + 
 3 + 
 2 + 

13-26 
60-72 

125-134 
126-134 
135-150 
151-163 
185-195 
239-255 
256-264 
265-275 
281-297 
281-298 
304-317 
358-374 
379-392 
393-399 
424-431 
432-454 
482-499 

EVELEDPVENIGAK 
VIAAGANPVQITR 

KGVVTLEEGR 
GVVTLEEGR 

SSENNLYVVEGMQFER + Oxid (M) 
GYISPYFVTDSEK 

DLINVLEEAIR 
TQYLDDIAILTGGTVIR 

DEVGLTLDK 
ADNTVLGTAAK 

ESTTIVGDGSTQEEVTK + pyro-Glu (N-term E) 
ESTTIVGDGSTQEEVTKR 

NLIEAAEQDYEKEK 
AAVEEGIVVGGGCTLLR 

VDAIKDTLENDEQK 
VGAEIVR 

VLSNDNFK 
FGYNAATGQYEDLMAAGIIDPTK 

EPEAAPLANPMDNSGFGY 

74 
82 
84 
47 

108 
71 
68 
88 
45 
74 
91 
70 
64 
52 
71 
58 
45 
63 
58 

gi|2493650 

RuBisCO large subunit-
binding protein subunit 

beta, chloroplastic [Secale 
cereale] (CPN60, GroEl 

like) 

57 

444.04 
584.44 
624.53 
522.33 
877.72 
855.73 
778.82 
562.21 
644.03 
749.43 

 2 + 
 2 + 
 2 + 
 2 + 
 2 + 
 2 + 
 2 + 
 3 + 
 2 + 
 3 + 

15-23 
24-35 
38-48 
49-58 
59-75 
81-97 

102-117 
102-118 
123-133 
146-168 

AALQAGVEK 
LANAVGVTLGPR 
NVVLDEYGNPK 
VVNDGVTIAR 

AIELANPMENAGAALIR 
TNDSAGDGTTTACVLAR 

LGILSVTSGANPVSLK 
LGILSVTSGANPVSLKK 

TVQGLIEELER 
AVASISAGNDELIGAMIADAIDK 

63 
72 
66 
71 
82 

123 
72 
60 
56 
82 

gi|134102 

RuBisCO large subunit-
binding protein 
 subunit alpha, 
chloroplastic  

(60 kDa chaperonin 
subunit alpha) [Triticum 

aestivum] 



748.78 
533.15 
777.92 
450.12 
382.43 
952.05 
888.49 
943.01 
876.15 
548.69 
758.57 
422.52 
660.48 
572.49 
429.46 
765.41 
845.89 
774.67 
550.51 

 2 + 
 2 + 
 2 + 
 2 + 
 2 + 
 2 + 
 2 + 
 2 + 
 3 + 
 3 + 
 2 + 
 2 + 
 2 + 
 2 + 
 2 + 
 3 + 
 2 + 
 2 + 
 2 + 

198-210 
211-219 
232-244 
269-277 
278-284 
286-303 
287-303 
304-321 
322-345 
351-364 
352-364 
372-380 
381-392 
431-439 
440-447 
448-470 
473-486 
487-500 
533-543 

GYISPQFVTNLEK 
SIVEFENAR 

EIIPLLEQTTQLR 
GIINVAAIK 
APSFGER 

KAVLQDIAIVTGAEYLAK 
AVLQDIAIVTGAEYLAK 

DLGLLVENATVDQLGTAR 
KITIHQTTTTLIADAASKDEIQAR 

KELSETDSIYDSEK 
ELSETDSIYDSEK 

LSGGVAVIK 
VGATTETELEDR 

ETIEDHDER 
LGADIIQK 

ALQAPASLIANNAGVEGEVVIEK 
ESEWEMGYNAMTDK 

YENLIESGVIDPAK 
VAEPAEGQLSV 

75 
44 
72 
60 
37 

100 
68 

109 
79 
42 
67 
53 
81 
47 
60 

104 
37 
76 
59 

54 
575.59 
765.84 
781.12 

 2 + 
 3 + 
 2 + 

52-61 
118-137 
138-151 

YTSIKPLGDR 
LPMFGCTDATQVLNEVEEVK + Oxid (M) 

EDDIIGILDTDDVK 

50 
44 
79 

gi|115479353 

Os09g0438700 [Oryza 
sativa (japonica cultivar-

group)] Chaperonin 10 Kd 
subunit 

81 

537.05 
779.20 
715.10 
723.30 
578.56 
981.99 

 2 + 
 2 + 
 2 + 
 3 + 
 2 + 
 2 + 

40-50 
51-64 
52-64 
65-84 

103-112 
197-214 

AANGVVIATEK 
KLPSILVDETSVQK 
LPSILVDETSVQK 

IQSLTPNIGVVYSGMGPDFR + Oxid (M) 
ETIPVTQLVR 

EGYEGQISANNIEIGVIR 

54 
66 
81 
67 
44 
64 

gi|115447473 

Os02g0634900 [Oryza 
sativa (japonica 
cultivar-group)] 
proteasome alpha 

type 2 

53 

908.78 
881.59 
770.46 
623.04 
771.54 
490.38 
554.40 
791.41 
773.45 
721.40 
469.33 

 2 + 
 2 + 
 2 + 
 2 + 
 3 + 
 2 + 
 2 + 
 2 + 
 3 + 
 3 + 
 2 + 

59-73 
74-89 
94-107 

163-173 
174-192 
314-322 
314-323 
332-345 
346-366 
347-366 
380-387 

MQQLLDMDTTPFTDK + 2 Oxid (M) 
IIAEYIWVGGSGIDLR 
TISKPVEDPSELPK 

HMAAQIFSDPK 
VTAQVPWFGIEQEYTLMQR + Oxid (M) 

EDGGFDVIK 
EDGGFDVIKK 

HDLHIAAYGEGNER 
RLTGLHETASISDFSWGVANR 
LTGLHETASISDFSWGVANR 

GKGYLEDR 

90 
65 
56 
51 
46 
64 
35 
94 

104 
54 
44 

gi|71362640 

plastid 
glutamine synthetase 

 isoform GS2c 
 [Triticum aestivum] 

184 

689.48 
531.45 
591.51 
657.03 
587.52 
557.52 

 2 + 
 2 + 
 2 + 
 2 + 
 2 + 
 3 + 

69-80 
211-218 
296-306 
323-334 
366-375 
441-455 

LQAGYLFPEIAR 
YGNIEYMR + Oxid (M) 

EVAIETASFSK 
ELLFSDGHPVAK 

AMQDVVGFYK + Oxid (M) 
VSAFGHRENIIEAAR 

53 
60 
51 
52 
54 
56 

gi|195634861 
unknown [Zea mays] 

Aspartate 
aminotransferase family 

32 
530.31 
466.26 
509.77 

 2 + 
 2 + 
 2 + 

71-79 
72-79 

193-202 

KLYVGNIPR 
LYVGNIPR 

GEVLSATVSR 

29 
43 
53 

gi|115478330 

Os09g0279500 [Oryza 
sativa (japonica cultivar-
group)] Plastid-specific 
30S ribosomal protein 2 

67 
586.94 
536.49 
526.28 

 2 + 
 2 + 
 2 + 

38-48 
68-78 

136-145 

QVFAGPIVTLK 
VLVVDGGGSLR 

HVPVTIAGTR 

35 
79 
45 

gi|18461241 

S-adenosylmethionine:2-
demethylmenaquinone 
methyltransferase-like 
[Oryza sativa Japonica 

Group] 

78 

751.86 
803.91 
660.35 
369.19 
444.25 
478.28 

 2 + 
 2 + 
 3 + 
 2 + 
 2 + 
 2 + 

50-62 
77-91 

172-189 
283-289 
294-302 
330-337 

TNMVMVFGEITTK + 2 Oxid (M) 
NIGFISDDVGLDADR 

TQVTVEYLNEGGAMVPVR + Oxid (M) 
SGAYIAR 

SIIASGLAR 
IPDKEILK 

88 
98 
74 
52 
47 
44 

111 

735.13 
413.71 
804.35 

1019.15 
883.93 
888.63 
727.61 
655.22 
802.43 
369.59 
444.51 
490.65 
832.08 
685.17 

 2 + 
 2 + 
 2 + 
 2 + 
 3 + 
 2 + 
 2 + 
 3 + 
 3 + 
 2 + 
 2 + 
 2 + 
 2 + 
 3 + 

50-62 
63-69 
77-91 

172-189 
190-213 
225-239 
240-254 
256-275 
256-279 
283-289 
294-302 
366-374 
375-388 
375-391 

TNMVMVLGEITTK + 2 Oxid (M) 
ATVDYEK 

NIGFISDDVGLDADR 
TQVTVEYLNEDGAMVPVR + Oxid (M) 

VHTVLISTQHDETVTNDEIAADLK 
YLDENTIFHLNPSGR 
FVIGGPHGDAGLTGR 

IIIDTYGGWGAHGGGAFSGK 
IIIDTYGGWGAHGGGAFSGKDPTK 

SGAYIAR 
SIIASGLAR 

TAAYGHFGR 
DDADFTWEVVKPLK 

DDADFTWEVVKPLKFDK 

109 
36 

107 
113 
88 
73 
79 
46 
82 
49 
52 
44 
55 
63 

gi|115589744 
S-adenosylmethionine 
synthetase 1 [Triticum 

monococcum] 



85 

505.05 
636.54 
667.08 
757.07 
812.24 
644.08 

 2 + 
 2 + 
 2 + 
 2 + 
 2 + 
 2 + 

48-56 
57-68 
72-84 

155-168 
197-214 
310-323 

SEEIFNAAK 
ELMPGGVNSPVR + Oxid (M) 

SVGGQPIVFDSVK 
FVNSGTEACMGALR 

AGSGVATLGLPDSPGVPK 
IIGGGLPVGAYGGR 

45 
52 
59 
89 
61 
49 

gi|1170029 

Glutamate-1-semialdehyde 
2,1-aminomutase, 
chloroplast precursor 
[Hordeum vulgare] 

21 823.56 
831.73 

 2 + 
 2 + 

157-171 
211-224 

GFGFVTMSTIEEAEK 
IYVGNLPWQVDDSR 

60 
76 

2 
813.64 
831.57 
580.06 

 2 + 
 2 + 
 2 + 

117-130 
211-224 
225-234 

VYVGNLPYDVDSER 
IYVGNLPWQVDDSR 

LVELFSEHGK 

75 
31 
35 

gi|2443390 Ps16 protein  
[Triticum aestivum] 

28 824.75 
804.37 

 2 + 
 3 + 

147-161 
194-214 

GFGFVTMSTIEEADK + Oxid (M) 
QFASSFRAYVGNLPWQAEDSR + pyro-Glu (N-term Q) 

69 
45 

154 

812.97 
824.48 
803.69 
531.19 
768.91 
570.45 

 2 + 
 2 + 
 2 + 
 2 + 
 3 + 
 2 + 

107-120 
147-161 
201-214 
241-250 
251-271 
272-281 

VYVGNLPYDVDSER 
GFGFVTMSTIEEADK + Oxid (M) 

AYVGNLPWQAEDSR 
GFGFVTMASK + Oxid (M) 

EDLDSAISALDGQEMDGRPLR + Oxid (M) 
VNVAAERPQR 

61 
89 
71 
48 
79 
41 

gi|3550483 
Cp31BHv [Hordeum 
vulgare subsp. vulgare] 
nucleic acid-binding protein 

110 
610.57 
695.67 
617.52 

 2 + 
 2 + 
 2 + 

176-186 
239-251 
240-251 

LFGVTTLDVVR 
RTQDGGTEVVEAK 
TQDGGTEVVEAK 

79 
42 
70 

gi|126896 
Malate dehydrogenase, 
mitochondrial precursor 

[Triticum aestivum] 

150 
626.45   
605.62 
721.69  

 2 + 
 2 + 
 2 + 

111-121   
116-125 
122-133 

GMTAKNFDPVR + Oxid (M)  
NFDPVRYSGR   

YSGRWFEVASLK  

42 
37 
48 

gi|77744909 

chloroplast lipocalin 
[Hordeum vulgare] 

cytosolic fatty-acid binding 
protein 

156 

638.32 
716.36 
500.29 
710.84 
567.97 
787.41 
801.40 

 2 + 
 2 + 
 2 + 
 2 + 
 3 + 
 2 + 
 2 + 

77-89 
77-90 

146-154 
250-262 
420-437 
421-437 
462-476 

SVGDLTAADLEGK 
SVGDLTAADLEGKR 

FSLAPLVPR 
ELDYLDGAVSNPK 

KGVTTIIGGGDSVAAVEK 
GVTTIIGGGDSVAAVEK 

ELPGVVALDEGVMTR + Oxid (M) 

63 
41 
43 
68 
87 
52 
38 

gi|129915 
    Phosphoglycerate 
kinase chloroplastic 
[Triticum aestivum] 

93 708.21 
662.02 

 2 + 
 2 + 

103-114 
129-140 

LGNDILVEDWLK 
GDPTYLVVESDK 

35 
65 

gi|68566191 

Cytochrome b6-f complex 
iron-sulfur subunit, 

chloroplast precursor 
[Triticum aestivum] 

80 

808.19 
732.73 
654.82 
988.21 
412.41 
585.22 
842.62 
644.18 
641.83 
577.72 

 2 + 
 2 + 
 2 + 
 2 + 
  2 + 
  3 + 
  2 + 
  2 + 
 2 + 
 2 + 

133-148 
156-168 
157-168 
199-217 
268-274 
268-283 
290-302 
319-330 
344-353 
345-353 

LYSIASSALGDFGDAK 
RLVYTNDAGEVVK 
LVYTNDAGEVVK 

DPNATIIMLATGTGIAPFR + Oxid (M) 
VDYAISR 

VDYAISREETNAAGEK 
MAEYKDELWELLK + Oxid (M) 

GIDEIMIPLASK 
KSEQWNVEVY 
SEQWNVEVY 

103 
53 
77 
67 
48 
43 
56 
76 
35 
52 

gi|20302471 
ferredoxin-NADP(H) 

oxidoreductase [Triticum 
aestivum] 

38 
730.92 
805.78 
451.07 

 2 + 
 1 + 
 2 + 

114-127 
121-127 
142-150 

AELGGVKDASEEVR 
DASEEVR 

AEIAAALNK 

85 
42 
46 

gi|115452259 

Os03g0278900 [Oryza 
sativa (japonica cultivar-

group)] ATP synthase B/B' 
CF(0) 

120 

893.65 
815.58 
905.20 
768.74 
820.99 
620.16 

1057.15 
596.72 
523.43 
401.40 
488.49 
736.73 
664.57 
623.07 
801.80 
736.63 
747.50 
717.69 

1031.48 
709.25 

1086.10 
523.94 
695.57 

2 + 
 2 + 
2 + 
2 + 
 3 + 
2 + 
2 + 
2 + 
2 + 
3 + 
 2 + 
 2 + 
 2 + 
2 + 
2 + 
 2 + 
2 + 
2 + 
2 + 
2 + 
 2 + 
 2 + 
 2 + 

2-18 
3-18 

23-39 
40-52 
53-73 
76-87 
88-109 

135-145 
155-163 
155-164 
168-178 
179-191 
192-205 
208-217 
232-246 
249-261 
266-277 
278-291 
360-378 
379-390 
400-418 
487-495 
487-498 

RTNPTTSPPGASTIEEK 
TNPTTSPPGASTIEEK 
IDQIIGPVLDVTFPPGK 

LPYIYNALVVQSR 
DTDDKQINVTCEVQQLLGNNR 
AVAMSATDGLMR + Oxid (M) 

GMEVIDTGAPLSVPVGGATLGR + Oxid (M) 
SAPAFIELDTK 
VVDLLAPYR 

VVDLLAPYRR 
IGLFGGAGVGK 
TVLIMELINNIAK 

AHGGVSVFGGVGER 
EGNDLYMEMK 

VALVYGQMNEPPGAR 
VGLTALTMAEYFR 

QDVLLFIDNIFR 
FVQAGSEVSALLGR 

GIYPAVDPLDSTSTMLQPR 
IVGNEHYETAQR 

ELQDIIAILGLDELSEEDR 
AITLEEENK 

AITLEEENKSQK 

77 
61 
71 
54 
43 
83 
69 
63 
47 
41 
39 
68 
54 
36 
79 
72 
69 
92 
70 
71 
75 
38 
57 

gi|14017579 ATP synthase CF1 beta 
subunit [Triticum aestivum] 



112 

809.76 
744.68 
717.87 

1149.57 
1031.56 
709.17 
437.74 
524.26 
695.66 

2 + 
2 + 
2 + 
 2 + 
 2 + 
2 + 
2 + 
 2 + 
2 + 

232-246 
249-261 
278-291 
292-312 
360-378 
379-390 
391-397 
487-495 
487-498 

VALVYGQMNEPPGAR + Oxid (M) 
VGLTALTMAEYFR + Oxid (M) 

FVQAGSEVSALLGR 
MPSAVGYQPTLSTEMGSLQER + Oxid (M) 

GIYPAVDPLDSTSTMLQPR 
IVGNEHYETAQR 

VKETLQR 
AITLEEENK 

AITLEEENKSQK 

76 
74 
96 
59 
85 
71 
39 
35 
57 

115 
1039.16 
709.27 
695.76 

2 + 
2 + 
 2 + 

360-378 
379-390 
487-498 

GIYPAVDPLDSTSTMLQPR + Oxid (M) 
IVGNEHYETAQR 
AITLEEENKSQK 

55 
71 
60 

130 

668.62 
595.15 
531.08 
610.01 
936.91 
580.07 
581.07 
674.55 
755.30 
620.55 

2 + 
2 + 
 2 + 
 2 + 
3 + 
 2 + 
2 + 
 1 + 
2 + 
 2 + 

1-11 
2-11 
3-11 

12-20 
70-95 
96-106 

107-117 
112-117 
125-137 
127-137 

MKLNLYVLTPK + Oxid (M) 
KLNLYVLTPK 
LNLYVLTPK 
RIIWDCEVK 

IVNNEIIILGNDAELGSDIDPEEAQK 
ALEIAEANLSK 
AEGTKDLVEAK 

DLVEAK 
IRIEAVNWIPPSN 
IEAVNWIPPSN 

65 
60 
61 
40 
36 
79 
52 
44 
46 
61 

gi|14017578 ATP synthase CF1 epsilon 
subunit [Triticum aestivum] 

25 

782.44 
718.17 
337.11 
473.51 

1121.64 
918.29 
613.99 

1042.63 
627.63 
664.24 
599.74 

2 + 
2 + 
2 + 
2 + 
2 + 
 3 + 
2 + 
2 + 
2 + 
 2 + 
 2 + 

87-100 
88-100 

101-106 
114-121 
122-141 
170-197 
198-207 
208-228 
217-228 
246-258 
247-258 

KNTDFVAYSGEGFK 
NTDFVAYSGEGFK 

LMIPAK 
EFPGQVLR 

YEDNFDATSNLSVIINPTTK 
TDSEGGFESDAVATANVLESSAPVVDGK 

QYYSITVLTR + pyro-Glu (N-term Q) 
TADGDEGGKHQLITATVADGK 

HQLITATVADGK 
KFVENAAGSFSVA 
FVENAAGSFSVA 

75 
94 
32 
39 

110 
55 
55 
56 
53 
82 
61 

gi|131394 

Oxygen-evolving enhancer 
protein 2, chloroplast 

precursor (OEE2) [Triticum 
aestivum] 

26 

782.37 
1121.70 
918.36 
614.21 

1042.73 

2 + 
 2 + 
 3 + 
 2 + 
 2 + 

87-100 
122-141 
170-197 
198-207 
208-228 

KNTDFVAYSGEGFK 
YEDNFDATSNLSVIINPTTK 

TDSEGGFESDAVATANVLESSAPVVDGK 
QYYSITVLTR + pyro-Glu (N-term Q) 

TADGDEGGKHQLITATVADGK 

75 
92 
34 
55 
83 

33 

781.96 
717.91 
337.19 
606.91 

2 + 
 2 + 
2 + 
 2 + 

87-100 
88-100 

101-106 
112-121 

KNTDFVAYSGEGFK 
NTDFVAYSGEGFK 

LMIPAK 
EREFPGQVLR + pyro-Glu (N-term E) 

68 
91 
32 
55 

gi|131394 
 

Oxygen-evolving enhancer 
protein 2, chloroplast 

precursor (OEE2) [Triticum 
aestivum] 

173 

412.95 
386.21 
779.01 
880.97 
475.93 
760.91 

3 + 
 2 + 
 2 + 
 2 + 
2 + 
 3 + 

85-94 
95-100 

141-154 
186-202 
203-210 
211-231 

RLTFDEIQSK 
TYMEVK 

AEGIQKNEPPAFQK 
DGIDYAAVTVQLPGGER 

VPFLFTVK 
QLVATGKPESFSGPFLVPSYR 

48 
32 
56 
74 
38 
43 

31 

393.92 
779.30 
756.84 
881.01 
760.80 

2 + 
2 + 
3 + 
2 + 
3 + 

95-100 
141-154 
161-181 
186-202 
211-231 

TYMEVK 
AEGIQKNEPPAFQK 

LTYTLDEMEGPLEVGADGTLK + Oxid (M) 
DGIDYAAVTVQLPGGER 

QLVATGKPESFSGPFLVPSYR 

36 
54 
79 
86 
42 

63 

412.97 
541.20 
779.24 
765.69 
881.42 

1132.22 
425.90 

3 + 
2 + 
 2 + 
 3 + 
2 + 
 2 + 
 2 + 

85-94 
86-94 

141-154 
182-202 
186-202 
211-231 
232-239 

RLTFDEIQSK 
LTFDEIQSK 

AEGIQKNEPPAFQK 
FEEKDGIDYAAVTVQLPGGER 

DGIDYAAVTVQLPGGER 
QLVATGKPESFSGPFLVPSYR + pyro-Glu (N-term Q) 

GSSFLDPK 

44 
52 
50 
56 
72 
42 
34 

gi|147945622 

chloroplast oxygen-
evolving  

enhancer protein 1 
(OEE1) 

 [Leymus chinensis] 

168 

808.21 
587.87 
831.06 
713.92 

1008.03 
815.77 

2 + 
2 + 
3 + 
2 + 
2 + 
 3 + 

109-122 
271-279 
280-304 
338-350 
351-367 
401-423 

EVQKPLEDITDSLK 
FYDGMEIQR + Oxid (M) 

ADGFVVQTGDPEGPAEGFIDPSTGK 
LPFNAFGTMAMAR 

EEFDDNSASSQVFWLLK 
VGDVIESIQVVSGLDNLVNPSYK 

53 
56 
74 
65 
80 
77 

gi|195650293 
unknown [Zea mays], 

peptidyl-prolyl cis-trans 
isomerase (cyclophilin) 

142 
882.84 
777.04 
820.92 

2 + 
 2 + 
 2 + 

235-250 
255-270 
310-323 

VVTIDGYEDVPVNSEK 
AVANQPISVAIEAGGR 
NSWGTVWGEDGYIR 

48 
93 
64 

gi|111073715 
triticain alpha [Triticum 

aestivum], 
 cysteine proteinase 

128 

855.62 
788.60 

1102.07 
398.44 
539.61 
584.05 
615.21 

2 + 
3 + 
 2 + 
2 + 
 2 + 
2 + 
2 + 

63-77 
111-130 
112-130 
131-137 
138-146 
147-157 
162-171 

GLAYDISDDQQDITR 
KYDFDNTMGGFYIAPAFMDK + 2 Oxid (M) 

YDFDNTMGGFYIAPAFMDK 
LVVHLSK 

NFMTLPNIK 
IPLILGIWGGK 
SFQCELVFAK 

92 
41 
66 
35 
43 
51 
48 

gi|109940135 

Ribulose bisphosphate 
carboxylase/oxygenase 
activase, chloroplastic 
[Oryza sativa Japonica 

Group] 



1153.07 
548.98 

1038.21 
940.56 
819.83 
942.45 
895.58 
512.43 
559.62 
639.53 
691.65 
843.85 

1171.11 
380.44 

2 + 
2 + 
2 + 
1 + 
2 + 
2 + 
 1 + 
2 + 
2 + 
3 + 
3 + 
3 + 
 2 + 
 2 + 

172-194 
200-208 
268-286 
293-299 
308-322 
323-339 
342-348 
342-349 
368-377 
383-398 
383-399 
399-421 
400-421 
422-428 

MGINPIMMSAGELESGNAGEPAK 
YREAADMIK 

VPIVVTGNDFSTLYAPLIR 
FYWAPTR 

GIFQTDNVSDESVVK 
IVDTFPGQSIDFFGALR 

VYDDEVR 
VYDDEVRK 

DGPVTFEQPK 
LLEYGHMLVQEQDNVK 

LLEYGHMLVQEQDNVKR 
RVQLADTYMSQAALGDANQDAMK + 2 Oxid (M) 

VQLADTYMSQAALGDANQDAMK 
TGSFYGK 

119 
43 
76 
34 
82 
75 
46 
40 
49 
79 
67 
69 
83 
46 

121 

855.80 
788.60 

1118.08 
398.62 
539.51 
583.88 
615.15 
768.95 
549.07 
864.58 
470.90    
819.85 
628.55 
895.61 
512.82 
559.56 
958.54 
843.80 

2 + 
3 + 
2 + 
 2 + 
 2 + 
2 + 
2 + 
3 + 
2 + 
 2 + 
1 + 
2 + 
3 + 
 1 + 
2 + 
 2 + 
2 + 
3 + 

64-78 
112-131 
113-131 
132-138 
139-147 
148-158 
163-172 
173-195 
201-209 
213-227 
294-300 
309-323 
324-340 
343-349 
343-350 
369-378 
384-399 
400-422 

GLAYDISDDQQDITR 
KYDFDNTMGGFYIAPAFMDK + 2 Oxid (M) 
YDFDNTMGGFYIAPAFMDK + 2 Oxid (M) 

LVVHLSK 
NFMTLPNIK 

IPLILGIWGGK 
SFQCELVFAK 

MGINPIMMSAGELESGNAGEPAK 
YREAADMIK 

MCCLFINDLDAGAGR + Oxid (M) 
FYWAPTR 

GIFQTDNVSDESVVK 
IVDTFPGQSIDFFGALR 

VYDDEVR 
VYDDEVRK 

DGPVTFEQPK 
LLEYGHMLVQEQDNVK 

RVQLADTYMSQAALGDANKDAMK + 2 Oxid (M) 

86 
37 
69 
35 
45 
55 
42 
79 
50 
93 
29 
79 
78 
46 
37 
46 
65 
59 

gi|32481061 

Rubisco activase 
 alpha form precursor 

[Deschampsia 
 antarctica] 

147 

855.39 
547.28 
583.86 
614.80 
470.73 
819.40 
559.27 
644.65 
791.68 

2 + 
2 + 
 2 + 
2 + 
 2 + 
 2 + 
 2 + 
3 + 
3 + 

63-77 
138-146 
147-157 
162-171 
293-299 
308-322 
368-377 
383-398 
400-421 

GLAYDISDDQQDITR 
NFMTLPNIK + Oxid (M) 

IPLILGIWGGK 
SFQCELVFAK 

FYWAPTR 
GIFQTDNVSDESVVK 

DGPVTFEQPK 
LLEYGHMLVQEQDNVK + Oxid (M) 

VQLADTYMSQAALGDANQDAMK + 2 Oxid (M) 

104 
28 
63 
25 
26 
74 
38 
69 
65 

165 

398.49 
584.20 
859.93 
819.36 
942.03 
895.37 
559.37 
644.77 
843.85 
792.10 

2 + 
2 + 
 3 + 
2 + 
2 + 
1 + 
2 + 
 3 + 
 3 + 
 3 + 

132-138 
148-158 
301-323 
309-323 
324-340 
343-349 
369-378 
384-399 
400-422 
401-422 

LVVHLSK 
IPLILGIWGGK 

EDRIGVCKGIFQTDNVSDESVVK + pyro-Glu (N-term E) 
GIFQTDNVSDESVVK 

IVDTFPGQSIDFFGALR 
VYDDEVR 

DGPVTFEQPK 
LLEYGHMLVQEQDNVK + Oxid (M) 

RVQLADTYMSQAALGDANKDAMK + 2 Oxid (M) 
VQLADTYMSQAALGDANKDAMK 

36 
51 
40 
85 
82 
46 
48 
66 

104 
82 

175 

855.40 
547.29 
583.86 
614.80 
784.68 
470.73 
819.41 
559.28 
644.65 
843.72 
791.69 

2 + 
  2 + 
 2 + 
 2 + 
 3 + 
 2 + 
2 + 
 2 + 
3 + 
3 + 
3 + 

63-77 
138-146 
147-157 
162-171 
172-194 
293-299 
308-322 
368-377 
383-398 
399-421 
400-421 

GLAYDISDDQQDITR 
NFMTLPNIK + Oxid (M) 

IPLILGIWGGK 
SFQCELVFAK 

MGINPIMMSAGELESGNAGEPAK + 3 Oxid (M) 
FYWAPTR 

GIFQTDNVSDESVVK 
DGPVTFEQPK 

LLEYGHMLVQEQDNVK + Oxid (M) 
RVQLADTYMSQAALGDANQDAMK + 2 Oxid (M) 
VQLADTYMSQAALGDANQDAMK + 2 Oxid (M) 

108 
38 
50 
34 
57 
30 
74 
35 
81 
44 
77 

gi|32481061 

Rubisco activase 
 alpha form precursor 

[Deschampsia 
 antarctica] 

162 
869.46 
805.73 
475.48 

2 + 
2 + 
2 + 

87-103 
88-103 

104-112 

KIIGATNPLASEPGTIR 
IIGATNPLASEPGTIR 

GDFAVDIGR 

99 
87 
53 

gi|9652119 
Nucleoside 

 diphosphate kinase 
 [Lolium perenne] 

52 

591.40 
575.93 
630.88 
654.87 
622.76 
769.07 

1023.38 
483.61 
634.19 
478.31 
704.39 

2 + 
 2 + 
 2 + 
2 + 
 3 + 
 2 + 
1 + 
2 + 
 3 + 
 2 + 
 2 + 

111-120 
137-146 
137-147 
158-169 
196-211 
223-235 
236-244 
245-253 
254-269 
270-277 
294-306 

YEVQGFPTLK 
EAEGIVEYLK 

EAEGIVEYLKK + pyro-Glu (N-term E) 
APEDATYLEDGK 

SDYDFGHTVHANHLPR 
LFKPFDELVVDSK 

DFDVSALEK 
FIDASSTPK 

VVTFDKNPDNHPYLLK 
YFQSNAPK 

SAYYGAVEEFSGK 

39 
46 
38 
83 
79 
56 
46 
54 
50 
45 
72 

gi|1709620 Protein disulfide-isomerase 
[Triticum aestivum] 



827.35 
891.38 
735.97 
776.55 
727.94 
808.91 

1148.51 
1001.42 
583.92 
647.93 
730.48 
601.35 
549.20 
727.45 

2 + 
 2 + 
2 + 
 2 + 
2 + 
 3 + 
 2 + 
3 + 
 2 + 
 2 + 
2 + 
2 + 
2 + 
 2 + 

329-343 
329-344 
348-360 
372-385 
386-398 
417-439 
418-439 
440-467 
476-485 
476-486 
487-501 
489-501 
502-512 
502-515 

EDQAPLILIQDSDSK + pyro-Glu (N-term E) 
EDQAPLILIQDSDSKK + pyro-Glu (N-term E) 

EQVEAGQIVAWLK 
KSEPIPEANNEPVK 
VVVADNIHDVVFK 

KLAPILDEAAATLQSEEDVVIAK 
LAPILDEAAATLQSEEDVVIAK 

IDATANDVPGEFDVQGYPTLYFVTPSGK 
TADEIVDYIK 

TADEIVDYIKK 
NKETAGQAAAAATEK 

ETAGQAAAAATEK + pyro-Glu (N-term E) 
AAEPAATEPLK 

AAEPAATEPLKDEL 

82 
48 
65 
48 
58 
51 
77 
41 
64 
52 
90 
80 
46 
58 

183 

751.88 
448.41 
612.53 
616.99 
655.38 
557.39 

2 + 
2 + 
3 + 
2 + 
 2 + 
2 + 

40-53 
54-62 
63-80 

121-131 
132-143 
201-210 

LAWHSAGTFDVATK 
TGGPFGTMK 

CPAELAHGANAGLDIAVR 
QDKPEPPPEGR + pyro-Glu (N-term Q) 

LPDATQGSDHLR 
EGLLQLPTDK 

30 
56 
72 
50 
69 
50 

gi|15808779 ascorbate peroxidase 
[Hordeum vulgare] 

51 

609.94 
472.76 
788.44 
873.96 
933.96 
601.80 
803.94 
703.27 
674.33 
549.78 

3 + 
 2 + 
 2 + 
2 + 
 2 + 
 2 + 
 2 + 
3 + 
3 + 
2 + 

8-24 
25-32 
40-52 
69-83 
84-101 

102-111 
122-135 
136-156 
172-189 
200-209 

AAVGHPDTLGDCPFSQR 
VLLTLEEK 

LIDVSNKPDWFLK 
WIADSDVITQVIEEK 

YPTPSLVTPAEYASVGSK 
IFSTFVTFLK 

ALVDELQALEEHLK 
AHGPYINGANISAVDLSLAPK 

VPETLTSVHAYTEALFSR 
ENLIAGWAPK 

64 
42 
41 
94 
79 
62 
54 
39 
62 
62 

gi|28192421 
dehydroascorbate 
reductase [Triticum 

aestivum] 

187 498.84 
611.65 

2 + 
2 + 

21-27 
215-226 

NPYWFNR 
VTTTIGFGSPNK 

39 
65 

178 

634.62 
504.22 
680.34 

1022.09 
586.31 

3 + 
 2 + 
 2 + 
2 + 
2 + 

284-299 
291-299 
328-339 
340-360 
569-579 

FAEYEKKYPEDAATLK 
YPEDAATLK 

NLSQQCLNALAK 
VVPGLLGGSADLASSNMTLLK 

ESVLPEAVTAR 

45 
49 
66 
78 
53 

gi|55296168 
putative transketolase 1 
[Oryza sativa Japonica 

Group] 

1 

539.56 
603.53 
901.98 
758.87 
640.99 
925.55 
711.15 

2 + 
 2 + 
 2 + 
2 + 
 3 + 
 3 + 
 2 + 

23-32 
23-33 
34-49 
50-63 
64-79 
80-109 

129-141 

QYTLEGQGAK + pyro-Glu (N-term Q) 
QYTLEGQGAKK + pyro-Glu (N-term Q) 

DISPPLEWYGVPDGTR 
SLAVVVQDVDADER 

VPWTHWVVVNISPEEK 
GLPEGFSGAGGNANAGGGDGGVQEGVNDWK 

LYALDDVLSLGNK 

45 
41 
56 

109 
41 

113 
85 

gi|26017213 
cold regulated protein 

(Wcor18) [Triticum 
aestivum] 

 


