Distinct functional properties of native somatostatin receptor subtype 5 compared with subtype 2 in the regulation of ACTH release by corticotroph tumor cells

Joost van der Hoeck,1 Marlijn Waaijers,1 Peter M. van Koetsveld,1 Diana Sprij-Mooij,1 Richard A. Feelders,1 Herbert A. Schmid,2 Philippe Schoeffer, Daniel Hoyer, Davide Cervia,3 John E. Taylor,4 Michael D. Culler,4 Steven W. J. Lamberts,1 and Leo J. Hofland1

1Department of Internal Medicine, Section Endocrinology, Erasmus Medical Center, Rotterdam, The Netherlands; 2Novartis Institutes for Biomedical Research, Oncology Research, and Neuroscience Research, Novartis Pharma AG, Basel, Switzerland; 3Dipartimento di Fisiologia e Biochimica “G. Moruzzi”, Università di Pisa, Italy; and 4Endocrinology Research Group, IPSEN Pharmaceuticals, Milford, Massachusetts

Submitted 5 January 2005; accepted in final form 8 March 2005

Van der Hoeck, Joost, Marlijn Waaijers, Peter M. van Koetsveld, Diana Sprij-Mooij, Richard A. Feelders, Herbert A. Schmid, Philippe Schoeffer, Daniel Hoyer, Davide Cervia, John E. Taylor, Michael D. Culler, Steven W. J. Lamberts, and Leo J. Hofland. Distinct functional properties of native somatostatin receptor subtype 5 compared with subtype 2 in the regulation of ACTH release by corticotroph tumor cells. Am J Physiol Endocrinol Metab 289:E278–E287, 2005. First published March 15, 2005; doi:10.1152/ajpendo.00004.2005.—In a series of human corticotroph adenomas, we recently found predominant mRNA expression of somatostatin (SS) receptor subtype 5 (sst5). After 72 h, the multiligand SS analog SOM230, which has a very high sst5 binding affinity, but not Octreotide (OCT), significantly inhibited basal ACTH release. To further explore the role of sst5 in the regulation of ACTH release, we conducted additional studies with mouse AtT-20 cells. SOM230 showed a 7-fold higher ligand binding affinity and a 19-fold higher potency in stimulating guanosine 5’-O-(3-thiotriphosphate) binding in AtT-20 cell membranes compared with OCT. SOM230 potently suppressed CRH-induced ACTH release, which was not affected by 48-h dexamethasone (DEX) pretreatment. However, DEX attenuated the inhibitory effects of OCT on ACTH release, whereas it increased the inhibitory potency of BIM-23268, an sst2-specific analog, on ACTH release. Quantitative PCR analysis showed that DEX lowered sst2A and sst2B mRNA expression significantly after 24 and 48 h, whereas sst5 mRNA levels were not significantly affected by DEX treatment. Moreover, Scatchard analyses showed that DEX suppressed maximum binding capacity (Bmax) by 72% when 125I-Tyr11-labeled OCT was used as radioligand, whereas Bmax declined only by 17% when AtT-20 cells were treated with 125I-Tyr111SS-14. These data suggest that the sst5 protein, compared with sst2, is more resistant to glucocorticoids. Finally, after SS analog preincubation, compared with OCT both SOM230 and BIM-23268 showed a significantly higher inhibitory effect on CRH-induced ACTH release. In conclusion, our data support the concept that the sst5 receptor might be a target for new therapeutic agents to treat Cushing’s disease.

Cushing’s disease: adrenocorticotropic hormone; glucocorticoid

CUSHING’S DISEASE, the pituitary-dependent form of Cushing’s syndrome, is the hypercortisolemic state secondary to excess or dysregulated ACTH secretion caused by an ACTH-secreting pituitary adenoma (36). The significant associated morbidity, such as increased tissue fragility, poor wound healing, hypertension, and diabetes mellitus, demands a proper medical intervention (1). Transsphenoidal surgery is currently the first line of treatment, and secondary options consist of irradiation therapy either alone or in combination with adrenocorticosteroids (10, 34, 35, 37). Unfortunately, none of the current treatment modalities ensures a full and permanent cure, as evidenced by the number of patients developing recurrent Cushing’s disease (43). The absence of an effective medical treatment has prompted physicians to explore new medical strategies, preferably based on fundamental and (patho)physiological pathways, in the hope of increasing the cure rate in this group of patients.

The physiological role of somatostatin (SS) in the regulation of anterior pituitary function (5, 27, 41, 45), its equivocal effects on ACTH release (6, 24), and the current use of SS analogs in patients with anterior pituitary tumors (29), has led to the exploration of SS analogs in patients with (recurrent) Cushing’s disease. To date, five G protein-coupled SS receptors have been cloned (sst1–sst5), and six gene products are currently known (39, 45). The receptor subtypes sst1–5 produce single gene products, whereas sst2A (long form) and sst2B (short form) originate from a common precursor mRNA, which is spliced at the carboxyl terminus (56). Although in vitro data demonstrate the presence of sst expression in corticotroph adenomas, the sst2-preferential analog octreotide (OCT) appears to inhibit ACTH release in Nelson’s syndrome and in some patients harboring ectopic ACTH-producing tumors, but rarely in patients with Cushing’s disease (13, 30). These observations are in agreement with the observation that almost all ACTH-secreting pituitary adenomas, i.e., patients with untreated Cushing’s disease, cannot be visualized by SS receptor (sst) scintigraphy using 111In-diethylenetriamine pentaacetic acid (DTPA) OCT (12, 28), whereas 111In-DTPA scintigraphy is positive in patients with Nelson’s syndrome (11, 12). Apparently, ACTH release from corticotropinomas is sensitive to OCT only in the absence of peripheral feedback regulation by glucocorticoids, suggesting that the sst2 might be downregulated when cortisol levels are high. Additional in vitro evidence for this hypothesis comes from studies using primary...